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Abstract

The optimization of consumption and the reduction of gas emissions in fisheries rely on a thorough examination of all factors 
affecting the energy balance of fishing vessels. Engines, propellers, or the hydrodynamic characteristics of vessels and gears are 
unquestionably the primary factors affecting this balance, and an improvement in energy efficiency based on these factors is typ-
ically attained through technical modifications to existing technologies. Behavioral modifications, such as a reduction in opera-
tional speeds or the selection of closer fishing grounds, are another option. There may still be room for improvement in behavioral 
responses, for instance by adapting fishing strategies in response to changing weather and sea conditions. As far as the authors are 
aware, the influence of varying sea state and wind conditions on the energy expenditure of fishing vessels has not yet been inves-
tigated and is the focus of this research. In this study, wind and wave actions were associated with the observed activity of three 
fishing vessels operating in the northern Adriatic Sea: an OTB, a PTM, and a TBB trawler. The analysis made use of a comparison 
between two different approaches, generalized additive models (GAMs) and random forest, in order to quantify the significance 
of each variable on the response and generate consumption forecasts. In our analysis, the observed influence of predictors was 
significant albeit occasionally ambiguous. Wave height had the most obvious impact on energy expenditure, with the towing and 
gear handling phases being the most affected by wave action. Conversely, navigation seemed to be mostly unaffected by signifi-
cant wave heights up to 1.5 meters, with unclear effects on consumption estimated above this threshold. The relationship between 
winds and fuel consumption was found to be nonlinear and ambiguous; hence, its significance should be investigated further. 

Keywords: Fisheries; bottom trawling; fuel consumption; Adriatic Sea; GAM; random forest.

Introduction

Typically, fishing is an energy-intensive activity with 
high rates of greenhouse gas emissions, the bulk of which 
are produced directly from the consumption of non-re-
newable energy sources. The amount of fuel required in 
fisheries varies significantly between and within fleets 
(Parker & Tyedmers, 2015; Parker et al., 2018; Pelletier 
et al., 2011). Both the economic costs to fishermen and 
the environmental effects of excessive greenhouse gas 
emissions from energy-intensive operations are a cause 
for concern. Outdated technology is often the main cause 
of high energy costs (Buglioni et al., 2011), and its re-
placement through the purchase of new vessels is hin-
dered by European Commission restrictions for fishing 
capacity control (EU, 2013) and prohibitive vessel pric-
ing. The re-adaptation of existing technologies, namely 
the adoption of minor technical adjustments to reduce en-
ergy costs, is currently the most feasible solution. 

Over the past few decades, different methods have 
been explored, such as the optimization of hull geome-
try and propulsion systems (Gabiña et al., 2016; Lin et 
al., 2018; Notti & Sala, 2012; Schau et al., 2009) and 
fouling control on vessels’ hulls to diminish ship resis-
tance (Notti et al., 2019). Trawl gear performance and 
modifications have also been investigated (Thierry et al., 
2020a; Wileman, 1984; Wileman & Hansen, 1988). Dif-
ferent trawl designs, larger meshes, or alternative netting 
materials (Thierry et al., 2020b; Parente et al., 2008; Sala 
et al., 2008; Verhulst & Jochems, 1993) have been shown 
to be effective in reducing fuel consumption while main-
taining a gear’s ability to catch target species. In addi-
tion, behavioral modifications, such as the modulation of 
towing speed in response to rising fuel costs (Poos et al., 
2013), lower steaming speeds (Sala et al., 2011), or the 
selection of closer fishing grounds (Bastardie et al., 2010; 
Sampson, 1991) have also been considered. Although it 
is now evident that consumption increases exponentially 
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with speed (Corbett et al., 2009; Ronen, 1982) and that 
it primarily depends on the hull’s hydrodynamic charac-
teristics, engine power, and gear drag, secondary factors 
such as bad weather and rough seas could still contribute, 
albeit to a lesser extent, to the fluctuation of operating 
costs (Schau et al., 2009; Thrane, 2004). Moreover, pow-
er requirements can be influenced by weather conditions 
in certain vessel operational modes (Swider et al., 2019; 
Swider & Pedersen, 2019). The interaction between fish-
ing vessels and changing environmental conditions, such 
as the seakeeping performance of vessels in waves (Tello 
et al., 2011), vessels’ stability and hull design (Neves et 
al., 2003, 1999), or stability variations owing to the com-
bined action of waves and fishing gear pull (Mantari et 
al., 2009) have all been studied in the past. 

Here, we investigate whether changes in sea state 
and wind conditions affect the fishing activity and ener-
gy expenditure of individual vessels, and we attempt to 
quantify the effects of these environmental variables. To 
do so, we analyzed the activities of three different fish-
ing vessels that are representative of three very common 
metiérs in Mediterranean fisheries (Santiago et al., 2015; 
Tsagarakis et al., 2017): i) a pelagic midwater pair trawl-
er, ii) a beam trawler, and iii) a bottom otter trawler. We 
used an accurate description of their consumption pro-
files associated with the different phases of their fishing 
activities, and we created predictive models to examine 
the importance of predictors on the response variable and 
to forecast consumption for each vessel. We acknowledge 
that there are some limitations to this approach, such as 
the regional scope of this study. The geographic configu-
ration of the northern Adriatic Sea makes it unlikely that 
fishing vessels will frequently operate in extreme con-
ditions, as is the case for fisheries in the oceans or the 
North Sea. Nonetheless, local fleets are geared to a spe-
cific range of working conditions and a nebulous limit 
determines the suspension of fishing activities, even for 
larger vessels. When sea state conditions are on the verge 
of this limit, it is the skippers who decide whether it is 
advisable to set a course or not. Above and beyond ad-
verse working conditions, potential differences in catch-
es, and the probable variation in market prices as a result, 
it would be useful to consider potential changes in energy 
requirements due to unfavorable weather. Our modeling 
approach is based on a comparison of two different sta-
tistical methods: generalized additive models (GAMs) 
(Hastie & Tibshirani, 1986) and random forest (Breiman, 
2001; Ho, 1995). GAMs allow for the definition of a non-
linear function between each predictive variable and the 
response. Automatic modeling of nonlinear relationships 
has the potential to give accurate estimations of the vari-
able of interest. In addition, their additive nature enables 
them to examine each variable’s effect on the response 
while holding the other variables constant (James et al., 
2013). These aspects make GAMs an optimal choice for 
inference, as they offer greater flexibility than standard 
linear models while retaining a reasonable degree of in-
terpretability. The downside of this approach is GAM’s 
additive structure, which may constitute a limitation in 
terms of interactions between predictive variables (Far-

away, 2016; James et al., 2013). Even if these can be 
manually incorporated into the model, important interac-
tions may still be overlooked. To overcome these draw-
backs, we conducted a comparison with a random forest 
model, a machine learning approach that ensures greater 
flexibility at the expense of some model interpretability. 
Comparisons between these two methods already exist 
in the literature, and they have been applied successful-
ly in different fields (González-Irusta et al., 2015; Liu 
et al., 2018; Marmion et al., 2008). This comparison be-
tween modeling methodologies was devised to highlight 
the importance ascribed to predictors by each model and 
to examine the contribution of different variables to the 
observed variability in consumption. We also looked into 
the models’ forecasting capabilities by evaluating their 
predictive performance. Both models were tested on a 
test dataset, and their estimates were compared to the ac-
tual consumption values in our records.

