“New records of rare species in the Mediterranean Sea” (March 2021)

SANTIN ANDREU
Institute of Marine Sciences (ICM-CSIC), Passeig Maritim de la Barceloneta 37-49, 08003, Barcelona, Spain

AGUILAR RICARDO
OCEANA, Gran Via 59, 28013, Madrid, Spain

AKYOL OKAN
Ege University Faculty of Fisheries, 35440 Urla, Izmir, Turkey

BEGBURS CENKMEN RAMAZAN
Akdeniz University, Fisheries Faculty, Department of Fisheries Technology, Antalya, Turkey

BENOIT LAURE
CBGP – University of Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France

CHIMIENTI GIOVANNI
Department of Biology, University of Bari, Via Orabona, 4, 70125, Bari, Italy & CoNISMa, Rome, Italy

CROCETTA FABIO
Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121 Naples, Italy

DALYAN CEM
Istanbul University, Department of Biology, Division of Hydrobiology, Vezneciler, 34134 Istanbul, Turkey

DE LA LINDE RUBIO ANTONIO
Agencia de Medio Ambiente y Agua, Cádiz, Spain

DRAGICEVIC BRANKO
Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia

DULCIC JAKOV
Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIGLIO GIANNI</td>
<td>Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Rende (CS), Italy</td>
</tr>
<tr>
<td>GÖNÜLAL ONUR</td>
<td>Faculty of Aquatic Sciences, Istanbul University, Ordu street, No. 8, 34134 Laleli Fatih, Istanbul, Turkey</td>
</tr>
<tr>
<td>KEBAPCIOGLU TURHAN</td>
<td>Akdeniz University, Manavgat Tourism, Faculty Department of Recreation Management, Antalya, Turkey</td>
</tr>
<tr>
<td>KESICI NUR BIKEM</td>
<td>Istanbul University, Department of Biology, Division of Hydrobiology, Vezneciler, 34134 Istanbul, Turkey</td>
</tr>
<tr>
<td>KIPARISSIS SOTIRIS</td>
<td>Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, 71003, Heraklion, Greece</td>
</tr>
<tr>
<td>KOUSTENI VASILIKI</td>
<td>Fisheries Research Institute, Hellenic Agricultural Organization-Demeter, 64007 Nea Peramos, Kavala, Greece & Department of Zoology-Marine Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimioiopolis, 15784 Athens, Greece</td>
</tr>
<tr>
<td>MANCINI EMANUELE</td>
<td>Laboratory of Experimental Oceanoology and Marine Ecology, University of Tuscia, Civitavecchia, Italy</td>
</tr>
<tr>
<td>MASTROTOTARO FRANCESCO</td>
<td>Department of Biology, University of Bari, Via Orabona, 4, 70125, Bari, Italy & CoNISMa, Rome, Italy</td>
</tr>
<tr>
<td>MENUT THOMAS</td>
<td>Biotope – Environmental Consulting Company, Mèze, France</td>
</tr>
<tr>
<td>MONTESANTO FEDERICA</td>
<td>Department of Biology, University of Bari, Via Orabona, 4, 70125, Bari, Italy & CoNISMa, Rome, Italy</td>
</tr>
<tr>
<td>PERISTERAKI PANAGIOTA</td>
<td>Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, 71003, Heraklion, Greece</td>
</tr>
<tr>
<td>POURSANIDIS DIMITRIS</td>
<td>Foundation for Research and Technology-Hellas & Institute of Applied and Computational Mathematics, N. Plastira 100, 70013 Heraklion, Greece</td>
</tr>
<tr>
<td>Authors</td>
<td>Institutions</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>RENOULT JULIEN</td>
<td>CEFE – University of Montpellier, CNRS, EPHE, IRD, University Paul-Valery Montpellier 3, Montpellier, France</td>
</tr>
<tr>
<td>SÁNCHEZ-TOCINO LUÍS</td>
<td>Department of Zoology, Faculty of Sciences - University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain</td>
</tr>
<tr>
<td>SPERONE EMILIO</td>
<td>Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Rende (CS), Italy</td>
</tr>
<tr>
<td>TIRALONGO FRANCESCO</td>
<td>Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy & Ente Fauna Marina Mediterranea, Avola, Siracusa, Italy</td>
</tr>
</tbody>
</table>

https://doi.org/10.12681/mms.25295

Copyright © 2020 Mediterranean Marine Science

To cite this article:

New records of rare species in the Mediterranean Sea (March 2021)

Andreu SANTÍN1, Ricardo AGUILAR2, Okan AKYOL3, Cenkmen Ramazan BEGBURS4, Laure BENOIT5, Giovanni CHIMIENTI6,7, Fabio CROCETTA8, Cem DALYAN9, Antonio DE LA LINDE RUBIO10, Branko DRAGICEVIC11, Jakov DULČIĆ12, Gianni GIGLIO10, Onur GÖNÜLAL13, Turhan KEBAPCI-OGLU14, Nur Bikem KESIC15, Sotiris KIPARISSIS16, Yasuaki KOUSHI17, Emanuele MANCINI18, Francesco MASTROTOTARO19, Thomas MENUT20, Federica MONTE-SANTO21, Dimitris POURSANIDIS22, Julien P. RENOUPT23, Luis SÁNCHEZ-TOCINO22, Emilio SPERONE24, and Francesco TIRALONGO25,26

1 Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
2 OCEANA, Gran Via 59, 9, 28013, Madrid, Spain
3 Ege University Faculty of Fisheries, 35440 Urla, Izmir, Turkey
4 Akdeniz University, Fisheries Faculty, Department of Fisheries Technology, Antalya, Turkey
5 CBGP – University of Montpellier, CIRAD, IRD, INRAE, Montpellier SupAgro, Montpellier, France
6 Department of Biology, University of Bari, Via Orabona, 4, 70125, Bari, Italy
7 CoNISMa, Rome, Italy
8 Department of Integrative Marine Ecology, Stazione Zoolgica Anton Dohrn, Villa Comunale, I-80121 Naples, Italy
9 Istanbul University, Department of Biology, Division of Hydrobiology, Vezucieier, 34134 Istanbul, Turkey
10 Agencia de Medio Ambiente y Agua, Cádiz, Spain
11 Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia
12 Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Rende (CS), Italy
13 Faculty of Aquatic Sciences, University of Istanbul University, Ordu street, No. 8, 34134 Laleli Fath, Istanbul, Turkey
14 Akdeniz University, Manavgat Tourism, Faculty Department of Recreation Management, Antalya, Turkey
15 Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, 71003, Heraklion, Greece
16 Fisheries Research Institute, Hellenic Agricultural Organization-Demeter, 64007 Nea Peramos, Kavala, Greece
17 Department of Zoology-Marine Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
18 Laboratory of Experimental Oceanology and Marine Ecology, University of Tuscia, Civitavecchia, Italy
19 Biotope – Environmental Consulting Company, Mîze, France
20 Foundation for Research and Technology-Hellas, Institute of Applied and Computational Mathematics, N. Plastira 100, 70013 Heraklion, Greece
21 CEFE – University of Montpellier, CNRS, EPHE, IRD, University Paul-Valery Montpellier 3, Montpellier, France
22 Department of Zoology, Faculty of Sciences - University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
23 Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
24 Ente Fauna Marina Mediterranea, Avola, Siracusa, Italy

