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Abstract

The survival, behavior, and competence period of lecithotrophic larvae depends not only on the energy allocation transferred 
by maternal colonies, but also on the amount of energy consumed to sustain embryonic, larval, and post-larval development. The 
objective of the present work is to understand the effect of energy consumption on the performance of lecithotrophic larvae. To 
this aim, we analysed free fatty acid (FFA) content and composition of the larvae of three Mediterranean octocorals (Corallium 
rubrum, Eunicella singularis, and Paramuricea clavata) as a proxy for energy consumption. Results showed that C. rubrum larvae 
consume more FFA than P. clavata, whereas the energy consumed by E. singularis larvae is high but highly variable. These results 
are in accordance with the larval behavior of these three species, since C. rubrum larvae are characterized by their high swimming 
activity frequency, P. clavata larvae are almost inactive, and the swimming activity frequency of E. singularis larvae is high, 
although variable. The differences in FFA composition of the larvae suggest contrasting energetic strategies that could explain 
the differences in survival and recruitment rates. In fact, high dispersal and recruitment capacities for E. singularis larvae can be 
inferred from the FFA composition, whereas the high spatial and temporal variability of recruitment observed in C. rubrum may be 
related to the non-selective transfer of fatty acid (FA) from maternal colonies. Finally, the high recovery rates after mass mortality 
events observed in P. clavata could be favored by the presence of a specific FA [22:6(n-3)] related to adaptation mechanisms under 
environmental stresses during the first developmental stages.
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Introduction

Maternal energy investment in lecithotrophic larvae 
of marine invertebrates mainly consists in the allocation 
of lipids (Richmond, 1987; Arai et al., 1993), being wax 
esters, triacylglycerols, sterols, and polar lipids the most 
abundant (Figueiredo et al., 2012). Some symbiotic spe-
cies also present photosynthetic dinoflagellates of the 
family Symbiodiniaceae (sensu LaJeunesse et al., 2018) 
in their larvae, which may provide additional energy to 
the offspring during development (Kopp et al., 2016; 
Mies et al., 2017). Differences in the energetic alloca-

tion from maternal colonies to larvae, or in the capacity 
to obtain energy during the planktonic phase, may influ-
ence larvae survival rates. For example, it is commonly 
assumed that symbiotic larvae have higher survival rates 
than non-symbiotic ones (Yakovleva et al., 2009; Harii et 
al., 2010). However, survival, behavior, and the compe-
tence period of larvae also depends on the amount of en-
ergy consumed to sustain embryonic, larval, and post-lar-
val development (Holland & Spencer, 1973; Gallager 
& Mann, 1986; Pechenik, 1990; Qian et al., 1990). For 
instance, since the metabolic demands in lecithotrophic 
larvae are related with swimming behavior, the active-
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ly swimming larvae are expected to have a high energy 
consumption (Okubo et al., 2008). Moreover, the ener-
gy consumption could increase for substrate recognition, 
competition for space, and early growth on sessile organ-
isms, which may have consequence on their recruitment 
success (Adjeroud et al., 2017). 