Materials and Methods

Data Collection

In this study, we collected operational data charac-
terizing the activities of three fishing vessels operating 
in the Ancona harbour. The documented fishing activi-
ty took place entirely in the central-northern area of   the 
Adriatic Sea, within FAO GSA 17 (Fig. 1). Except for 
the OTB vessel, which also fished in the 100-200m depth 
layer, all vessels carried out their activity within the 0-50 
m and the 50-100 m depth strata. The variables recorded 
during the data collection process include vessel ID, date, 
time, latitude, longitude, vessel speed, course, and fuel 
consumption.

Due to disparities between vessels in terms of dataset 
size and varied time scales that do not entirely overlap, 
we randomly picked one hundred fishing trips for each 
vessel, sampling the observations from 2011 to 2016, 
excluding fishing ban periods. Bans in the region usual-
ly take effect between August and September, with start 
dates, end dates, and duration that vary annually. Between 
2011 and 2016, the average length of the ban period was 
46 days, with a maximum of 60 days in 2011 and a mini-
mum of 42 days in 2014 and 2016. 

The selected vessels were chosen from a pool of 
monitored ships participating in a larger data collection 
activity    conducted by the National Research Council 
(CNR), which was designed to gather data on the energy 
efficiency of fishing vessels and led to the production of 
other scientific contributions over the years (Buglioni et 
al., 2011; Sala et al., 2022; 2019; 2011). Since these spe-
cific vessels had the longest and most continuous time 
series, they were ideal for matching with several years of 
environmental data from the Copernicus platform. The 
length of the time series was one of the decisive factors in 
our selection process in order to ensure that a broad range 
of operational conditions was matched with the widest 
possible range of weather and sea conditions. 

All vessels belong to the medium-large category of the 
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Italian fleet and represent three very common metiérs in 
Mediterranean fisheries: a bottom otter trawler (OTB), a 
pelagic midwater pair trawler (PTM), and a beam trawler 
(TBB). The OTB has a LOA of 21.5 m, a breadth extreme 
of 5.7 m, a gross registered tonnage of 82 GT, and an 
engine power of 478 kW. This vessel hauls a single cone-
shaped net that remains in constant contact with the sea-
bed. The horizontal opening of the trawl is maintained by 
means of otter boards, while floats placed on the headline 
and a weighted footrope are used for the vertical opening. 
This type of trawl is mainly used to capture a wide variety 
of benthic and demersal species. 

The PTM is the largest of the vessels under observa-
tion, with a hull of 29.0 m LOA, a breadth extreme of 6.9 
m, a gross registered tonnage of 138 GT, and an engine 
power of 940 kW. It functions in tandem with another 
vessel with similar technical features. During fishing op-
erations, the pair navigate in tandem, while jointly drag-

ging a large semi-pelagic trawl. This fishing technique 
primarily targets small pelagic species such as sardines 
(Sardina pilchardus) and anchovies (Engraulis encrasi-
colus). 

The TBB uses a “Rapido” type of net, a distinctive 
Italian trawl with a fixed opening that remains in con-
stant contact with the seabed. The opening of the trawl 
is secured by a metal frame with teeth, which is designed 
to dig into the seabed in order to retrieve and capture the 
target species, which are mainly bivalves (Pecten jaco-
baeus) or flatfish species (Solea spp., Psetta maxima, and 
Scophthalmus rhombus). Up to four Rapido trawls are 
simultaneously hauled during towing operations. With a 
hull of 23.3 m LOA, a breadth extreme of 7.0 m, a gross 
registered tonnage of 86 GT, and an engine power of 780 
kW, the TBB vessel is the middle ground between the 
previous ships in terms of size and engine power. 

The PTM and the OTB vessels’ fuel consumption 

Fig. 1: Spatial distribution of haul midpoints for PTM, OTB, and TBB vessels.
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were measured with a Race Technology Ltd GPS data-
logger coupled with two flowmeters (Hendress & Haus-
er) and a multichannel recorder. For the TBB vessel, a 
GPS and flowmeters were used for data acquisition, and 
data were collected by a core control unit based on Rasp-
berry technology that is capable of handling signal inputs 
from different data sources, storing information in a local 
micro-SD, and creating an automatic data transfer proce-
dure. Data acquisition software consisted of: a GPS mod-
ule, which managed spatial data and synchronized data 
from different sources (system time, coordinates, course, 
consumption data, etc.); a fuel consumption module 
(KRAL module) for the acquisition of fuel flow data from 
the sensors; a communication module for the internet con-
nection for data transfer; and a MySQL module, which 
managed the connection between the software and a local 
MySQL database. The data collection systems used were 
designed and developed by CNR-IRBIM Ancona (Italy). 
The information collected for each vessel was organized 
in a matrix whose rows represent a sequential series of 
“pings,” or observations concerning time, latitude, lon-
gitude, route, and navigation speed, completed by each 
vessel’s consumption. Vessels in the dataset are identified 
by means of a unique vessel identifier. The temporal res-
olution of the collected observations is of one ping/min.

Environmental variables

The selected environmental variables included wind 
and sea state conditions. We also considered seasonality as 
a categorical variable added to the dataset and extrapolat-
ed from each record’s date. This variable was introduced 
in order to account for any potential seasonal pattern that 
may eventually exist within the dataset. Sea bottom depth 
was also taken into account, as shorter cables and shal-
lower waters reduce drag, often allowing vessels to nav-
igate slightly faster while fishing. Wind conditions were 
reported using reprocessed six-hourly wind observations 
from 2012 to 2016 that were downloaded from the Co-
pernicus Marine Service (product ID WIND_GLO_
WIND_L4_REP_OBSERVATIONS_012_006). The ana-
lyzed variables included Wind Speed (ms-1) and Wind U 
and V components (ms-1), transformed into a unique wind 
direction (degrees) using the rWind R package (Fernán-
dez-López & Schliep, 2018). The dataset has a horizontal 
grid size of 0.25°. 

Sea state conditions were described using reprocessed 
one-hourly wave observations, characterized by a hori-
zontal grid size of 0.42°. Observations were downloaded 
from the Copernicus Marine Service, product ID MED-
SEA_HINDCAST_WAV_006_012, (Zacharioudaki et 
al., 2019). The variables considered in this case were Sea 
Surface Significant Wave Height (m) and Sea Surface 
Wave from Direction (VMDR), expressed in degrees. 
Using the recorded vessel’s heading, two additional 
variables were taken into account: the difference (in de-
grees) between the direction of travel and the respective 
wind and wave directions. This information was summa-
rized by two categorical variables added to the analysis. 