Contributing Editor: Vasilis Gerovasileiou
Published on line: 31 March 2021

Abstract

This Collective Article presents information on 17 taxa belonging to five (5) Phyla and extending from the Alboran Sea to the Levantine Sea. These new records were found in six (6) different ecoregions as follows: Alboran Sea: Second and easternmost record of the sponge *Chalinula nigra* in the Mediterranean Sea; Western Mediterranean: first record of the rare goby *Gobius couchi* for Spain, based on both morphological and molecular data; new records for the rare ascidian *Ciona edwardsi* from the Marine Protected Area of Tavolara, Sardinia; several records for four (4) different species of black coral, *Antipathella subpinata, Antipathes dichotoma, Leiopathes glaberrima* and *Parantipathes larix* from the Aeolian Archipelago, all of which are currently threatened and/or protected at a Mediterranean level; the first documented records of the sea lamprey *Petromyzon marinus* in Calabria, which is considered “Critically Endangered” in Italy; first record in the Tyrrhenian Sea and second record in the Ionian Sea for the crab *Oxyode cursor*, which seems to be rapidly expanding its distribution range across Italian waters; Adriatic Sea: Additional records of yellowmouth barracuda, *Sphyraena viridens*, in the northern Adriatic, which seems to be experimenting a meridionalization process in the region; Aegean Sea: First confirmed record of the iconic gastropod *Bursa scrobilator scrobilator* in the eastern Mediterranean Sea; an additional record for the vulnerable shark *Dalatias licha*, also being the largest individual caught in eastern Mediterranean waters till the time of capture; an additional record for the rare crab *Distolambrus maltzami*, sug-
gesting the species might be more morphologically variable than originally thought; first documented record for the myctophid Hygophum hygumii in both Turkish waters and the north Aegean Sea; additional records for the tuna Katsuwonus pelamis and the sunfish Ranzania laevis in the eastern Mediterranean, pointing out that both species might not be as rare in the area as previously thought; Levantine Sea: additional records for the rare stingray Taeniura grabata in Turkish waters.

Introduction

There is no doubt that the Mediterranean Sea might be amongst the most diverse and anthropogenically affected seas in the world (Coll et al., 2010; 2012). While the Mediterranean Sea only represents less than 1% of the total surface of the oceans, estimates consider it might hold between 4 and 18 % of all macroscopic marine organisms (Bianchi & Morri, 2000), for which it is considered a hotspot of marine diversity (Cuttelod et al., 2009). On the other hand, the Mediterranean Sea is also one of the most threatened seas of the world (Coll et al., 2010), with human impacts such as development and urbanization of coastal areas, tourism, pollution, maritime traffic, climate change or the unsustainable exploitation of marine resources, amongst others, being a direct threat for marine species occurring on the area (Cuttelod et al., 2009). Furthermore, data is lacking for most Mediterranean species to properly assess their populations and conservation status (Boudouresque, 2004). As such, properly characterizing these species is of paramount importance for monitoring biodiversity over time and providing decision makers with the necessary tools for enabling effective conservation measures (Gerovasileiou et al., 2020). To this aim, The Collective Articles: Series B, titled “New records of rare species in the Mediterranean Sea” is an effort to support the publication of information on the first occurrence or expansion of species in the Mediterranean Sea, as well as sightings of rare, threatened or protected species which might be of relevance. Works submitted to the Collective Articles are peer-reviewed by at least one reviewer and the editor. The contributors are cited as co-authors in alphabetic order as well as at the beginning of each subchapter corresponding to their record(s). As customary for the series, new records are arranged from west to east, and classified within four main regions or subchapters: Western Mediterranean Sea, Central Mediterranean Sea, Adriatic Sea and Eastern Mediterranean Sea. Starting with this collective article and here on, species will not be ordered by country, but by ecoregions sensu Spalding et al. (2007). In this sense, ecoregions are defined as “strongly cohesive areas of relatively homogeneous species composition, large enough to encompass the ecological and life history processes of its sedentary species and clearly distinct from adjacent systems” and specifically aimed for marine management and conservation purposes (Spalding et al., 2007).

The approximate locations of each record are shown on a map (Fig. 1), with numbers cross-referenced with Table 1, where all other related information (Phylum, sub-chapter, ecoregion, approximate location and location number, as in the map) is summarized. In the present collective article, a total of 17 taxa belonging to five (5) Phyla are presented (Table 1). Amongst others, this article includes the first confirmed records of the gastropod Bursa scrobilator scrobilator in the eastern Mediterranean Sea, which is considered to be an iconic Mediterranean species. Similarly, the tuna Katsuwonus pelamis, which had only been previously recorded in the western Mediterranean, and just recently, from the Egyptian coast, has occasionally appeared as an accidental capture in swordfish gillnets in the coast of Turkey, while small
schools of the species have also been identified from the area since at least two years ago. Both cases represent a considerable expansion of the distribution range of the aforementioned species within the Mediterranean basin, and question whether or not certain species considered as ‘rare’ in the eastern Mediterranean have simply been overlooked until now. An additional proposed explanation might be that these records represent an ongoing expansion range for the species, which could be, to an extent, induced or facilitated by climate change-related phenomena. This appears to be an ongoing trend for several species here reported, with the crab *Ocypode cursor* rapidly expanding its distribution range across Italy, with new records at both sides of the Calabrian region, at the Tyrrenhian and Ionian Seas, additional sightings of the yellowmouth barracuda *Sphyraena viridensis* which, once a rare species in the Adriatic, it is now increasing in numbers and experiencing a northward spreading of its distribution in the region and, finally, the second and easternmost record of the sponge *Chalinula nigra* in the Mediterranean, which had only been previously recorded in the basin at the Strait of Gibraltar. This article also provides additional sightings of protected or threatened species, including the first occurrence in the Calabria region of the lamprey *Petromyzon marinus*, which is considered “Critically Endangered” in Italian waters, the presence of a female *Dalatias licha* from the Aegean Sea, which is considered as “Vulnerable” according to the IUCN Red