The study of free fatty acid (FFA) content in the larval 
stage may be used as a proxy for lipids used at a particular 
time, since FFAs are obtained from the oxidation of lipid 
reserves (Gurr et al., 2002), which in turn are beta-oxi-
dized to provide a source of highly efficient energy (high 
ATP/Fatty Acid (FA) molecule) (Sargent et al., 1988). 
Therefore, the FFA content is directly related to the ener-
gy consumed at a given time. Moreover, studying the FFA 
composition may help to understand the nature of ener-
getic requirements, such as the attainment and mainte-
nance of optimal health and physiological functions. This 
approach has been thoroughly used in the fish culture in-
dustry (Bell & Sargent, 1996; Izquierdo, 1996; Copeman 
et al., 2002; Bransden et al., 2005) and has recently been 
applied to understand some important ecological process-
es on coral species (Viladrich et al., 2016; Conlan et al., 
2017; Grinyó et al., 2018). Studies that looked at total FA 
showed that a dietary deficiency in some FAs can reduce 
the nutritional condition and growth in adult colonies 
(Latyshev et al., 1991; Imbs, 2013; Radice et al., 2019), 
as well as lower swimming activity and the survival of 
the larvae (Figueiredo et al., 2012), which can eventual-
ly lead to lower recruitment rates (Conlan et al., 2017). 
Hence, the different types of FAs (Saturated Fatty Acids, 
SFA; MonoUnsaturated Fatty Acids, MUFA, and Poly-
Unsaturated Fatty Acids, PUFA) could be a good proxy 
for larval condition. In general, when FAs are catabolized, 
SFA and MUFA are preferentially consumed and PUFA 
are selectively retained (Rainuzzo et al., 1994; Tocher, 
2003). Therefore, the availability of large amounts of cer-
tain PUFA is considered essential for larval development 
and health status (DeMott & Muller-Navarra, 1997; Wen 
et al., 2002; Figueiredo et al., 2012).

Among benthic sessile invertebrates, gorgonians play 
a paramount role as ecosystem engineers in many ben-
thic communities around the world (Gili & Coma, 1998; 
Wild et al., 2011; Velásquez & Sánchez, 2015), and are 
considered one of the main three-dimensional constitu-
ents of the “marine animal forests” (sensu Rossi, 2013). 
Gorgonians exhibit three different strategies for sexual 
reproduction: (1) broadcast spawning: sperm and oocytes 
are released in the water column and fertilization is ex-
ternal, (2) surface brooding: oocytes/zygotes are retained 
by mucous material on the surface of the female colonies 
during larval development, although it is unclear if fertil-
ization is internal or external, and (3) internal brooding: 
the oocytes are internally fertilized and the female col-
onies retain the zygotes and embryos within their body 
during their development (Kahng et al., 2011). 

In the Mediterranean Sea, the non-symbiotic gorgoni-
ans Corallium rubrum (Linnaeus, 1758) and Paramuricea 
clavata (Risso, 1826), together with the symbiotic Euni-
cella singularis (Esper, 1791), are characteristic species of 
shallow benthic communities in coastal areas (Weinberg, 

1979a). They are gonochoric, releasing lecithotrophic lar-
vae once a year during the summer months (Coma et al., 
1995; Santangelo et al., 2003; Ribes et al., 2007). The gor-
gonians, C. rubrum and E. singularis, are internal brood-
ers, whereas P. clavata is a surface brooder (Coma et al., 
1995; Santangelo et al., 2003; Ribes et al., 2007). While 
both C. rubrum and P. clavata release non-symbiotic cil-
iated larvae (planulae), E. singularis larvae, such as the 
adult colonies, contain photosynthetic dinoflagellates that 
belong to the Symbiodinium genus (phylotypes that were 
previously assigned to “clade A”) (Forcioli et al., 2011; 
Weinberg, 1979b). The larval competence (i.e., the period 
during which pelagic larvae are able to settle) is approxi-
mately 8 days for E. singularis, 11 days for P. clavata and 
27 days for C. rubrum (Zelli et al., 2020). 

The aim of this study is to explore the link between 
energy consumption and larval performance in the three 
most characteristic and widely distributed shallow-water 
Mediterranean octocoral species. To achieve this objec-
tive, FFA were considered as a proxy for energy con-
sumption, and their content and composition were ana-
lysed in the larvae of the three species just after release. 
The FFA content was used to quantify the energy con-
sumed in the pelagic phase, whereas the FFA composition 
of larvae was compared between species to explore dif-
ferent energy requirements, in the light of data on larval 
performances (i.e., swimming activity rates and settle-
ment rates) of the three species. These results can provide 
clues to understand how the energy used by larvae relates 
to their performance. 