Winds were classified as “headwinds,” “tailwinds,” or 
“crosswinds” depending on whether they were coming 
from within a ±15° interval from the vessels’ heading, a 
±15° interval from the stern, or from the side. The same 
classification was applied to waves, categorizing their 
direction as “head wave,” “tail wave,” or “cross wave”. 
Bathymetric data was included using the ETOPO1 data-
set (Amante & Eakins, 2009) hosted on the NOAA serv-
ers, and handled with the R-package marmap. The spatial 
analysis of downloaded datasets was performed in R, 
while NetCDF-4 and shapefiles were processed using the 
R-packages raster (Hijmans & van Etten, 2014) and sf 
(Pebesma, 2018), respectively.

Data analysis and fishing activity classification

R version 4.1.1 (R Core Team, 2017) was used for 
all data analyses. Pings containing improbable values, 
potential erroneous entries, and/or outliers were removed 
from the dataset as part of an initial data cleansing pro-
cess. Fishing trips were identified using the pings corre-
sponding to the beginning and end of a trip, that is, the 
observations falling within a buffer of half a nautical mile 
from the harbor. These values   correspond to the entry and 
exit times of a vessel from the harbor. 

Within the context of this study, a typical fishing trip 
can be divided into a succession of phases that have vary-
ing effects on the observed consumption. These phases 
can be summarized briefly as follows: high-speed move-
ments towards and away from the fishing grounds; ma-
neuvering phases of fishing gear set, gear handling, and 
recovery; the actual trawling phase (haul); and shorter, 
moderate-speed displacements often observed within the 
fishing grounds between one haul and another (search-
ing). To determine this activity classification, we an-
alyzed vessel speed as a time series of consecutive ob-
servations with a frequency of one ping per minute. The 
raw data were subjected to a noise reduction process to 
eliminate any potential noise and facilitate the activity’s 
classification. Raw time series data were smoothed using 
a moving average based on a centered two-sided rolling 
window function, namely a rolling window with a width 
of n=3, which groups each observation in the series with 
its preceding and leading observations. A simple arithme-
tic average was then applied to the observations within 
the rolling window. This process produces a smoothed 
version of the original time series. Time series clustering, 
that is, the partition of time series data into phases based 
on distance or similarity, was performed using Euclidean 
distance metric to calculate a distance matrix and by then 
applying a hierarchical average-linkage clustering tech-
nique to define clustering structures. The optimal number 
of clusters was determined using the pamk() function on 
the calculated distance matrix. The function is part of the 
R-package fpc (Henning, 2015) and operates a partition-
ing around medoids clustering estimating the number of 
clusters by optimum average silhouette width. Finally, a 
small number of misclassified pings were corrected by 
applying filters to the clustering result. These erroneous 
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entries mostly resulted from observations with ambigu-
ous speed values that placed a ping halfway between two 
contiguous activity phases. 

Generalized Additive Models (GAMs)

Generalized additive models (GAMs) (Hastie & Tib-
shirani, 1986) provide a useful way to extend a standard 
multiple linear regression model by incorporating non-
linear functions of the predicting variables while main-
taining additivity (James et al., 2013). Nonlinear rela-
tionships between each predictor and the response are 
modeled by substituting the linear components 
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where 𝑔𝑔𝑔𝑔(𝜇𝜇𝜇𝜇) represents the link function, 𝛽𝛽𝛽𝛽0 is an unknown constant, and 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 is a non-parametric smoothing 
function of the continuous non-linear variable 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖. GAM models provide greater flexibility than standard linear 
models while retaining interpretability. The smoothing functions 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 in the model can be plotted to observe the 
marginal relationship between each predictor and the response (Faraway, 2016). In this research, the model was 
trained using the R package mgcv (Wood, 2018). Following a random 80/20 dataset split, only 80% of the 
dataset was used to train our models. The remaining 20% of the dataset was used to test the accuracy of 
predictions. Singular variables and interactions among predictions were both evaluated. Model selection was 
performed using a backward stepwise selection based on Akaike’s Information Criterion (AIC) (Akaike, 1998). 
An Anova test of significance was used to evaluate interactions between predictors. Furthermore, the maximum 
degrees of freedom of the smoothing functions (number of knots k) for single variable smoothers as well as for 

 of 
a standard linear model with a smooth nonlinear function 
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𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) (James et al., 2013). Additivity is then granted by calculating the singular contribution of each variable 
and adding them together to predict the response. The relationship between the combination of predictors and the 
response is established by a link function, and the basic form of the model can be found in (Hastie & Tibshirani, 
1990): 

𝑔𝑔𝑔𝑔(𝜇𝜇𝜇𝜇) = 𝛽𝛽𝛽𝛽0 + �𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖)
𝑝𝑝𝑝𝑝

𝑖𝑖𝑖𝑖=1

 

where 𝑔𝑔𝑔𝑔(𝜇𝜇𝜇𝜇) represents the link function, 𝛽𝛽𝛽𝛽0 is an unknown constant, and 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 is a non-parametric smoothing 
function of the continuous non-linear variable 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖. GAM models provide greater flexibility than standard linear 
models while retaining interpretability. The smoothing functions 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 in the model can be plotted to observe the 
marginal relationship between each predictor and the response (Faraway, 2016). In this research, the model was 
trained using the R package mgcv (Wood, 2018). Following a random 80/20 dataset split, only 80% of the 
dataset was used to train our models. The remaining 20% of the dataset was used to test the accuracy of 
predictions. Singular variables and interactions among predictions were both evaluated. Model selection was 
performed using a backward stepwise selection based on Akaike’s Information Criterion (AIC) (Akaike, 1998). 
An Anova test of significance was used to evaluate interactions between predictors. Furthermore, the maximum 
degrees of freedom of the smoothing functions (number of knots k) for single variable smoothers as well as for 

 in the model can be plotted to observe the 
marginal relationship between each predictor and the re-
sponse (Faraway, 2016). In this research, the model was 
trained using the R package mgcv (Wood, 2018). Follow-

ing a random 80/20 dataset split, only 80% of the dataset 
was used to train our models. The remaining 20% of the 
dataset was used to test the accuracy of predictions. Sin-
gular variables and interactions among predictions were 
both evaluated. Model selection was performed using a 
backward stepwise selection based on Akaike’s Informa-
tion Criterion (AIC) (Akaike, 1998). An Anova test of 
significance was used to evaluate interactions between 
predictors. Furthermore, the maximum degrees of free-
dom of the smoothing functions (number of knots k) for 
single variable smoothers as well as for interactions was 
limited to k = 5 to avoid overfitting. A summary of the 
variables used in the model can be found in Table 1.