Table 1. Information about species records by phylum. Sub-chapters (SC), basin (WMED – Western Mediterranean Sea, CMED – Central Mediterranean Sea, ADRIA – Adriatic Sea, and EMED – Eastern Mediterranean Sea), location, Ecoregion *sensu* Spalding et al. (2007), and Location Number (LN) as in Figure 1. * Indicates multiple sightings in various close-by locations.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>SC</th>
<th>Basin</th>
<th>Location</th>
<th>Ecoregion</th>
<th>LN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phylum Porifera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chalinula nigra Boury-Esnault & Lopes, 1985</td>
<td>1.1</td>
<td>WMED</td>
<td>Chafarinas Islands</td>
<td>Alboran Sea</td>
<td>1</td>
</tr>
<tr>
<td>Phylum Cnidaria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antipathella subpinnata (Ellis & Solander, 1786)</td>
<td>1.4</td>
<td>WMED</td>
<td>Aeolian Archipelago*</td>
<td>Western Mediterranean</td>
<td>5</td>
</tr>
<tr>
<td>Antipathes dichotoma Pallas, 1766</td>
<td>1.4</td>
<td>WMED</td>
<td>Aeolian Archipelago*</td>
<td>Western Mediterranean</td>
<td>5</td>
</tr>
<tr>
<td>Leiopathes glaberrima (Esper, 1792)</td>
<td>1.4</td>
<td>WMED</td>
<td>Aeolian Archipelago*</td>
<td>Western Mediterranean</td>
<td>5</td>
</tr>
<tr>
<td>Parantipathes larix (Esper, 1788)</td>
<td>1.4</td>
<td>WMED</td>
<td>Aeolian Archipelago*</td>
<td>Western Mediterranean</td>
<td>5</td>
</tr>
<tr>
<td>Phylum Artropoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distolambrus maltesi (Miers, 1881)</td>
<td>3.4</td>
<td>EMED</td>
<td>Johnston Bank, northwest of Lesvos island</td>
<td>Aegean Sea</td>
<td>12</td>
</tr>
<tr>
<td>Ocypode cursor (Linnaeus, 1758)</td>
<td>1.5</td>
<td>WMED</td>
<td>Palmi, southwestern Calabria</td>
<td>Western Mediterranean</td>
<td>6</td>
</tr>
<tr>
<td>Phylum Mollusca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bursa scrobilator scrobilator (Linnaeus, 1758)</td>
<td>3.1</td>
<td>EMED</td>
<td>Damnoni Bay, Crete</td>
<td>Aegean Sea</td>
<td>9</td>
</tr>
<tr>
<td>Phylum Chordata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subphylum Tunicata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ciona edwardsi Roule, 1884</td>
<td>1.3</td>
<td>WMED</td>
<td>Olbia, Sardinia</td>
<td>Western Mediterranean</td>
<td>3</td>
</tr>
<tr>
<td>Subphylum Vertebrata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dalatias licha (Bonnatere, 1788)</td>
<td>3.2</td>
<td>EMED</td>
<td>Off Skyros Island</td>
<td>Aegean Sea</td>
<td>10</td>
</tr>
<tr>
<td>Gobius couchi Miller & El-Tawil, 1974</td>
<td>1.2</td>
<td>WMED</td>
<td>Cadaqués, Spanish Mediterranean coast</td>
<td>Western Mediterranean</td>
<td>2</td>
</tr>
<tr>
<td>Hygophum hygomi (Lütken, 1892)</td>
<td>3.5</td>
<td>EMED</td>
<td>Gökçeada Island</td>
<td>Aegean Sea</td>
<td>13</td>
</tr>
<tr>
<td>Katsuwonus pelamis (Linnaeus, 1758)</td>
<td>3.6</td>
<td>EMED</td>
<td>south of Cape Kurtoglu, Fethiye region</td>
<td>Aegean Sea</td>
<td>14</td>
</tr>
<tr>
<td>Petromyzon marinus Linnaeus, 1758</td>
<td>1.6</td>
<td>WMED</td>
<td>Calabria</td>
<td>Western Mediterranean</td>
<td>7</td>
</tr>
<tr>
<td>Ranzania laevis (Pennant, 1776)</td>
<td>3.3</td>
<td>EMED</td>
<td>Kokkini Hani, Crete</td>
<td>Aegean Sea</td>
<td>11</td>
</tr>
<tr>
<td>Sphyraena viridensis Cuvier, 1829</td>
<td>2.1</td>
<td>ADRIA</td>
<td>Tar Cove, Mirna estuary</td>
<td>Adriatic Sea</td>
<td>4</td>
</tr>
<tr>
<td>Taeniura grabata (Geoffroy Saint-Hilaire, 1817)</td>
<td>3.7</td>
<td>EMED</td>
<td>Finike Bay</td>
<td>Levantine Sea</td>
<td>15</td>
</tr>
</tbody>
</table>
List and, finally, the occurrence of several endangered and/or protected black coral species in the Aeolian Archipelago, Antipathella subpinnata, Antipathes dichotoma, Leitopora glaberrima and Parantipathes larix, highlighting the importance of conservation measures to be taken in the archipelago to protect its benthic diversity. Finally, this article reports on new localities for rare or unique species, including the first records of the gobid Gobius couchi for Spain, the first records for the tuniciate Ciona edwardsii in Sardinia, from the Marine Protected Area of Tavolara, the occurrence of the sunfish Ranzania laevis from Crete, suggesting that the island might be an spawning site for the species, and additional records of the rare crab Distolambrus nautzami from a deep coralligenous bank of the Aegean Sea and the fish Hygophum hygomin and the stingray Taeniura grabata in Turkish waters, respectively.

Regarding the methodological aspects of the records, it is interesting to note that those come from various different origins, with four records having been recorded by SCUBA diving, five from fishers’ by-catch, two from scientific dredging/trawls, one by in situ observation and, finally, one by using Remotely Operated Vehicles (ROVs). In this sense, it is worth noticing that while ROV were only used in one of the sections of the article, the authors were able to report sightings for four different species of black corals with in situ, imaging, highlighting the potential of ROV for the study of deep-sea fauna (Bo et al., 2020). Three records of fishes were based on specimens deposited in zoological collections under a reference code. Another noteworthy aspect of the contributions is that ten out of 16 records resulted from collaboration or contact between scientists and recreational divers or fishers, highlighting the importance that communication between the scientific community and other sea users might represent for accurately mapping the distribution of marine fauna as well as monitoring changes on their populations.

1. WESTERN MEDITERRANEAN SEA

1.1. Crossing the Pillars of Hercules: First records of Chalinula nigra Boury-Ensall & Lopes, 1985 (Haplosclerida, Porifera) in the western Alboran Sea

Andreu SANTÍN, Antonio DE LA LINDE RUBIO and Luis SÁNCHEZ-TOCINO

Haplosclerids might be considered as one of the most common sponge inhabitants of the sublittoral north Atlantic and Mediterranean sponge fauna (de Weerdt, 1986). Nevertheless, while they might be easily recognizable at family or even genus level underwater, the subtle differences in spicule and skeletal morphology between species makes species identification hazardous (de Weerdt, 1986). In 2019 an unidentified black haplosclerid was observed for the first time in the ‘Isla del Rey’, the westernmost island of the Chafarinas Islands (western Alboran Sea, in front of the Moroccan coast; 35.1791° N, 2.4205° W). The species was locally abundant at ca. 13 m depth, where it grew onto rubble and big boulders alongside with Axinella spp., Chondrosis reniformis Nar- do, 1847, Eunicella singularis (Esper, 1791) Leptogorgia spp., and Holocynthia papillosa (Linnaeus, 1767), as well as numerous unidentified encrusting sponges and bryozoans (Fig. 2A and B). The next year, the sponge was reen- countered in the area, having expanded its distribution to the northern wall next to its first sighting site, and a few individuals could be sampled and identified as Chalinula nigra Boury-Ensall & Lopes, 1985 (accession n°: MZB 2021-0471), which is here redescribed:

External appearance: Numerous branches spreading from a common base, up to 15 cm high, which later divide one or more times, usually with a bifid termination. Oscula are numerous and can easily be seen across the branches, usually on its upper face (Fig. 2B). The surface is somewhat conulose due to the primary fibres, which protrude 1-2 mm from it. No detachable ectosome present. The sponge is soft and elastic, with a characteristic black to dark brown colour when live, which turns greyish when in spirit.

Spicules: Exclusively thin oxea with straight to slightly bent shafts (Fig. 2C), very regular in size, and with somewhat acerate ends. Size range: 105.5 - 116.8 ± 7.4 μm x 1.8 - 2.3 ± 3.3 ± 0.4 μm.

Skeletal arrangement: A more or less regular ladder-like network of spongin fibres intersecting at right angles (Fig. 2D). The fibres are filled with dense oxea tracts (Fig. 2E), ranging between 5 to 40 spicules. Primary and secondary fibres can only be told apart based on their position in the skeleton, with on overall diameter of 21.3 - 46.6 ± 84.1 ± 16.2 μm. Most meshes between the fibres are somewhat rectangular and very variable in size, ranging 70 - 173.4 ± 55.1 ± 55.7 ± 58 - 119.9 - 550 ± 40.9 μm, yet most would fall between 120 - 220 μm. Finally, isolated spicules could be observed along the meshes.

Remarks: This note reports the third record for this ill-known species, which was previously just known from the Azores (Boury-Ensall & Lopes, 1985) and the Strait of Gibraltar (Carballo & García-Gómez, 1994). Compared to the original description, individuals from the Chafarinas appear to possess wider spongin fibres, doubling those of the Azores, while, on the contrary, its oxeas appear to be slightly shorter and thinner (Boury-Ensall & Lopes, 1985). Individuals from the Strait of Gibraltar would fall between both, with oxeas in range with Azorean samples, but with slightly wider fibres (Carballo & García-Gómez, 1994). Yet, Chalinula species have
have been shown to possess a considerable amount of intraspecific spicular and fibre size variation (Van Soest, 1976; de Weerdt, 1986), and the observed differences might reflect different environmental conditions along its area of distribution. Finally, this report represents the first record for the western Alboran Sea and might suggest the species has recently crossed the Strait of Gibraltar (36.13° N, 5.35° W), which was previously known as its distribution limit (Carballo et al., 1997).