Materials and Methods

Sampling Procedure

Larvae of P. clavata (surface brooder) were collect-
ed from the surface of at least 5 different females using 
50 ml syringes by SCUBA divers at 25-30 m depth at 
Punta de s’Oliguera in Cap de Creus on June 22nd, 2012 
(Spain, NW Mediterranean, 42.284167 ºN; 3.299722 ºE) 
(Fig. 1). Larvae of the two internal brooder species (C. 
rubrum and E. singularis) are difficult to obtain in situ. 
For this reason, 5 female colonies of C. rubrum collected 
at 25–30 m depth and 5 female colonies of E. singularis 
collected at 15-20 m depth at Punta de s’Oliguera were 
maintained separately in 8 L tank at 20 ± 1.0 °C for 1–2 
days until the larval release. A chiller (Tank chiller line 
TK 2000) was used to keep a constant seawater tempera-
ture, and the water was filtered using a biological filter 
(SERA fil bioactive 250+UV). Larvae of E. singularis 
were collected on July 19th, 2012, and larvae of C. ru-
brum on July 27th, 2012. Studied species and their larvae 
is shown in Figure 2.

For each species, three replicates of 30 different larvae 
were fixed on pre-combusted GF/F filters, cold shocked 
with liquid nitrogen and stored at -80 °C. Filters were 
then freeze-dried for 24 h at -110 °C and a pressure of 100 
mbar. The freezer-dried material was stored at -20°C for 
further analyses. 
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Free Fatty Acid (FFA) Content and Composition in 
Larvae

FFA content and composition were assessed for three 
replicates of each species according to the method de-
scribed by Viladrich et al. (2016). Each filter with 30 
larvae was dissolved in dichloromethane:methanol (3:1) 
spiked with an internal standard (2-octyldodecanoic acid 
and 5β-cholanic acid) to estimate recuperation. The ex-
traction solvent was eluted through an aminopropyl glass 
column resulting in 3 fractions (neutral lipids, FFAs, and 
polar lipids). In this study, the FFA fraction was methyl-
ated using a solution of 20% boron trifluoride-methanol 
reagent heated at 90 °C for 1 h.

The methyl esters of FA (FAMEs) were separated and 
analysed by gas chromatography with mass spectrom-
etry detection (GC/MS, 7820A GC from Agilent Tech-
nologies) equipped with a DB-5ms Agilent column (60 
m length, 0.25 mm internal diameter and 0.25 μm phase 
thickness). Hydrogen was used as a carrier gas at 30 
mL·min-1. The high compound numbers in the samples 
and the similarity of retention required a complex method 
of temperature ramps, using the oven temperature pro-
grammed to increase from 50 ºC to 160 ºC at 20 ºC min-1, 
from 160 ºC to 188 ºC at 0.5 ºC min-1, from 188 ºC to 229 
ºC at 20 ºC min-1, from 229 ºC to 235 ºC at 2 ºC min-1 and, 
finally, from 235 ºC to 300 ºC at 5 ºC min-1 (Viladrich et 
al., 2016). The injector and detector temperatures were 
300 ºC and 320 ºC, respectively. FAMEs were identified 
by comparing their retention times with those of commer-
cial standards of FA (Supelco 37 Component FAME Mix 
and Supelco® Mix C4-C24) and were quantified by inte-

grating areas under peaks in the chromatograms (Chrom-
quest 4.1 software) using calibration curves derived from 
the Supelco 37 Component FAME Mix. The results are 
presented in μg FFA larvae-1 and in percentage of saturat-
ed free fatty acids (free SFA), monounsaturated free fatty 
acids (free MUFA), and polyunsaturated free fatty acids 
(free PUFA), besides each FFA component percentage.

Statistical Analyses

Differences in FFA content and percentage of free 
SFA, free MUFA, and free PUFA between larvae of the 
different species were tested using a one-way ANOVA. 
Before performing the ANOVAs, normality of data re-
siduals and variance homogeneity were tested using the 
Shapiro-Wilk and Bartlett tests (functions “shapiro.test” 
and “bartlett.test” of the package stats in R environment). 
One-way ANOVA tests were performed with the function 
“aov” of the package stats (Chambers & Hastie, 1992).