Random Forest

Random forest is a widely-used ensemble learning 
method for classification and regression that is applied 
in several real-world applications and research projects 
in different domains (Oshiro et al., 2012). The method 
relies on a combination of tree predictors, where each tree 
is a classification or regression model. Individual trees 
are weak learners characterized by low bias and high 
variance. Bagging, which involves bootstrap sampling 
many random subsets from the training dataset, building 
a separate model for each subset, and averaging the re-
sulting predictions, can reduce prediction variance and 
increase model accuracy (James et al., 2013). Two-thirds 
of the observations are used by bagged trees for training, 
while the remaining third, known as out-of-bag (OOB) 
observations can be used to observe prediction accura-
cy. The response variable predicted by the model for a 
specific observation equals the average of all estimates 
returned by the trees trained without using that observa-

Table 1. Summary of the variables used in the GAM and RF models.

 Variable Variable type Unit of measure - variable description

Vessel variables

Vessel_ID numeric  - 

lat numeric Decimal degrees

lon numeric Decimal degrees

speed numeric knots

Acceleration numeric knots

Activity categorical levels: Towing, Steaming, Searching, Maneuvering

FC numeric l/h

Environmental 
variables

Season categorical levels: Fall, Winter, Spring, Summer

depth numeric meters

Significant wave height numeric meters

Wave direction numeric degrees

Wind speed numeric ms-1

Wind direction numeric degrees

Calculated/added  
variables

Crosswind categorical levels: Headwind,Tailwind, Crosswind
Crosswave categorical levels: Headwave, Tailwave, Crosswave
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tion. Random forest algorithms also use a small tweak to 
decorrelate the trees, that is, at each split in the trees, they 
select a random sample of n predictors from among all 
predictors. This prevents strong predictors from always 
being used at the top split of each tree, generating a forest 
of very similar trees (James et al., 2013). Our RF mod-
el was trained with the R-package randomForest (Liaw 
& Wiener, 2002), which implements Breiman’s original 
random forest algorithm (Breiman, 2001; Breiman et al., 
1984). Although the RF function’s default values deliver 
reliable estimates, the RF algorithm was fine-tuned in an 
effort to improve performance. The evaluation of the op-
timal hyper-parameter configuration could be computa-
tionally expensive and very long to execute; consequent-
ly, the fine-tuning of the algorithm was attempted using 
a random sample of the original dataset (approximately 
10% of the training dataset). Although the adopted proce-
dure was not optimum, it may nonetheless generate rough 
estimates that can be used as general guidelines. We at-
tempted to optimize three parameters: the number of 
randomly sampled variables at each split; the maximum 
number of terminal nodes; and the final number of trees 
generated. Standard 10-fold cross validation was applied 
to optimize parameters. While understanding a single tree 
is straightforward, an ensemble of trees greatly reduces 
model interpretability, making it harder to determine the 
importance of individual variables. Nevertheless, the im-
portance of different predictors can be observed either as: 
1) a mean drop in the accuracy of predictions for out-
of-bag samples; or, 2) a measure of the total decrease in 
node impurity. Here, we employed the first approach, 
addressing the importance of individual variables as the 
RSS decrease caused by splits over a given predictor. A 
variable importance score was computed as the variable’s 
mean importance across all trees. Typically, the different 
RF implementations display the normalized importance 
of the variables, that is, each score is divided by its stan-
dard error. Here, we considered the unscaled version of 
variable importance, as recent studies (Díaz-Uriarte & 
Alvarez de Andrés, 2006; Strobl et al., 2008) have sug-
gested that raw importance has better statistical proper-
ties.

Prediction

Using the remaining 20% of the dataset, which in-
cluded 66,678 observations, we examined the capacity of 
GAM and RF to predict the amount of fuel consumed 
by vessels. The models’ predictions were compared with 
observed real consumption values, and model accuracy 
was determined by computing a simulated R2 coeffi-
cient, which is useful for evaluating the models’ perfor-
mance and roughly describing how well predicted values 
fit observed values. As an additional measure of model 
fit, we compared the Root Mean Squared Error (RMSE) 
computed by both models on training data (train RMSE) 
with the RMSE computed on previously unseen data (test 
RMSE).

Results

The dataset used contained over 333,386 entries 
(one-minute observations) documenting the activity of 
three fishing vessels between 2011 and 2016. The clus-
tering process divided the activity of the PTM and OTB 
vessels into four phases: into gear-handling moments 
(maneuvering); short within-fishing ground vessel dis-
placements (searching); high-speed navigation from and 
to fishing grounds (steaming); and the actual trawling 
(towing). Pings were categorized, that is, they were as-
signed to one of these four phases. The activities of the 
TBB vessel, on the other hand, were categorized into only 
three phases, excluding vessel displacements between 
hauls. During its fishing activity, the moment of gear re-
trieval and the moment of gear shooting for the next haul 
occur in rapid succession, with no discernible intervening 
phases. The average values of consumption and operating 
speeds representative of the different phases have been 
highlighted for each vessel. Table 2 provides a summary 
of these observed values, sorted by vessel.

Fishing activity in the northern-central Adriatic Sea 
took place at an average latitude of 43°.85 (range 42.93°, 
44.63°), an average longitude of 13.57° (range 12.56°, 
15.25°), and a depth range of 0 to -107 m with a mean 
value of -42 ±18 meters. The OTB vessel fished in the 
deepest waters (up to -107m, mean -54±21m), while the 
PTM and TBB vessels reached more modest depths of 
-87m (mean -53m, ±23m) and -76m (mean -18m ±12m), 
respectively. Within this spatial and temporal range, 
the Significant Wave Heights observed ranged from 0 
to about 2.3 m, with an average value of 0.42m ± 0.34. 
About 90% of the activity fell within the 0-1 m range, 
with only 10% of the data (27,282 observations) exceed-
ing this limit. No activity was recorded for Significant 
Wave Heights exceeding 2.34 m. The wind speed and di-
rection variables mainly reported south-southeast winds 
with speeds ranging between 0.03 to 13.34 ms-1 (0.05 – 
25.93 kn), with an average of 3.31 ± 1.96 ms-1 (6.43 ± 
3.8 kn). Figure 2 provides a brief summary of the data 
obtained for each vessel and the environmental variables 
explored in our analysis.