1.2. First records of *Gobius couchi* Miller & El-Tawil, 1974 from Spain

Julien P. RENOULT, Laure BENOIT and Thomas MENUT

Couch’s goby, *Gobius couchi*, Miller & El-Tawil, 1974 is an uncommon benthic species occurring in the North-Eastern Atlantic, in the Mediterranean and Black Sea, where it was recently recorded in Crimea (Karpova & Boltachev, 2018). It inhabits relatively shallow waters, at 1-20 m depth, usually on sedimentary bottoms, with algae or seagrasses, and on hard bottoms.

On 19th July 2013, a specimen of *G. couchi* was photographed during a night dive at Cadaqués, on the Spanish Mediterranean coast (Fig. 3) (42.2847° N, 3.2871° E), at a depth of 2 m, at the interface between sand and *Posidonia oceanica* meadows.

To confirm the identity of the species, two specimens were collected from the same area on 28th August 2020. All morphological and colour characters matched those of the species (Karpova & Boltachev, 2018). The two female specimens were stored at the Natural History Museum Rijeka with code PMR VP4929 (40.8 + 9.0 mm; Fig. 2: A and B) Individuals of *Chalinula nigra* growing onto rocky coralligenous substrates in el ‘Tajo del Pirata’, partially covered by an algal turf. Scale bars are approximate. C) Detail of the oxeas as seen on an optical microscope; scale 5 μm. D) Spongin fibers in a ladder-like reticulation, with primary and secondary fibers undistinguishable; scale 50 μm. E) Detail of the spongin fibers, where several oxea can be seen forming the tracts of the skeleton; scale 50 μm.

Fig. 2: A and B) Individuals of *Chalinula nigra* growing onto rocky coralligenous substrates in el ‘Tajo del Pirata’, partially covered by an algal turf. Scale bars are approximate. C) Detail of the oxeas as seen on an optical microscope; scale 5 μm. D) Spongin fibers in a ladder-like reticulation, with primary and secondary fibers undistinguishable; scale 50 μm. E) Detail of the spongin fibers, where several oxea can be seen forming the tracts of the skeleton; scale 50 μm.

Fig. 3: A) Individual photographed in 2013 in Cadaqués, representing the first record of *Gobius couchi* for Spain; B) Specimen PMR VP4929 collected in 2020.
D1: VI, D2: I/14, A: I/12; left side: scale in lateral series: 41, P: 16), and at the Center for Functional and Evolutionary Ecology in Montpellier with code JR290820-02 (39.5 ± 8.8 mm; D1: VI, D2: I/13, A: I/12; left side: scale in lateral series: 39, P: 15). Both individuals present the following characters: pre-dorsal area with scales, all three head canals present, pore α just posterior to the orbit, suborbital papillae without longitudinal row α, pelvic fin rounded.

We also sequenced a 652 base pairs of the cytochrome oxidase subunit 1 (COI) mitochondrial gene for individual PMR VP4929 (Genbank accession n°: MW459354; BOLD record n°: JR290820-01). DNA purifications were performed using the 96-Well Plate Animal Genomic DNA Miniprep Kit (Biobasic, Canada) from a piece of muscle removed prior specimen fixation in formaldehyde 4% and stored in 96° ethanol. We performed PCR amplification using the primer cocktail C_FishF1t1-C_FishR1t1 and the same protocol as in Ivanova et al. (2007). A BLAST of the sequence against the NCBI nucleotide library returned a single match above 90% identity: Genbank accession n°KY176488 (98.91% identity; 98% cover). This accession number corresponds to an individual from Turkey erroneously labelled as G. fallax: in their phylogenetic analysis of the genus Gobius, Iglésias et al. (2021) found that KY176488 branches within clade with maximal bootstrap support that includes five other gobies, all identified as G. couchi by the authors. Thus, DNA barcoding identifies PMR VP4929 as G. couchi.

The present finding represents the first record of G. couchi from Spanish waters (Báez et al., 2019), and underlines the importance of underwater photography for the detection of uncommon small benthic and cryptobenthic fish (Tiralongo et al., 2020a).

1.3. Records of the yellow-sulphur ascidian Ciona edwardsi (Roule, 1884) along Sardinian coasts (Tyrrenian Sea, Italy)

Federica MONTESANTO and Francesco MASTROTOTARO

Ciona edwardsi was first found and described along the Mediterranean coasts of France as Pleurociona edwardsi by Roule (1884). Afterwards, this species has been considered as junior synonym of C. intestinalis Linnaeus, 1767 until further specimens were reported and described along the coasts of Banyuls-sur-mér (France, Mediterran-
1.4. Antipatharians of the Aeolian Archipelago (Southern Tyrrhenian Sea)

Giovanni CHIMIENTI and Ricardo AGUILAR

The volcanic archipelago of the Aeolian Islands is characterized by a complex marine topography, including active volcanoes, seamounts, channels and canyons. It hosts a suite of important habitats for the benthic fauna, from shallow to deep waters, resulting in a hotspot of biodiversity (Esposito et al., 2020). The four most common Mediterranean species of black corals (Anthozoa, Antipatharia) are here reported. Antipathella subpinnata (Ellis & Solander, 1786) was observed North of Lipari Island. A forest of this species was settled on rocks encrusted by coraline algae from 83 to 130 m depth (Fig. 5A, Table 2). Few small colonies were also observed on benthal rocks at 612 m depth, representing the deepest record known for this species (Chimienti et al., 2020). A. subpinnata was previously known to be present at Stromboli Island, with few isolated colonies at 52-58 m depth (Bo et al., 2008).

Three large colonies of Lepiopathes glaberrima (Esper, 1788) were found at 187-345 m depth off Stromboli, Filicudi and Panarea Islands, settled on large rocky outcrops, on small hard bottoms interspersed with mud and on vertical rocky walls, respectively (Fig. 5C-D, Table 2). Parantipathes larix (Esper, 1788) and Antipathes dichotoma (Pallas, 1766) as well were observed on these three types of substrate. In particular, isolated colonies of P. larix were observed on the rocky bottom from Lipari and Salina to Stromboli Islands, between 129 and 349 m depth, while A. dichotoma was quite widespread all around the archipelago, from 129 to 697 m depth (Fig. 5B, Table 2).

Antipatharians are considered important habitat formers of the Mediterranean mesophotic and aphotic zones, worthy of conservation measures (Bo et al., 2008; Chimienti et al., 2020). The four species here reported are included in the list of endangered or threatened species (Annex II) of the Barcelona Convention. Three of them are also listed as “Near Threatened” in the Red List by the International Union for Conservation of Nature (Otero et al., 2017), while L. glaberrima is reported as “Endangered”. The new occurrences of black corals further underline the importance of adopting conservation measures for the Aeolian Archipelago.
Table 2. Records of black corals from the Aeolian Archipelago, with indication of the area, geographic coordinates, depth range and type of substrate.

