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Abstract

We reported and quantified the phenomenon of chimerism in Mediterranean red coral (Corallium rubrum) in semi-natural 
conditions. A total of 1688 larvae were maintained in close circuit in the presence of a suitable settlement surface (marble tiles). 
Post settlement survival and chimera formation were monitored for 1 year. When polyps settled close enough to each other, a high 
frequency of chimerism was observed (32%). After 1 year, only 33% of chimeric individuals survived but they were 40% bigger 
than non-chimeric individuals, suggesting that chimerism could confer a competitive advantage linked to an increased growth rate.

Keywords: Corallium rubrum; chimerism; settlement; growth rate; octocoral.

Introduction

In biology, the term chimerism refers to the fusion of 
individuals of the same species, (see Flake et al., 1986; 
Tilney-Bassett, 1986), more precisely it is the co-habita-
tion of more than one genotype originated by different fe-
cundation processes within the same individual (solitary 
or colonial). Despite that the phenomenon of chimerism 
has been described in at least 9 phyla (Buss, 1982), in-
cluding protists, animals (vertebrates and invertebrates, 
marine and terrestrial), plants, and fungi, it is more fre-
quent in sessile colonial marine organisms with a plank-
tonic dispersal phase (Rinkevich & Weissman, 1987). 
There is still limited research about the evolutionary and 
ecological value of chimerism, with some studies propos-
ing its positive adaptive value (e.g., Hughes & Jackson, 
1985; Amar et al., 2008; Rinkevich et al., 2016) and oth-
ers highlighting its long-term costs (e.g., Rinkevich & 
Weissman, 1987).

Chimerism has been studied both in broadcast spawn-
ing (Puill-Stephan et al., 2012) and in brooding corals 
(Rinkevich et al., 2019 and references therein). The 
formation of chimeras involving adult coral colonies is 
quite rare, while it has been shown that it is more com-
mon during a limited period in young stages (window 
in ontogeny, Barki et al., 2002), especially during larval 
settlement, when fusion between larvae is more likely to 
happen (Hidaka, 1985; Amar et al., 2008).

Mediterranean red coral (Corallium rubrum) is en-
demic to the Mediterranean Sea, where it occurs between 
10- and 800-meters depth. However, it has also been re-
ported in nearby areas of the Strait of Gibraltar (Zibrow-
ius et al., 1984). Its high economic value due to its use in 
jewelry, brought several populations to overexploitation 
(Tsounis et al., 2010). It is an internal brooding species 
that releases larvae once a year (Santangelo et al., 2003; 
Bramanti et al., 2003; 2005). Low larval settlement rates 
and post-settlement survival represent a bottleneck in the 
population dynamics of this species (Zelli et al., 2020). In 
particular, slow growth rates result in prolonged vulner-
ability of young settlers that, due to their small size, are 
exposed to predation and affected by sedimentation (Cau 
et al., 2016). 

The early life-history traits of this species are still 
poorly known, and therefore, it is important to investigate 
the processes regulating settlement and post-settlement 
mortality (Santangelo et al., 2012) to achieve effective 
management of local populations and to test strategies for 
restoration.

In the framework of a settlement and growth experi-
ment of C. rubrum on artificial substrates, we observed 
several larval aggregations, some of which resulted in the 
formation of chimeric individuals. In the present paper, 
we quantitatively described the phenomenon and tested 
the hypothesis that chimera formation results in a signif-
icant increase in size.
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Materials and Methods

Larval settlement and recruit maintenance

C. rubrum larvae were maintained in a closed circuit, 
oxygenated, and temperature-controlled aquaria (see Zel-
li et al., 2020 for details) and offered two marble tiles 
(10 x 10 cm) as a settlement substrate (Bramanti et al., 
2003). In September 2019, once larvae settled and meta-
morphosed into polyps, the tiles were transferred to an 
open-circuit oxygenated, and temperature-controlled 
3.5 L aquarium. To monitor the mortality and growth of 
young polyps, each recruit was photographed at different 
ages: 0 months (September 2019, t1), 3 months (Decem-
ber 2019, t2), and 12 months (September 2020, t3).

Nearest neighbor distance

Images were calibrated and the coordinates corre-
sponding to the polyps’ location on the tiles were record-
ed to draw a map of recruits’ distribution, using ImageJ 
software (Schneider et al., 2012). The distance of each 
recruit from its nearest neighbor (NND) was computed 
with the nndist R software function. A NND threshold of 
1.0 mm was chosen to discriminate between aggregated 
and non-aggregated polyps. The choice of NND thresh-
old was based on the assumption that to have a chance 
make contact and develop chimeras, the distance between 
two individuals should be less than the size of an indi-
vidual. As the average diameter of new settlers was 0.75 
mm, 1.0 mm represented a distance of 0.25 mm between 
the hedges of the 2 closest settlers. Moreover, 1 mm was 
the value used in previous works (Amar et al. 2008; She-
fy et al. 2020). Therefore, the NND threshold of 1 mm 
was used to classify the settled polyps into two catego-
ries (has.close function, R software): close contact polyps 
(NND ≤ 1.0 mm), and not close contact polyps (NND > 
1.0 mm, Fig. 1a).