GAM

The final GAM model was fit on the 80% of the ob-
servations randomly sampled from the dataset, and the 
accuracy of its predictions was tested using the remaining 
20% of the dataset. The final model contained 14 vari-
ables with two interaction terms as described in the for-
mula:

FC~ Vessel + te(speed, acceleration, by=Activity) + te(-
speed, depth, by=Activity) + s(acceleration, by=Activity) 
+ s(speed, by=Activity) + s(depth, by=Activity) + s(W.
Height, by=Activity) + s(W.Direction, by=Activity) + 
s(ws, by=Activity) + s(wd, by=Activity) + s(lat, by=Ac-
tivity) + s(lon, by Activity) + Crosswind + Crosswave + 
Season + family=gaussian(link=log), data=train). 
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The model was able to explain about 88.1% of the 
observed total deviance, and the Anova χ2 test indicat-
ed that all terms included were significant. Only two in-
teraction terms were retained, represented by the tensor 
product te() in the formula. These terms accounted for the 
interactions between the variables speed and acceleration 
and speed and depth. Interactions between the remain-
ing variables were tested and found to be non-significant; 
therefore, they were omitted from the model. The effect 
of the Vessel and Season categorical variables is includ-
ed in the model’s parametric components. Also included 
among the parametric terms are the three-level categor-
ical variables representing the difference between the 
heading of vessels and the direction of waves and winds. 
Smooth functions were used to describe the principal ef-
fects of continuous variables. The term “by=Activity” 
was included in the definition of smoothing terms within 
the GAM model formula. This element produces a repli-
cate of the smooth for each categorical level to account 
for the marked differences in consumption between the 
various phases of fishing activity. A summary of the mod-
el outcome is depicted in Table 3, while the estimated in-
fluence of interactions and single predictors on consump-
tion is shown in Figure 3 for the PTM vessel and in the 
supplementary material for the OTB and TBB vessels. 
The interaction between vessel speed and acceleration, 
considered by activity, is explored in Figure 3a. As ex-
pected, vessel speed was the variable that had the greatest 
influence on the amount of fuel consumed (Figs 3a and 

c). Acceleration had nonlinear effects on consumption 
across all activities (Figs 3a and d). In general, the model 
predicted minor energy expenditure associated with mi-
nor variations in speed and slower speeds. The interaction 
between speed and depth is explored in Figure 3b. The 
model suggested minor or no substantial differences in 
consumption associated with bathymetric shifts during 
high-speed navigation phases (mostly steaming). During 
this activity, changes in consumption are almost linearly 
correlated solely with the vessels’ speed. In contrast, for 
manoeuvring and towing phases, increased depth contrib-
uted to an evident increase in PTM and OTB vessel con-
sumption. In general, the model indicated higher energy 
requirements at greater depths (Figs 3b and 3e; Supple-
mentary material Figs S1b and S1e) and faster trawling 
speeds, showing that this is the least energy-efficient 
combination. With regard to the TBB vessel (Supplemen-
tary material Figs S2b and S2e), the effect of depth on its 
consumption resulted in a nonlinear trend. In this case, 
the model predicted an increase in consumption up to 
depths of about 40-50 meters, followed by a decrease for 
trawling operations conducted at greater depths. It should 
be noted that only ~ 3-4% of the activity took place at 
depths greater than 50 meters, with almost 80% taking 
place within 10-30 meters and about 10% occurring with-
in the 40-50 meter range. This is due to the characteris-
tic behaviour of Rapido trawlers, which closely follow 
bathymetric bands during trawling operations.

Changes in Significant Wave Height had a positive 

Table 2. Summary of values   summarizing the each vessel’s fishing activities.

Vessels PTM OTB TBB

Maneuvering% 16.52% 11.46% 20.45%

Searching% 6.31% 6.59% -

Steaming % 47.31% 9.2% 8.81%

Towing % 29.86% 72.74% 70.74%

Mean Maneuvering  
speed (kn) 1.47 (± 0.89) 2.68 (± 1.1) 5.05 (± 2.01)

Mean Searching 
speed (kn) 6.85 (± 1.32) 5.89 (± 1.31) -

Mean Steaming  
speed (kn) 9.3 (± 0.75) 9.99 (± 0.47) 9.79 (± 1.38)

Mean Towing  
speed (kn) 4.28 (± 0.39) 3.89 (± 0.29) 6.9 (± 0.20)

Mean Maneuvering 
FC/hour (liters) 18 (± 9.09) 15.2 (± 8.51) 57.8 (± 32.2)

Mean Searching  
FC/hour (liters) 45.7 (± 30.6) 29.7 (± 20.5) -

Mean Steaming 
FC/hour (liters) 70.8 (± 20.5) 57.8 (± 4.87) 100.0 (± 33.3)

Mean Towing  
FC/Hour (liters) 119.0 (± 6.42) 58.5 (± 4.34) 127.0 (± 15.9)
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nonlinear relationship with the amount of fuel consumed 
(Fig. 3f) during the maneuvering and towing phases. 
Although the influence of this variable was minor in 
comparison to other variables, the model predicted a 

fluctuating yet steadily increasing trend in consumption 
associated with increasing wave heights for the towing 
and maneuvering phases. Conversely, for the navigation 
phases, the model suggested none to slight increments 

Fig. 2: Summary of the major variables described in the final dataset: a) boxplot with the observed energy expenditure divided 
by vessel, season, and activity; b) Significant Wave Heights observed, summarized by season; c) activity depth ranges; and d) 
windRose plot describing wind speed/direction frequencies. Speeds are broken down into the intervals shown by the scale in each 
panel. The grey circles show % frequencies; e) polarFreq plot to observe wind speed/directions. Each cell displays the total number 
of hours that the wind was blowing in a certain speed/direction. The number of hours are coded as a nonlinear color scale, while 
dashed circular grey lines depict the wind speed scale. The date range covered by the data is shown in the strip.
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Table 3. GAM model summary.

Parametric coefficients      
 Estimate Std. Error Pr(>|t|)  
(Intercept) 3.2458682 0.0469166 69 184 < 2e-16 ***
VesselPTM 0.6257599 0.001732 361 286 < 2e-16 ***
VesselTBB 0.810675 0.0034827 232 774 < 2e-16 ***
CrosswindHeadwind 0.0203944 0.0007466 27 315 < 2e-16 ***
CrosswindTailwind -0.0087206 0.0012192 -7 153 8.54E-13 ***
CrosswaveHeadwave -0.0137797 0.0007523 -18 316 < 2e-16 ***
CrosswaveTailwave 0.0108273 0.001142 9 481 < 2e-16 ***
SeasonSpring 0.0601551 0.000892 67 441 < 2e-16 ***
SeasonSummer 0.0375851 0.0009366 40 130 < 2e-16 ***
SeasonWinter 0.0461042 0.0011919 38 682 < 2e-16 ***