<table>
<thead>
<tr>
<th>Species</th>
<th>Area</th>
<th>Lat. N</th>
<th>Lon. E</th>
<th>Depth (m)</th>
<th>Substrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antipathella subpinnata</td>
<td>NE Lipari</td>
<td>38.54490</td>
<td>14.93775</td>
<td>83-130</td>
<td>Encrusted rocks</td>
</tr>
<tr>
<td></td>
<td>NE Lipari</td>
<td>38.53705</td>
<td>14.96945</td>
<td>612</td>
<td>Rocks on mud</td>
</tr>
<tr>
<td>Antipathes dichotoma</td>
<td>NW Filicudi</td>
<td>38.56910</td>
<td>14.50619</td>
<td>647</td>
<td>Rocks on mud</td>
</tr>
<tr>
<td></td>
<td>NE Lipari</td>
<td>38.54466</td>
<td>14.93905</td>
<td>129-218</td>
<td>Encrusted rocks</td>
</tr>
<tr>
<td></td>
<td>SW Lipari</td>
<td>38.46478</td>
<td>14.87002</td>
<td>207-298</td>
<td>Rocky bottom</td>
</tr>
<tr>
<td></td>
<td>SE Panarea</td>
<td>38.63568</td>
<td>15.13545</td>
<td>351</td>
<td>Vertical rocky wall</td>
</tr>
<tr>
<td></td>
<td>NE Stromboli</td>
<td>38.83085</td>
<td>15.24322</td>
<td>217-697</td>
<td>Rocky bottom</td>
</tr>
<tr>
<td>Leiopathes glaberrima</td>
<td>NW Filicudi</td>
<td>38.57048</td>
<td>14.53052</td>
<td>187</td>
<td>Encrusted rocks</td>
</tr>
<tr>
<td></td>
<td>SE Panarea</td>
<td>38.63584</td>
<td>15.13524</td>
<td>345</td>
<td>Vertical rocky wall</td>
</tr>
<tr>
<td></td>
<td>NE Stromboli</td>
<td>38.81533</td>
<td>15.26890</td>
<td>275</td>
<td>Rocks on mud</td>
</tr>
<tr>
<td>Parantipathes laris</td>
<td>N Salina</td>
<td>38.63223</td>
<td>14.90297</td>
<td>157</td>
<td>Rocks on mud</td>
</tr>
<tr>
<td></td>
<td>NE Lipari</td>
<td>38.54483</td>
<td>14.93830</td>
<td>129-158</td>
<td>Encrusted rocks</td>
</tr>
<tr>
<td></td>
<td>SE Panarea</td>
<td>38.63580</td>
<td>15.13530</td>
<td>349</td>
<td>Vertical rocky wall</td>
</tr>
<tr>
<td></td>
<td>NE Stromboli</td>
<td>38.82799</td>
<td>15.24491</td>
<td>202</td>
<td>Rocky bottom</td>
</tr>
</tbody>
</table>

Fig. 5: A) Antipathella subpinnata on rocks encrusted by coralline algae; B) Antipathes dichotoma (left) and Parantipathes laris (right) on small rocks interspersed with sandy mud; C) Leiopathes glaberrima on a vertical rocky wall; D) Detail of the polyps of L. glaberrima. Scale bars: 10 cm.
1.5. *Ocypode cursor* (Linnaeus, 1758) expands its range along the Mediterranean coasts: first record from the Tyrrenian Sea and a new record from the Ionian Sea

Francesco TIRALONGO and Emanuele MANCINI

Crabs of the family Ocypodidae Rafinesque, 1815 are semi-terrestrial species, common on sandy beaches and on mudflats of tropical, subtropical and temperate waters worldwide. These crabs are characterized by a narrow front, long eyestalks and smooth (or ridged) dactyls in walking legs. In the Mediterranean Sea, *Ocypode cursor* (Linnaeus, 1758) is the only member of the Ocypodidae family (Strachan et al., 1999). Furthermore, it represents a protected taxon (Deidun et al., 2017). In Sicily mainland, the species was recorded for the first time in 2009 at Sampieri, subsequently expanding its range along the entire south coast and in the southeastern one (Relini, 2009; Mytilineou et al., 2016; Deidun et al., 2017; Tiralongo et al., 2020c). We present the first records of the species for Calabria, with the first record from the Tyrrenian Sea (northwesternmost record in the Mediterranean Sea) and a new record from the Ionian Sea. On 24th July 2020, an adult specimen of *O. cursor* was observed at Palmi (Southwestern Calabria, Tyrrenian Sea, 38.39467° N, 15.86195° E) (Fig. 6A). On 26th July 2020, several specimens (juveniles and adults) and burrows of *O. cursor* were observed at the beach of Pizzo Greco, north to Capo Rizzuto (eastern Calabria, Ionian Sea, 38.92192° N, 17.12420° E) (Fig. 6B-C). The present records increase the knowledge on the distribution of the species in Italy and in the Mediterranean Sea. After the 2016, the species undergone a rapid expansion of its range along Italian coasts, where in a few years it was recorded in several locations of the southern and southeastern coast of Sicily and in Apulia (Tiralongo et al., 2020c). Moreover, while along the Ionian coast of Calabria the species was observed on sand with a similar granulometry to that observed in Sicily and Apulia, in the Tyrrenian Sea the species was observed on coarser sand. These observations suggest that *O. cursor* is able to adapt to a habitat with suboptimal conditions were digging holes can be harder than on thinner sand. Further studies are necessary in order to better understand the expanding dynamics of this semi-terrestrial species in the Mediterranean Sea. However, considering its colonization success, it is probable that in a few years this species will expands in several new Mediterranean areas.

![Fig. 6: A) The specimen of *Ocypode cursor* observed at Palmi, southern Tyrrhenian Sea. A specimen (B) and holes (C) of *O. cursor* observed at Pizzo Greco, northern Ionian Sea.](image-url)
1.6. First documented record of *Petromyzon marinus* Linnaeus, 1758 in Calabria (Central Mediterranean, Southern Italy)

Gianni GIGLIO and Emilio SPERONE

The sea lamprey *Petromyzon marinus* Linnaeus 1758 belongs to the Order Petromyzontiformes. Usually, sea lampreys are anadromous, migrating to the sea during their parasitic phase. Their life cycle contains microphagic filter-feeding larvae (ammocoete) in a freshwater habitat. After four to six years, the ammocoetes suffer a radical metamorphosis into post-metamorphic juvenile, which migrate downstream to the sea (Silva *et al*., 2013). In Italy the species is considered “Critically Endangered” according to Italian Red Book of endangered species (Rondinini *et al*., 2013): the reduction of suitable habitat because of the construction of impassable dams represents the major threat to the survival of the sea lampreys in Italian river basins.

Regarding presence of the species in the Mediterranean, the sea lamprey occurs along the coast of France, Corsica, Sicily, Malta, Morocco, Algeria, Tunisia, and Italy; it has been also reported for the Adriatic, while only few records are known from the Eastern Mediterranean (Thessalou-Legaki *et al*., 2012).

In June 2020, an adult female *Petromyzon marinus* [756 mm total length (TL)] was caught by spinning from the shore by an artisanal fisherman close to the mouth of the Lao river in the South Tyrrhenian Sea (39.7713° N, 15.7952° E; Calabria, Southern Italy). Immediately after capture, the animal was photographed and released still alive into the sea (Fig. 7).

This capture represents the first report for the species in Calabrian waters and, given the proximity to the mouth of the Lao river, it could be hypothesized that this basin could be used for reproduction. The Lao river has already proved to be a highly natural site, hosting other species of lamprey (Sperone *et al*., 2019), but also other species of high conservation interest (Talarico *et al*., 2004; Bonacci *et al*., 2008).