Size

Basal diameter is widely accepted as a reliable size 
descriptor for C. rubrum (Marschal et al., 2004). To mea-
sure the diameter, perpendicular pictures of the tiles were 
taken by a Sony DFW-X700 camera assembled on an 
Olympus SZ61 stereomicroscope at 2X magnification. 
Due to the asymmetry of the young colonies, the diam-
eter was calculated by averaging the highest and lowest 
diameter values measured using the image analysis soft-
ware Visilog6. Student’s T-tests were applied to test the 
differences between the diameter of 3 months (December 
2019, t2) and 1 year old (September 2020, t3) chimeric and 
non-chimeric individuals. The normal distribution of the 
data was verified through a Shapiro-Wilk normality test 
and visual analysis of the Q-Q-plot, whereas homosce-
dasticity was tested by the var.test function (R software).

Results

Of the 1688 larvae released in the experimental aquar-
ia, 342 settled on the marble tiles and metamorphosed 
into a polyp, resulting in a 20% settlement success rate.

The distance of settled larvae from the nearest neigh-
bor varied between 0.6 and 11.17 mm with an average 

Fig. 1: Chimeric and non-chimeric C. rubrum individuals. a: 
two individuals that are not in close contact (distance > 1 mm). 
b: two individuals in close contact (distance < 1 mm) that start-
ed forming a chimera. c: a chimera composed of 4 different 
individuals (1) and two close contact individuals that did not 
end up forming a chimera (2 and 3). Black bars represent 1 mm 
length. Asterisks indicate the original 4 individuals that merged 
to form the chimera.
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NND of 3.4 mm. Within the 342 settled individuals, 44 
had an NND ≤ 1.0 mm (the threshold distance for defin-
ing the settled polyps as in “close contact”; see mat and 
met section), resulting in a 13% aggregation frequency. 
Three months after settlement, 32% (n = 14) of the “close 
contact” polyps formed 6 different chimeras composed of 
by 2 or more polyps (Fig. 1b, c). One year after settlement 
(t3), only 33% of the chimeras survived (n = 2), The mean 
diameter of solitary polyps and chimeras at 3 months (t2) 
was 0.73 ± 0.15 and 1.03 ± 0.32 mm, respectively, and 1 
year after settlement (t3), it was 0.61 ± 10 and 0.87 ± 22 
mm, respectively. Results of the T-test showed that chi-
meric individuals were significantly bigger than non-chi-
meric ones at t2 (t = -4.5, df = 5.59, p < 0.005; Fig. 2a) and 
that the difference was still significant at t3 (t = 10.7, df = 
9.4, p < 0.001; Fig. 2b).

Discussion

We reported the first observation of chimerism in Med-
iterranean red coral (C. rubrum). Our results highlighted 
that 13% of larvae settle at a very close distance, almost 
touching one another, suggesting a tendency towards an 
aggregated spatial distribution. Almost 1/3 (32%) of the 
close contact settlers (4% of all settled polyps) merged 
their tissues to form a chimera, suggesting that chimerism 
in C. rubrum is not a rare event. Moreover, 33% of the 
chimeras were still alive and in good health after 1 year 
from the chimeras’ formation. 

The occurrence of chimerism is a well-known phe-
nomenon that has been observed in numerous phyla (Buss, 
1982). Several aspects of chimerism have been studied in 
cnidarians, including life history traits (e.g., growth rate 

and survival, see Shefy et al., 2020), genotypic diversi-
ty (Puill-Stephan et al., 2012), and allogenic responses 
(Hidaka et al., 1985). The majority of studies focus on 
the cellular mechanisms and genetic implications and are 
based on chimeras which formation is induced under ex-
perimental laboratory conditions (e.g., Rinkevich, 2004; 
Puill-Stephan et al., 2012). Quantification of the natural 
frequency of this phenomenon, at least in cnidarians, is 
still scarce in adult colonies (Puill-Stephan et al., 2009; 
Oury et al., 2019) and, to our knowledge, there are no 
data for juveniles.

If the formation of a chimera represents a cost or a 
benefit is still debated. Some findings suggest that chi-
merism can provide competitive advantages, such as an 
increase in body size (Buss, 1982; Amar et al., 2008), 
reduction of the Allee effect (Rinkevich et al., 2016), 
increased resistance (Rinkevich, 2019), and reduced 
intra-specific competition (Hennige et al., 2014). Con-
versely, several studies highlighted the potential costs of 
chimerism, such as somatic and germ cell competition 
(Rinkevich & Yankelevich, 2004; Amar et al., 2008), 
slower growth (Barki et al., 2002), and morphological re-
absorption and necroses (Rinkevich & Weissman, 1987). 
Our results showed that chimeric individuals are almost 
40% larger than non-chimeric ones, both 3 months and 1 
year after settlement. In several coral species, the mor-
tality of juveniles decreases with increasing size (Bab-
cock 1985; Fitzhardinge 1988; Smith 1992). Therefore, 
a boost in growth could result in significant advantages 
linked to the reduction of the period of vulnerability due 
to a small size during early life stages. This observation 
is especially important for slow-growing species, such as 
C. rubrum, for which restoration plans based on sexual 
reproduction and increased survival should be preferred 
to direct adult colony transplantation.
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