Approximate significance of smooth terms:

 edf Ref.df F p-value  
te(speed,acceleration):ActivityManeuvering 21 556 21 811 604 157 < 2e-16 ***
te(speed,acceleration):ActivitySearching 21 018 21 499 27 650 < 2e-16 ***
te(speed,acceleration):ActivitySteaming 12 859 18 000 35 865 < 2e-16 ***
te(speed,acceleration):ActivityTowing 18 534 19 935 92 777 < 2e-16 ***
te(speed,depth):ActivityManeuvering 14 221 19 000 21 657 < 2e-16 ***
te(speed,depth):ActivitySearching 6 987 19 000 2 880 < 2e-16 ***
te(speed,depth):ActivitySteaming 12 380 16 000 73 907 < 2e-16 ***
te(speed,depth):ActivityTowing 17 752 19 000 175 491 < 2e-16 ***
s(acceleration):ActivityManeuvering 4 044 4 000 648 469 < 2e-16 ***
s(acceleration):ActivitySearching 3 377 3 847 20 456 < 2e-16 ***
s(acceleration):ActivitySteaming 3 805 3 890 71 902 < 2e-16 ***
s(acceleration):ActivityTowing 1 195 1 160 9 770 0.001191 **
s(speed):ActivityManeuvering 3 912 4 000 224 810 < 2e-16 ***
s(speed):ActivitySearching 3 606 3 704 21 186 < 2e-16 ***
s(speed):ActivitySteaming 3 953 3 973 385 985 < 2e-16 ***
s(speed):ActivityTowing 4 724 4 000 166 898 < 2e-16 ***
s(W.Height):ActivityManeuvering 3 946 3 997 66 353 < 2e-16 ***
s(W.Height):ActivitySearching 3 950 3 998 40 165 < 2e-16 ***
s(W.Height):ActivitySteaming 3 928 3 997 92 619 < 2e-16 ***
s(W.Height):ActivityTowing 3 710 3 949 39 137 < 2e-16 ***
s(depth):ActivityManeuvering 8 341 8 639 33 067 < 2e-16 ***
s(depth):ActivitySearching 8 032 8 626 5 686 3.44E-05 ***
s(depth):ActivitySteaming 6 548 7 003 44 106 < 2e-16 ***
s(depth):ActivityTowing 8 661 8 857 113 420 < 2e-16 ***
s(W.Direction):ActivityManeuvering 1 002 1 004 25 616 4.25E-07 ***
s(W.Direction):ActivitySearching 3 952 3 998 70 352 < 2e-16 ***
s(W.Direction):ActivitySteaming 3 905 3 994 98 221 < 2e-16 ***
s(W.Direction):ActivityTowing 3 853 3 987 23 944 < 2e-16 ***
s(ws):ActivityManeuvering 3 633 3 926 5 588 0.000144 ***
s(ws):ActivitySearching 3 923 3 996 34 627 < 2e-16 ***
s(ws):ActivitySteaming 3 900 3 994 26 737 < 2e-16 ***
s(ws):ActivityTowing 3 523 3 875 22 119 < 2e-16 ***
s(wd):ActivityManeuvering 1 011 1 023 0.091 0.769912

Continued
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in consumption for Significant Wave Heights up to 0.5-
1 meter, and a consumption decrease for all vessels for 
wave heights of more than one meter. 

As for the direction of the waves in relation to the 
direction of navigation, the model’s estimates revealed 
an ambiguous pattern with negligible differences in con-
sumption, at least within the wave height range consid-
ered. There was also no discernible pattern of change 
in consumption associated with changes in wind speed 
and direction. Although significant, the relationship be-
tween wind speed and consumption in this context could 
be described as nonlinear and lacking a clear trend (Fig. 
3g). Nevertheless, the interaction between wind direc-
tion and navigation direction confirms the significance 
of the wind variable. The model suggested higher   (albeit 
slightly) consumption values for observations concerning 
navigation in the opposite direction of the wind (Fig. 3j). 
Latitude had a visible effect on the energy expenditure 
of vessels, with higher consumption values predicted for 
maneuvering and towing at the lowest latitudes for all 
vessels. Longitude, on the other hand, seems to have a 
minimal effect on consumption only during the towing 
phase, where a drop in energy expenditure is expected at 
higher longitude values. The effect of this variable on the 
remaining phases is nonlinear and less clear. The relation-
ship between consumption and seasonality (Fig. 3i) was 
significant, but seasonal variations should be minimal. As 
illustrated in Table 3 by the estimates (logarithmic scale) 
provided by the model’s parametric coefficients, spring 
operations were anticipated to have the highest consump-
tion values, while consumption values were forecast to be 
the lowest in the fall. 

Random Forest

Random forest training followed the exact 80/20 ran-
dom split already used for our GAM model, as both meth-
ods used the same training dataset. The standard 10-fold 
cross validation procedure used during the training phase 
to define 1) the optimal number of variables sampled at 

each split, 2) the number of terminal nodes, and 3) the 
optimal number of trees in the forest, indicated a random 
sampling of 9 out of 14 explanatory variables to be select-
ed at each split and a maximum number of 650 nodes. The 
optimal number of trees was derived by evaluating 100 to 
2,000 trees. The reductions in MAE and RMSE   values, 
which were employed as the model’s performance indi-
cators, suggested 800 trees as the best compromise, with 
only minor improvements in model performance   beyond 
this number (Fig. 4). With this configuration, our final RF 
model explained 90.06% of the observed variance, with 
an RMSE of 12.75 and an MAE of about 8.28. Unlike 
conventional regression methods, a graphical representa-
tion of an RF model is hard to achieve, as this method is 
based on an ensemble of classification or regression trees. 
Additionally, the graphical representation of individual 
trees would just be indicative, as each tree is unique and 
generated by random resampling processes. Feature im-
portance, calculated during the training phase, is better 
suited for describing the relative importance of each vari-
able on the model’s final estimates. The results of these 
processes are described in Figure 5. As expected, and in 
agreement with the GAM model, the RF model attributed 
the major differences in the response to the activity effect 
(steaming vs. towing), the vessel effect, and the speed 
and acceleration variables. Significant wave height, lon-
gitude, wave direction, depth, and latitude variables in-
fluenced the response variable to a lesser extent and had a 
similar effect on model accuracy. Given the geographical 
configuration of the Adriatic coast, the effects of longi-
tude, latitude, and depth should be evaluated holistical-
ly, as an increase in longitude and a decrease in latitude 
roughly correspond to an increase in depth. Finally, The 
RF deemed the influence of the remaining variables to be 
minimal, as indicated by the minimal increase in %MSE. 
Among these were the effects of wind speed and direc-
tion, seasonality, and the direction of navigation relative 
to wind and waves.

edf Ref.df F p-value
s(wd):ActivitySearching 3 805 3 975 36 841 < 2e-16 ***
s(wd):ActivitySteaming 3 971 3 999 100 249 < 2e-16 ***
s(wd):ActivityTowing 3 986 4 000 186 514 < 2e-16 ***
s(lat):ActivityManeuvering 3 861 3 987 57 908 < 2e-16 ***
s(lat):ActivitySearching 2 880 3 407 7 159 3.91E-05 ***
s(lat):ActivitySteaming 3 917 3 996 17 290 < 2e-16 ***
s(lat):ActivityTowing 3 988 4 000 826 586 < 2e-16 ***
s(lon):ActivityManeuvering 3 872 3 987 14 105 < 2e-16 ***
s(lon):ActivitySearching 3 836 3 979 37 802 < 2e-16 ***
s(lon):ActivitySteaming 3 915 3 995 37 237 < 2e-16 ***
s(lon):ActivityTowing 3 814 3 980 57 916 < 2e-16 ***