2. ADRIATIC SEA

2.1. On the record of the yellowmouth barracuda, *Sphyraena viridensis* (Pisces: *Sphyraenidae*) in the Northern Adriatic Sea

Jakov DULČIĆ and Branko DRAGIČEVIĆ

The yellowmouth barracuda, *Sphyraena viridensis* Cuvier, 1829 is distributed in the Eastern Central Atlantic including Azores Islands and the Mediterranean Sea. Its historical presence and exact distribution in the Mediterranean is poorly known mostly due to confusion with a similar species, *Sphyraena sphyraena* (Linnaeus, 1758) (Relini & Orsi-Relini, 1997). First record of yellowmouth barracuda in the Adriatic Sea was in 1997, when a specimen was caught in the vicinity of Rijeka (Dulčić & Dragičević, 2011). In recent years it experienced an expansion in the Adriatic Sea (Sbragaglia *et al*., 2020) and is now considered a common species in the southern and middle Adriatic, however records from the northern Adriatic are scarce.

On 25th January 2020, a fishing operation for scientific purposes took place in an embayment of North Adriatic (Tar Cove, Mirna estuary, 45.3124°N, 13.6091°E). This fishing operation was performed by enclosing the whole bay area of the estuary and gradually narrowing the space by pulling the nets toward the shallow part in the bottom of the bay where the fish was afterwards collected using both beach and purse seines. Only a sample of the catch was retained for the study, while the rest of the fish was released. The temperature at 1.5 m depth was 12.5°C. This fishing method was traditionally used for catching mullet species, but in recent years more thermophilic species started to appear in the catch, especially the bluefish, *Pomatomus saltatrix* (Linnaeus, 1766) (Dulčić *et al*., 2019).

In this particular catch, among other captured species, a surprising catch of 53 individuals of the yellowmouth barracuda *S. viridensis* was recorded (Fig. 8). Total lengths of specimens were in the range 37.2 - 48.1 cm (43.6 ± 2.25) while total weights in the range 184-391 g.
The identification of *S. viridensis* was ascertained by checking preopercle scale pattern where the absence of scales on its front and rear edge indicated *S. viridensis*, while completely scaled preopercle indicated *S. sphyraena* (Relini & Orsi-Relini, 1997) which was also present in the catch. These species also differed in flank coloration, namely *S. viridensis* specimens had darker dorsal part of the body and featured dark vertical bars. Conversely, *S. sphyraena* specimens had paler, yellowish dorsal part without visible vertical bars (Fig. 9). The observed occurrence of *S. viridensis* is probably a consequence of northward spreading of thermophilic taxa, a process known as "meridionalization". Similar process was already observed for *S. viridensis* for the north-western Mediterranean (Merciai et al., 2020).

3. EASTERN MEDITERRANEAN SEA

3.1. *Bursa scrobilator scrobilator* (Linnaeus, 1758) (Mollusca: Gastropoda: Littorinimorpha) in the eastern Mediterranean Sea

Dimitris POURSANIDIS and Fabio CROCETTA

The tonnoidean gastropod *Bursa scrobilator scrobilator* (Linnaeus, 1758) is a species of the family Bursidae Thiele, 1925 with a large shell (up to ~10 cm in length) and living in a relatively easy-to-access bathymetric range (usually not deeper than ~20 m) (Beu, 2010; Smriglio et al., 2019; Crocetta et al., 2020). It is widespread in the Eastern Atlantic Ocean, from where wide populations have been reported from Cape Verde, Azores and Canary Islands, and is rare in the Mediterranean Sea, from where it was usually recorded as single specimens or empty shells (Smriglio et al., 2019; Crocetta et al., 2020). This led Mediterranean malacologists and shell collectors to...
consider it as an iconic species since centuries, whose findings often deserved species-specific communications (list of records in Beu, 2010). Moreover, with the sole exception of few scattered records from the central Mediterranean and the Adriatic Sea, *B. scrobilator scrobilator* is mostly known from the western parts of the basin, being considered as absent in the easternmost part of the Mediterranean Sea. In fact, it was only listed from Greece (Koukouras, 2010: implemented in MolluscaBase) on the basis of a reference dating back more than a century ago (Carus, 1893: see http://greek-biodiversity.web.auth.gr/en/node/1003961/extra/75). However, Koukouras (2010) included it from Greece based on the fact that the species was reported from adjacent countries/marine regions (a rationale used in the above-mentioned checklist), but no Greek localities were truly included by Carus (1893).

During 2014-2019, multiple (few less than 20) observations of *B. scrobilator scrobilator* were done by a local amateur diver (Stelios Mantadakis) in Greece (Damnoni Bay, South Rethymno, Crete: 35.1662° N, 24.4202° E), and in particular in a rocky area at -10 m depth, close to a cavern (Fig. 10). However, as no specimens were ever sampled by him, some of these observations may be based on the same individual/s, and thus we have no precise data on population sizes.

No certainties also occur on whether the species was overlooked in the eastern Mediterranean until now due to its rarity, or it has only recently expanded its distribution. Crocetta et al. (2020) reported an increase in the number of records from western Mediterranean sites in the last few years presumably due to an increase in temperatures and more generally to climate change, and the present sightings may lend support to this statement. Whatever is true, the present record first documents the presence of this species in Greece and generally in the easternmost Mediterranean Sea, thus considerably extending the known distribution range of the species.

3.2. Occurrence of a large female kifetin shark *Dalatias licha* (Bonnaterre, 1788) in the North Aegean Sea

Vasiliki KOUSTENI

The kifetin shark *Dalatias licha* (Bonnaterre, 1788) is a moderate-sized shark, globally distributed across warm, tropical and temperate oceans of the outer continental and insular shelves and slopes from 37 to at least 1800 m of depth (Compagno, 1984). This squalid shark is a generalist predator that feeds on a variety of marine organisms, including also smaller sharks, a diet representing the bottom and midwater habitats where it occurs, and reproduces through aplacental viviparity with litters reaching up to 16 young (Compagno, 1984). In the Mediterranean Sea, the species has been mostly reported in the western basin with some biological notes (e.g. Capapé et al., 2008), while sporadic records come from the eastern marine waters (Navaro et al., 2014; Papaconstantinou, 2014). Overall, there is significant lack of knowledge regarding its ecological features and based on the IUCN Red List of Threatened Species, the kifetin shark is considered as vulnerable in the Mediterranean Sea (Finucci et al., 2018). Thus, special attention should be given in any historical or future records of this vulnerable species.

On 12th November of 2008, a large female of kifetin shark was caught incidentally by a commercial bottom trawler in the North Aegean Sea at 450 m of depth (Fig. 11). The trawl route included the following geographical positions: 38.851° N - 24.408° E, 38.790° N - 24.403° E, 38.754° N - 24.621° E and 38.838° N - 24.649° E. The specimen weighed 7125 g and reached 1024 mm in total length. Based on the available scientific literature, this is the largest specimen recorded till that time in the eastern Mediterranean Sea. The main diagnostic features of the species were recognized and included short-and blunt-snout, two almost equal-sized spineless dorsal fins, no anal fin, papilllose thick lips, small slender-cusped upper teeth and very large lower teeth with erect triangular serrated cusps and distal blades, first dorsal fin originating behind the pectoral rear tips with its base is closer to the pectoral base than the pelvic, caudal fin with the ventral lobe not expanded, and tail with a well-developed upper half with a large terminal lobe (Compagno, 1984). The female specimen caught in the North Aegean Sea was dissected at the landing site and found to have mature oviducts and enlarged uteri with no embryos, mirroring probably a recent litter. Adult female kifetin sharks are rarely recorded in the Mediterranean Sea. One of these records is reported off Algeria by Capapé et al. (2008) and refers to one pregnant female specimen reaching 1170 mm in total length and carrying six developing embryos in both uteri.