A correspondence analysis (CA) was used to check 
for associations among FFA composition of larvae using 
the function “ca” of the ca package in R environment 
(Nenadic & Greenacre, 2007). Before performing the 
CA, FFA compounds that represented less than 2% of the 
total concentration were eliminated and percentages re-
calculated so that the sum was equal to 100%. After this 
transformation, the CA was performed on a cross table 
containing 13 FFA compounds and 9 samples of larvae 
(3 per species). 

Fig. 1: Location of the study area in the NW Mediterranean (a, b) and sampling sites on the eastern coast of Cap de 
Creus (c). C.r, E.s and P.c indicate the position of the Corallium rubrum (25-30 m depth), Eunicella singularis (15-20 m 
depth), and Paramuricea clavata (25-30 m depth) populations, respectively.
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Results

Free Fatty Acid (FFA) Content in Larvae 

FFA content was 0.098 ± 0.015 μg per larvae (mean ± 
SD) for C. rubrum, 0.045 ± 0.005 for P. clavata, and 0.125 
± 0.07 for E. singularis (Fig. 3a). ANOVA results showed 
significant differences between C. rubrum and P. clavata 
(one-way ANOVA, p < 0.005), whereas no differences 
were observed between E. singularis and C. rubrum or 
P. clavata larvae, possibly due to the high variability of 
the E. singularis values (one-way ANOVA, p > 0.1) (Fig. 
3a). The ANOVA for free SFA, expressed as a percentage 
of total fatty acids, did not show significant differences 
between species (one-way ANOVA, p > 0.5) (Fig. 3b), 
being 18.39 ± 4.37% for C. rubrum, 14.45 ± 1.48% for 
P. clavata, and 26.98 ± 11.60% for E. singularis (mean 
± SD). The percentage of free MUFA was significantly 
higher in C. rubrum (65.61 ± 6.32%) than in P. clava-
ta and E. singularis larvae (31.21 ± 15.26% and 26.77 
± 17.40%, respectively) (one-way ANOVA, p < 0.05), 
while the free PUFA percentage was significantly higher 
in P. clavata and E. singularis (54.33 ± 13.87% and 46.26 
± 6.17%, respectively) than in C. rubrum larvae (15.98 ± 
2.08%) (one-way ANOVA, p < 0.01) (Fig. 3b). 

Free Fatty Acid (FFA) Composition in Larvae 

A total of 25 FFA markers for C. rubrum, 29 for P. 
clavata, and 34 for E. singularis were identified (ESM, 
Supplementary Material, Table S1). The first two dimen-
sions explained 86% of the total variance of the CA. As 
it can be observed in the biplot, Dimension 1 (44% of 
total inertia) separates C. rubrum larvae from those of P. 
clavata and E. singularis based on the FFA descriptors 
(Fig. 4). Dimension 2 (42% of total inertia) shows that 
there are also differences between P. clavata and E. sin-
gularis larvae, indicating that larvae from the three spe-
cies displayed distinct FFA compositions (Fig. 4). Sam-
ples of C. rubrum larvae, which all lay very close to one 
another, are characterized by the presence of 18:1(n-9). 
Paramuricea clavata samples, form a second and less 
compact group, with 20:4(n-6), 20:5(n-3), and 22:6(n-3) 
as the dominant FFA. Finally, the samples of E. singu-
laris larvae are widely spread on the biplot and associated 
with different FFA, being 18:3(n-3), 18:4(n-3), 20:2(n-6), 
16:1, and 16:0 as the principal markers.

Discussion

This study shows, for the first time, that FFA content 
and composition are a reliable proxy to understand lecith-
otrophic larvae performance. Until now, FFA portion in 
coral larvae had been largely neglected, probably due to 

Fig. 2: Colony and larvae of Eunicella singularis (a, b), Paramuricea clavata (c, d), and Corallium rubrum (e, f).
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their low concentration (Figueiredo et al., 2012; Conlan 
et al., 2017). Our results underscore the importance of 
FFAs during the larval period of C. rubrum, P. clavata, 
and E. singularis, despite their low concentrations (<0.12 
µg per larva) (Fig. 3a). 