R-sq.(adj)= 0.88   Deviance explained=88.1%
fREML=1.0829e+06  Scale est.=195.29    n=66708

Table 3 continued
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Fig. 3: Example of the estimated influence of both interactions and single predictors on consumption. The shown estimates for 
consumption (l/h) are the predictions of the GAM model for the pelagic pair trawler. Predictions for the response variable are 
generated by examining the response shape of the focal predictor of interest while holding the other variables constant at their 
mean values. A) and b) tensor product splines represent the interaction between acceleration and speed (a) and speed and depth 
(b) and their combined effect on consumption observed by activity; from c) to j), estimated smooth effects of the individual 
predictors by activity, independent of the other variables. The rug beneath each smoother’s plot represents the actual distribution 
of the training dataset’s observations. The variables shown include speed (c), acceleration (d), depth (e), significant wave height 
(W.Height, f), wind speed (ws, g), latitude (lat, h), and longitude (lon, i). The dotted lines represent the 95% confidence intervals 
around the response curve. On the bottom, (j) represents the parametric effect of the vessel, crosswind, crosswave, and season 
categorical variables.
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GAM and Random Forest predictive performance eval-
uation

The test dataset was used to evaluate the capacity of 
the models to predict the energy expenditure of observed 
vessels. Both models achieved a good fit, with GAM 
performing slightly better and with better R-squared 
(RF=0.86, GAM=0.88) and test RMSE (RF=16.47, 
GAM=13.98) values. Each model’s training RMSE and 
test RMSE were compared to observe prediction accura-

cy, where the former is obtained by making the models 
predict consumption values using training data and com-
paring the predictions with actual consumption values, 
and the latter is obtained by repeating the process using a 
new test dataset. A significant discrepancy between train-
ing and test RMSE would imply that the models don’t per-
form equally well on training and previously unseen data. 
Also in this case, GAM performed slightly better with a 
training RMSE=13.97 vs. a test RMSE=13.98, compared 
to RF’s training RMSE=12.75 and test RMSE=16.47. A 

Fig. 4: Relationship between the number of trees in the forest and model performance. Here, model performance is reported in 
terms of the reduction in the Mean Absolute Error (MAE) and the Root Mean Squared Error (RMSE).

Fig. 5: Feature importance for random forest variables. The importance of predictors in the model is given as the mean % increase 
in Mean Squared Error, i.e., the mean decrease in model accuracy.
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summary of the predictive performance of both models 
is available in Figure 6. A comparison between predict-
ed vs. observed values highlighted a small bias in the 
predictions. Occasionally, both GAM and RF either un-
derestimated or overestimated the energy expenditure of 
vessels with visible patterns for observations defined by 
low speed and low consumption values.

Discussion

It is important to consider every aspect weighing on 
the energy balance of fishing vessels in order to optimize 
consumption and reduce the carbon footprint. The key 
technical features influencing this balance have already 
been addressed, and the optimizations for engines, pro-

pellers, or the hydrodynamic properties of vessels and 
gears are accomplished through several technical adap-
tations to existing technologies. Behavioral modifica-
tions such as reducing operational speeds (Poos et al., 
2013) or selecting closer fishing grounds (Poos et al., 
2013) have also been previously considered. Possibil-
ities for additional behavioral changes include altering 
fishing activity in response to changing weather and sea 
conditions. In this study, we evaluated the influence of 
varying sea states and wind conditions on fishing activ-
ities and the energy expenditure of vessels. As far as the 
authors are aware, this subject is still largely unexplored 
and has, therefore, served as the focus of this research. 
The impact of winds and waves was investigated using 
two different approaches, GAM and random forest. The 
comparison was specifically designed to capture most of 

Fig. 6: Predictive performance of the (a) GAM model and (b) Random Forest. The image depicts predicted vs. observed values of 
consumption FC (l/h) for a random sample of 2,000 observations extracted from the test dataset.
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the observed data variances while maintaining reasonable 
model interpretability. Depth and seasonality were also 
examined as additional sources of variability, namely the 
potential differences in consumption owing to a variable 
bathymetry and potential variations in fishing behavior 
due to seasonal changes. Both GAM and RF achieved a 
reasonable fit, with RF performing marginally better in 
terms of variance explained and GAM achieving better 
results in terms of prediction accuracy. The minor dif-
ference between the two approaches suggested that the 
GAM model fit was capable of capturing all the main ef-
fects and no important interactions were overlooked. A 
pattern of slightly biased and homoscedastic GAM resid-
uals suggests that some explanatory variable may still be 
missing from the model. We observed a small bias visible 
in the predictions within the range of low speed and low 
consumption values, where sometimes both GAM and 
RF either underestimated or overestimated the energy 
expenditure of vessels with visible patterns. We attribute 
this bias to the presence of secondary on-board opera-
tions of a short temporal duration, such as gear shooting, 
gear hauling, or gear cables recovery, here summarized 
as the maneuvering phase. As previously mentioned by 
Sala et al. (2011), these operations often generate visible 
patterns during the activity’s low consumption phases. 
These patterns frequently deviate from the expected en-
ergy demands of towing or steaming. Occurring at the be-
ginning and end of each haul, these phases are character-
ized by variable temporal cadence; their duration depends 
on multiple factors and varies from one vessel to another. 
This complicates their accurate identification and inclu-
sion within the already identified phases. Accurately pin-
pointing these moments would certainly improve the ac-
curacy of prediction models, thereby rectifying the minor 
discrepancies observed in the predictions.

Both the GAM and RF approaches concurred on the 
importance of variables, identifying the vessel and the ac-
tivity phase as those responsible for the most pronounced 
differences observed in consumption values. In all cases, 
operational speed undoubtedly remains the most import-
ant variable, capable of explaining most of the variability 
observed in the dataset on its own. As previously dis-
cussed (Corbett et al., 2009; Ronen, 1982), an increase 
in navigation and towing speed exponentially increases 
energy requirements. As already reported (Notti et al., 
2012), a judicious choice of towing and navigation speed 
remains a reliable behavioral response, capable of yield-
ing significant reductions in fuel consumption with a con-
siderate containment of costs and emissions. 

Although the influence of environmental conditions 
on consumption was significant, we found their inter-
action with fishing activity to be ambiguous, and their 
overall impact was generally minor when compared to 
the variables considered previously. 