![Fig. 11: Female individual of *Dalatias licha* caught incidentally in the North Aegean Sea. Photo credit: Vasiliki Kousteni.](http://epublishing.ekt.gr)
3.3. First verified occurrence of the slender sunfish *Ranzania laevis* (Pennant, 1776) in Crete

Sotiris KIPARISSIS and Panagiota PERISTERAKI

Molidae is a family of epipelagic cosmopolitan oceanic fishes with unique morphology. They feed on jellyfishes, small crustaceans and small fish. The family includes three genera (*Mola*, *Mastura* and *Ranzania*), two of which are found in the Mediterranean with one species each (*Mola mola* (Linnaeus, 1758) and *Ranzania laevis* (Pennant, 1776)). Both are typical off-shore species rarely encountered, particularly *R. laevis* which is generally regarded as a solitary species, but occasionally encountered in large aggregations (e.g., Smith et al., 2010). Due to its rarity, there is a substantial paucity of information regarding its biology and ecology, thus, any scientific information, as well as the preservation of specimens, is very important.

On 3/11/2016, a specimen of *R. laevis* (Fig. 12) was found stranded in Kokkini Hani, Heraklion, Crete (35.334° N, 25.273° E). The fish was delivered to the laboratory of the Institute of Marine Biological Resources and Inland Waters (IMBRIW-HCMR) in Crete, where it was identified, measured and dissected. To our knowledge, this is the first verified record in Crete. The species identification was in accord with the description of Matsuura (2016). The specimen’s total length was 63 cm and weighed 8.520 kg. Fin examination showed no spines. The ray counts were: D 18, A 19 and P 13. Macroscopic gonad examination showed that it was a mature male near spawning. The gonads extended to about half of the visceral cavity length and weighed 220.9 g. The stomach content examination showed only digested material and an amorphous green substance. After examined, the voucher was deposited in the Natural History Museum of Crete (NHMC), accredited with the collection number: NHMC80.1.102.1.

Curiously, of the 44 recorded encounters of *R. laevis* in the Mediterranean, except one from Calabria (Zene- tos et al., 2015), all come from the eastern part despite the 140 years of verified presence of this species in the basin. Furthermore, the main bulk of these encounters (36), come from the Adriatic, while the rest are sparsely distributed with no spatial or temporal pattern. The present record adds further information on the distribution of *R. laevis* in the Mediterranean, supporting the assumption that the species expands all over the eastern part of the basin. The late maturity stage of the gonads of our specimen indicates that the species possibly spawns in the vicinity of Crete. The only similar evidence so far comes from Adriatic (Jardas & Knežević, 1983), where the authors suggested that the species spawns during the winter months.

3.4. Record of the rare *Distolambrus maltzami* (Miers, 1881) (Decapoda: Brachyura: Parthenopidae) from the Aegean Sea

Onur GÖNÜLAL

The systematic of the family Parthenopidae is complex and has received attention in recent years. The parthenopid crab, *Heterocrypta maltzami* Miers, 1881 has been relocated by Tan & Ng (2007) in the new genus, *Distolambrus*, which is distinct from *Heterocrypta* due to the presence of a V-shaped ridge on the gastric region (vs U-shape); the branchial ridge not being continuous with the gastric ridge (vs continuous); third maxilliped merus subtriangular (vs subquadrate); and the posterior margin not produced beyond the base of the abdomen (vs produced).

Although *D. maltzami* is seen as a rare species because it is usually found as a single individual among benthic samples, it is widespread from the East Atlantic to throughout the Mediterranean Sea, the Aegean Sea included (Manning & Holthuis, 1981; Voultsiadou et al., 2011).

In November 2018, one male specimen of *D. maltzami* was caught on the Johnston Bank about 30 miles northwest of Lesvos island (39.28902° N, 25.37603° E). Sampling was conducted by dredging on the bank at 41 m depth surrounded by depths of 200-500 m. The main habitat of the Johnston Bank was coralligenous.

Our specimen measured 4.2 mm in carapace length and 4.09 mm in carapace width, and weighed 0.29 g (Fig. 13). Description in accordance to Tan & Ng (2007): carapace pentagonal, almost equal width and length, with posterior-lateral wing-shaped expansions; lateral margins expanded, partially covering the ambulatory legs; not pro-
duced beyond the abdomen base. Proto, meso and meta-gastric regions fused, with a strong V-shaped ridge in the gastric region and two oblique ones in the branchial regions. The lateral margins of the carapace are denticulate. Hepatic region flat, sloping posteriorly. The epibranchial region with a strong diagonal ridge. Cheliped margins dentate, teeth short, broadly circular, edges denticulate; merus upper surface smooth. In our sample, the carapace was not broader than long as generally described (Garcia & Gracia, 1996; Tan & Ng 2007; Massi et al., 2010), therefore eventual morphological variability within the population or during growth are to be considered.

3.5. Documentation of a juvenile specimen of *Hygophum hygomii* (Myctophidae) in the North Aegean Sea

Cem DALYAN and Nur Bikem KESICI

The genus *Hygophum* is represented by two species in the Mediterranean Sea: *H. benoiti* (Cocco, 1838) and *H. hygomii* (Lütken, 1892) (Quignard & Tomasini, 2000). *Hygophum hygomii* has a circum-global distribution and it is found in almost all seas between 20° N and 50° S parallels (Froese & Pauly, 2020), living at a depth range of 0–1485 m. The species is well known in most Mediterranean regions, but not in the Aegean Sea. The presence of the species has been recorded only in the South Aegean while only larval records are reported from the North Aegean Sea (Papaconstantinou, 2014; Çoker & Akyol, 2018).

One specimen of *H. hygomii* (Fig. 14) was collected on 20 January 2016, north of Gökçeada Island (40.2852° N, 25.7652° E), at a depth of 640 m during a ring net survey. The individual is stored in the Istanbul University, Science Faculty, Hydrobiology Museum, Istanbul (IUSHM 2018-1386).

The species is distinguished from its congeneric *H. benoiti* by the position of photophores (Hulley, 1984); SAO1 located in front or below of VO2 in *H. hygomii* while in *H. benoiti* it is located behind the VO2. Besides, Prc2 is present on or by the side of the lateral line in *H. hygomii* whereas it is situated in the midway of the lateral line and ventral contour in *H. benoiti*. Both above-mentioned characters indicate that the juvenile specimen belongs to the *H. hygomii*. The meristic and morphometric characters of our specimen are as follows: dorsal fin rays 14; anal fin rays 22; pectoral fin rays 17. Total length 21 mm; standard length 17.2 mm; body depth 4.4 times, head length 2.6 times, dorsal fin base length 5.8 times and anal fin base length 2.6 times; dorsal fin base length 5.8 times and anal fin base length 3.8 times in standard length; eye diameter 3 times and snout length 8.5 times in head length.

The family Myctophidae plays a significant role in energy transportation from primary consumers to higher marine predators, between the surface layers and the

Fig. 13: *Distolambrus maltzami* (Miers, 1881), male, North Aegean Sea, units shown in mm. a) dorsal side of the carapace; b) ventral side of the carapace.

Fig. 14: The obtained specimen of *H. hygomii* (TL = 21 mm) from the Aegean Sea.
mesopelagic depths up to 1000 m (Saunders et al., 2019). Therefore, the study of the distribution and ecology of the myctophids could significantly contribute to the understanding of marine ecosystems. Hygophum hygomii is one of the dominant species among myctophids in the Mediterranean Sea and the present paper provides the first documented record of this species in the North Aegean Sea and the first record from Turkish waters.