According to our results, C. rubrum larvae had a 
2-fold higher FFA content than P. clavata, whereas the 
FFA content in E. singularis was highly variable (± 57%). 
Since FFA are the main sources of energy for ATP pro-
duction, these values represent a measure of larvae en-

ergetic consumption (Gurr et al., 2002). Moreover, as 
seawater temperature at the time of release was the same 
for the three species (Viladrich et al., 2016), the influence 
of temperature on the observed variability can be exclud-
ed, and larval energetic consumption can be related to 
the active movement of the larvae (Okubo et al., 2008). 
Therefore, based on FFA content, we would expect C. ru-
brum larvae to be highly mobile, whereas P. clavata quite 
passive, and E. singularis larval motility high and high-
ly variable. Measurements of larval swimming activity 

Fig. 3: Free fatty acid content (mean ± SD) in Corallium rubrum larvae (white), Eunicella singularis larvae (grey), and 
Paramuricea clavata larvae (dark grey) expressed as (a) μg larvae-1 and (b) percentage of saturated fatty acids (SFA), mon-
ounsaturated Fatty acids, (MUFA), and polyunsaturated fatty acids (PUFA) (n = 3).

Fig. 4: Correspondence analysis (CA) biplot illustrating the ordering of the studied larvae in the first two dimensions 
regarding their free fatty acid composition (black points). Corallium rubrum in white, Eunicella singularis in grey, and 
Paramuricea clavata in dark grey.
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frequency (i.e., percentage of time during which active 
swimming or crawling behavior is displayed by larvae) 
(sensu Guizien et al., 2020) for the three species are in 
accordance with the values of FFA content measured, 
with 77% activity for C. rubrum (Martínez -Quintana et 
al., 2015), 5% for P. clavata and 20-90% for E. singula-
ris (Guizien et al., 2020). Therefore, energy consumption 
may be a good proxy to estimate coral larvae swimming 
activity frequency.

As previously highlighted, the energy used depends 
on the specific metabolic requirements (Viladrich et al., 
2016, 2017; Grinyó et al., 2018), and therefore, a detailed 
study of the FFA composition during the larval stage in 
different species may also help understanding the mech-
anisms underlying larval performance. In E. singularis, 
the high quantity of FFA 18:4(n-3) (Fig. 4) supports the 
hypothesis that the Symbiodiniaceae are transferred from 
the mother colonies to the larvae, as previously proposed 
by Weinberg and Weinberg (1979). This fatty acid, in fact, 
is a robust tracer of the photosynthetic activity of symbi-
otic dinoflagellates (Papina et al., 2003; Treignier et al., 
2008; Pupier et al., 2021), since it cannot be synthesized 
de novo by heterotrophs (Volkman et al., 1989; Dals-
gaard et al., 2003). Therefore, the presence of 18:4(n-3) 
indicates a surplus of energy which can increase survival 
rates and the competency of larvae (Ben-David-Zaslow 
& Benayahu, 1998; Harii et al., 2010; Figueiredo et al., 
2012). Interestingly, this is in line with the lack of genetic 
structuring at large spatial scales observed for this spe-
cies (Costantini et al., 2016). The high variability of this 
FFA (18:4(n-3)) observed in E. singularis larvae could be 
caused by the number of symbionts per larva, which var-
ies according to the supply from mother colonies (Gaither 
& Rowan, 2010; Roth et al., 2013). Nevertheless, not all 
the symbiotic larvae obtain an energy surplus from sym-
biosis, as showed by Kopp et al. (2016) and Mies et al. 
(2017). Future studies should focus on the role of Sym-
biodiniaceae in E. singularis larvae energetic budget. Fi-
nally, large amounts of 18:3(n-3) in E. singularis larvae 
could explain the higher recruitment rates of this species 
with respect to C. rubrum and P. clavata (Bramanti et al., 
2005; Linares et al., 2008; Linares et al., 2012) since this 
marker may have beneficial effects on larval settlement, 
following a trend already observed in bivalve and poly-
chaete larvae (Pawlik & Faulkner, 1986; Jonsson et al., 
1999; da Costa et al., 2011). 