Significant wave height had the most recognizable ef-
fect on consumption from among all the environmental 
predictors. However, its effect was variable and depen-
dent on the phase of activity being observed. Operations, 
such as maneuvering and towing, involving the presence 
of fishing equipment in water (trawl gears, cables, otter 

boards, etc.), generally appeared to be more affected by 
this variable. For both maneuvering and trawling, our 
GAM model estimated a fluctuating but steadily increas-
ing consumption pattern associated with increments in 
significant wave height. In contrast, the energy require-
ments of vessels during navigation appear to be subject 
to nonlinear fluctuations attributable to the action of 
waves. For significant wave heights up to 0.5-1 meter, 
which are comparable to background noise, the model 
predicted zero or slight increases in observed consump-
tion. Beyond this threshold, a rapid fall in consumption 
was observed and predicted by the model, perhaps as a 
result of the skippers’ ability to take advantage of more 
sustained wave motions by adjusting their course. Con-
sequently, within the range of observed values, the effect 
of wave motion on consumption appears to be greater for 
techniques where maneuvering and trawling are preva-
lent, such as beam trawling, with minor effects on fishing 
techniques where navigation is a substantial part of daily 
activities.

In this study, the sum of maneuvering and trawling 
phases accounted for an average of 46.38%, 84.2%, and 
91.19% of fishing trips for PTM, OTB, and TBB, respec-
tively. As previously reported by Parente et al. (2008), the 
duration of navigation phases varies and largely depends 
on the skipper’s strategy, while trawling emerges as the 
most important component of a fishing trip and the most 
important phase for reduction efforts. Even if minimal, 
the effect of any variable that increases or decreases en-
ergy efficiency during trawling and maneuvering opera-
tions should be regarded as important and studied further. 

It should be noted that the observed significant wave 
height range is rather narrow (0-2.3 m) when compared to 
more prohibitive conditions encountered by other fisher-
ies in different geographic areas. This range roughly cor-
responds to the regional tolerance interval typical of fish-
ing vessels. The activity of the fleet segment in GSA 17, 
as the gathered dataset seems to confirm, seldom takes 
place near the upper limit of this range, and it is difficult 
to observe any trawling activity in the presence of signifi-
cantly higher wave height values.

In future, it may be beneficial to further analyze the 
effects of waves under a broader range of sea-state con-
ditions, since we anticipate that the significance of this 
variable will be greater in worse sea-state conditions.

The influence of wind speed on consumption was 
nonlinear and unclear. Although the results described this 
variable as significant, both GAM and RF indicate that 
the contribution of this variable is minor. Nevertheless, 
the GAM model predicted an increase in consumption 
for any ship displacement against the wind, confirming 
the importance of this variable, which should be exam-
ined further. As with waves, wind speeds also spanned 
a very narrow speed range (0–13.34 ms-1), and most of 
the activity took place in the lower speed portion of this 
range. Moreover, the number of observations reporting 
wind speed values that are close to the upper limit of this 
range was relatively low. Finally, the temporal resolution 
of wind speed and direction variables was rather coarse, 
as winds were assumed to be constant over 6-hour inter-
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vals. The results observed represent an attempt to explore 
the wind-consumption relationship utilizing the available 
finer time resolution. This temporal resolution was poten-
tially inadequate for the scope and a finer temporal scale 
may be required.

As expected, bathymetric conditions do not appear to 
affect consumption during navigation. During the trawl-
ing and maneuvering phases, however, greater depths 
were projected to result in an increase in consumption, 
at least for the PTM and OTB vessels. For these vessels, 
the GAM interaction that accounts for the combined ac-
tion of speed and depth has shown how, at greater depths, 
the additional effect of an increased gear drag leads to 
an increase in energy requirements if not compensated 
by a drop in towing speed. On the other hand, shallower 
waters, reduced gear drag, and moderate trawling speeds 
improve, albeit slightly, energy efficiency while fishing. 

The analysis of consumption, with respect to season-
ality, revealed minor but significant differences between 
seasons, with fall and spring representing the minimum 
and maximum extremes in consumption estimates, re-
spectively. This difference is to be considered attributable 
to slight local seasonal variations in the fishing strategies 
employed by skippers. Nonetheless, neither the observed 
spatial-temporal activity patterns nor the other descrip-
tive variables adequately explained the disparities high-
lighted in the estimates. The contribution of seasonality 
should be considered on a strictly regional basis, and dif-
ferent outcomes should be expected for different fisheries 
in other geographic areas. 

Future steps

In future, it would be worth applying the same analyt-
ic approach to a larger number of vessels from different 
fleet segments and to observe the activity in other geo-
graphic regions. The effect of shifting marine conditions 
should be explored, including a broader range of wave 
and wind conditions, possibly exceeding those already 
observed in the northern Adriatic Sea. Finer temporal 
scales, especially for winds, should also be considered. 
Finally, it would be worthwhile to observe the influence 
of these variables on catches, investigate potential trends, 
and determine if and how the weather-driven modula-
tion of consumption is accompanied by specific trends in 
catches and revenues.
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Fig. S1: Estimated influence of both interactions and single predictors on consumption. The estimates for consumption (l/h) 
shown represent the predictions of the GAM model observed for the bottom otter trawler. Predictions for the response variable are 
generated exploring the response shape of the focal predictor of interest while retaining the other variables constant at their mean 
values. a) and b) tensor product splines representing the interaction between the variables acceleration and speed(a), and speed 
and depth (b) and their combined effect on consumption observed by activity; From c) to j) Estimated smooth effects, observed 
by activity, of the individual predictors independent of the other variables. The rug under each smoother’s plot represent the actual 
distribution of the observations within the training dataset. The variables shown include speed(c), acceleration (d), depth (e), sig-
nificant wave height (W.Height, f), wind speed (ws, g), latitude (lat, h)  and longitude (lon, i). The dotted lines represent the 95% 
confidence intervals around the response curve. On the bottom (j) is represented the parametric effect of the categorical variables 
Vessel, Crosswind, Crosswave and Season.

Fig. S2: Estimated influence of both interactions and single predictors on consumption. The estimates for consumption (l/h) 
shown represent the predictions of the GAM model observed for the beam trawler. Predictions for the response variable are gen-
erated exploring the response shape of the focal predictor of interest while retaining the other variables constant at their mean 
values. a) and b) tensor product splines representing the interaction between the variables acceleration and speed(a), and speed 
and depth (b) and their combined effect on consumption observed by activity.; From c) to j) Estimated smooth effects, observed 
by activity, of the individual predictors independent of the other variables. The rug under each smoother’s plot represent the actual 
distribution of the observations within the training dataset. The variables shown include speed(c), acceleration (d), depth (e), sig-
nificant wave height (W.Height, f), wind speed (ws, g), latitude (lat, h)  and longitude (lon, i). The dotted lines represent the 95% 
confidence intervals around the response curve. On the bottom (j) is represented the parametric effect of the categorical variables 
Vessel, Crosswind, Crosswave and Season.
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