3.6. On the capture of Katsuwonus pelamis (Scombridae) in the eastern Mediterranean Sea

Okan AKYOL

The Skipjack Tuna, Katsuwonus pelamis (Linnaeus, 1758) is a pelagic and highly migratory scombrid species that swims in large schools in open seas; moreover, it exhibits a strong tendency to school in surface waters with birds, drifting objects, sharks, whales and may show a characteristic behaviour like jumping, feeding, foaming, etc. (Golani et al., 2006; Froese & Pauly, 2020). It has a maximum reported fork length (FL) of 110 cm and maximum weight of 34.5 kg; however, its common length is 80 cm FL (Froese & Pauly, 2020). The main characteristics of this species are: dark purplish blue colour of back, silvery lower sides and belly, and 4-6 very conspicuous longitudinal dark bands (Froese & Pauly, 2020).

The Skipjack Tuna is cosmopolitan in tropical and warm-temperate seas, but uncommon in the Mediterranean Sea (Golani et al., 2006; Froese & Pauly, 2020). The fish occasionally occurs in the western Mediterranean. Alemany et al. (2010) reported its larvae from the Balearen Islands, and recently, Tirolongo et al. (2019) recorded K. pelamis from the central Tyrrhenian Sea.

On 22 July 2020 a total of 12 specimens of K. pelamis (Fig. 15) were captured in the daily fishing activity of swordfish gillnet (90 cm mesh size) fishery during the operations 8 nm south of Cape Kurtoğlu in Fethiye region, southern Aegean Sea (36.45139° N, 29.06778° E) at a depth of 2500 m. The specimens were measured as FL, weighed (kg) and photographed. As distinctive characters (see Golani et al., 2006; Froese & Pauly, 2020), the 4-5 longitudinal dark bands below lateral line and 8 upper/7 lower finlets obviously point to K. pelamis. The FL and weight of 12 specimens ranged from 80 to 90 cm, and 8 to 14 kg, respectively, and were caught together with bullet tunas Auxis rochei (Risso, 1810), albacore Thunnus alalunga (Bonnaterre, 1788), and swordfish Xiphias gladius, Linnaeus 1758. During the last two years, K. pelamis has been sporadically observed to occur in fish schools of 5-15 individuals in the open sea between Fethiye and Gulf of Antalya, after mid-July (E. Öçal, pers. comm.). Recently, K. pelamis was reported from Egyptian albacore longline fishery (Gabr & El-Haweet, 2012). Thus, the recent findings indicate that the Skipjack Tuna is not so rare in the eastern Mediterranean Sea, anymore.

3.7. New record of the rare Mediterranean species Taeniura grabata (Geoffroy Saint-Hilaire, 1817) from Turkish waters

Turhan KEBAPCI OGLU and Cenkmen Ramazan BEGBURS

Six dasyatid species have been identified in the Mediterranean Sea: Bathytoshia centroura (Mitchell, 1815), Dasyatis marmorata (Steindachner, 1892), Dasyatis pastinaca (Linnaeus, 1758), Himantura urinak (Forsskål, 1775), Pteroplatytrygon violacea (Bonaparte, 1832) and Taeniura grabata (Geoffroy Saint-Hilaire, 1817) (Serena, 2005). To the best of our knowledge, very few records of Taeniura grabata are available from the Turkish waters (Akyuz, 1957; Basusta et al., 1998). On 17th November of 2012, one female specimen of T. grabata was captured during the bottom trawl survey in Finike Bay, southern part of Turkey (Fig. 16). The sampling depths ranged from 25 to 40 m on trawl routes between 36.2981° N, 30.2856° E and 36.2922° N, 30.3072° E.

The individual weighed about 11.44 kg and reached 111.7 cm in total length. The morphometric measurements of the characteristic features that were used to identify the species are presented in Table 3. The specimen had almost circular disc and a shorter tail than disc length. Dorsal surface and tail had a brownish color. The specimen was discarded back into the sea as it was still alive during measurements.

There is a significant lack of data that could be used for the assessment of the population status of this species.
(Tiralongo et al., 2020b). This record can contribute to future assessments of this rare species and in the description of its geographic distribution.

Fig. 16: Taeniura grabata from Finike Bay, southern coast of Turkey.

Table 3. Morphometric measurements expressed in cm of the Taeniura grabata specimen.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total length</td>
<td>111.7</td>
</tr>
<tr>
<td>Disc width</td>
<td>66.7</td>
</tr>
<tr>
<td>Disc length</td>
<td>58.6</td>
</tr>
<tr>
<td>Interorbital space</td>
<td>10.6</td>
</tr>
<tr>
<td>Eye diameter</td>
<td>2.3</td>
</tr>
<tr>
<td>Tail length</td>
<td>53.1</td>
</tr>
<tr>
<td>Snout to tail spine length</td>
<td>84.4</td>
</tr>
<tr>
<td>First gill opening length</td>
<td>14.5</td>
</tr>
<tr>
<td>Fifth opening length</td>
<td>10.4</td>
</tr>
</tbody>
</table>

Acknowledgments

Andreu Santín would like to thank Vasilis Gerovasileiou for his support during the editing process, as well as all anonymous reviewers for their time, knowledge, and effort during the review process of all the chapters of this Collective Article. Andreu Santín, Antonio de la Linde Rubio and Luis Sánchez-Tocino would like to express gratitude to Carlos Navarro-Barranco and Vasilis Gerovasileiou for their help in the initial taxonomic digressions, to the OAPN personnel, to the Army and Guardia Civil detachment in the Chafarinas Islands and to their diving colleagues Maria del Sol Lizana Rosa and Teodoro Pérez Guerra for their help and collaboration. Julien P. Renoult, Laure Benoit and Thomas Menut would like to thank Marcelo Kovačič for his aid in the identification and determination of Gobius couchi. Federica Montesanto and Francesco Mastrototaro would like to thank Egidio Trainito for the photographic material of Ciona edwaristi. The work carried out by Giovanni Chimienti and Ricardo Aguilar was supported by the International Foundation (IF), the SmileWave Fund, the Fondation de Bienfaisance du groupe Pitié", the Adessium Foundation, the Stifung Drittes Millennium and the Italian Ministry of Education, University and Research (PON 2014-2020, grant AIM 1807508-1, Linea 1). Francesco Tiralongo and Emanuele Mancini are grateful to Paolo del Core and Ivana Nasti for providing photos and videos documenting the presence of Ocyopode cursor in Calabria. Jakov Dulčić and Branko Drnićević are thankful to all the fishermen involved in the fishing operations undertaken for the scientific purposes in Tarska cove, as well as to their colleagues Antonio Baras, Robert Gržičević, Nedo Ivanović, Mišo Pavičić, Marijan Tandara and Dario Vrdoljak who contributed to their work. Their study has been fully supported by Croatian Science Foundation (HRZZ) under the project IP - 2016-06-5251. Dimitris Poursanidis and Fabio Crocetta would like to thank Stelios Mantadakis (Greece) for sharing data on Bursa scrobilator scrobilator. Vasiliki Kousteni is deeply thankful to the anonymous fisherman that immediately notified upon the capture of the shark Dalatias licha, and for providing permission to access the landing site to validate this valuable scientific record. Sotiris Kiparisiss and Panagiota Peristeraki wish to thank Mr. Nikolaos Kalamaras for collecting and delivering the stranded Ranizia laevis specimen to the laboratory of IMBRRIW-HCMR. The work carried out by Omer Gönenlül on Distolambrus maltzami was supported by the Scientific Research Projects of Istanbul University, (Project No. FBA-2017-23597). The contribution by Cem Dyal and Nur Bikem Kesici on Hygophum hygomi is part of a project that was supported by the Research Fund of the Istanbul University (Project No. FBA-2019-29078). Okan Akyol would like to thank the Skipjack Tuna in the Fethiye region area. Finally, Turhan Kebapcioglu and Cenkmen Ramazan Begburs would like to thank the captain and the crew of the R/V "Akdeniz Su".

References

Báez, J.C., Rodriguez-Cabello, C., Banon, R., Brito, A., Falcon,