In the case of C. rubrum, our results suggest that the 
nutritional status of the adult colonies may directly affect 
the viability of the larvae due to a non-selective trans-
fer of the most conspicuous FA, as previously suggest-
ed for different marine organisms (Qian & Chia, 1991; 
Harland et al., 1993; Dalsgaard et al., 2003; Figueiredo 
et al., 2012). In fact, 18:1(n-9) is the main component 
for both C. rubrum larvae (62%) and maternal colonies 
(30%) (Fig. 4) (Viladrich et al., 2016), and it has been 
associated with detritus (Schultz & Quinn, 1973; Fahl 
& Kettner, 1993), which is the main food source for this 
species (Tsounis et al., 2006). This non-selective transfer 
of lipids from maternal colonies to larvae may result in 
a dependence of recruitment on the nutritional condition 

of the mother colonies (Lasker, 1990; Yoshioka, 1996; 
Dunstan & Johnson, 1998), which in turn is affected by 
environmental conditions (Rossi & Tsounis, 2007). In-
deed, the high spatial and temporal variability of recruit-
ment rates observed in C. rubrum (Garrabou & Harmelin, 
2002; Santangelo et al., 2012) may be partially explained 
by the spatial and temporal variability of environmental 
conditions. Moreover, the high variability of recruitment 
rates could also be related to the low free PUFA content 
in C. rubrum larvae (Fig. 3b), since PUFA are mainly de-
voted to growth and resistance to stress conditions, thus 
enhancing larval metamorphosis and survival (Bell & 
Sargent, 1996; Pond et al., 1996; Sargent et al., 1997; 
Albessard et al., 2001; Rossi et al., 2006; Figueiredo et 
al., 2012; Conlan et al., 2017). Therefore, small changes 
in the energy storage reserves of mother colonies may 
have serious consequences on the following generations.

Interestingly, some FFAs may be the key to under-
standing the resilience of some species after thermal 
stress episodes. Previous studies showed higher recruit-
ment rates of P. clavata after a mass mortality events 
caused by increased temperature, if compared to C. ru-
brum and E. singularis (Coma et al., 2006; Cupido et al., 
2009; Santangelo et al., 2015). High recruitment rates 
after disturbances are associated to high resilience, at-
tributed either to the high reproductive output of local P. 
clavata survivors (Cupido et al., 2009), or to migration 
from distant populations (Padrón et al., 2018). However, 
it is possible that such high recruitment rates in P. clavata 
could also be concurrently favored by the presence of the 
FFAs 22:6(n-3), 20:4(n-6), and 20:5(n-3) (Fig. 4), which 
are key components of lipids for larval performance. In-
deed, 22:6(n-3) is known to influence membrane fluidity 
and permeability, which can have a positive impact on en-
zyme activity, immune functions, and adaptation to heat 
stress, among many other cellular processes (Dratz & 
Holte, 1992; Hall et al., 2000; Bergé & Barnathan, 2005; 
Kneeland et al., 2013). Furthermore, the FFA 20:4(n–6) 
and 20:5(n-3) are essential fatty acids for larval develop-
ment, which have been related to the production of bio-
logically active eicosanoids under stress or unfavorable 
conditions (Sargent et al., 1999), supporting the immune 
system functioning and osmoregulation (Chapelle, 1986; 
Mazorra et al., 2003).

The present results are thus in accordance with the lit-
erature on larval performance of the studied species. The 
FFA content in larvae might then be used to predict the 
swimming activity frequency of different sessile inver-
tebrate species, and their composition might also give a 
more detailed understanding of the mechanisms under-
lying larval performances. This new approach paves the 
path for future studies of early life-history stages of lec-
ithotrophic larvae.
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