A new species of Perinereis Kinberg, 1865 (Annelida: Nereididae) from the Western Mediterranean Sea revealed by morphological and molecular approaches

HIBA REZZAG MAHCENE, TULIO F VILLALOBOS-GUERRERO, GÜLEY KURT, FRANCOISE DENIS, TAREK DAAS

doi: 10.12681/mms.33969

To cite this article:

A new species of *Perinereis* Kinberg, 1865 (Annelida: Nereididae) from the Western Mediterranean Sea revealed by morphological and molecular approaches

Hiba REZZAG MAHCENE¹,², Tulio F. VILLALOBOS-GUERRERO¹, Güley KURT¹, Françoise DENIS² and Tarek DAAS¹

¹Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria
²UMR 7208 BOREA, MNHN, CNRS 8067, SU, IRD 207, UCN, UA- Le Mans University.
³Department of Marine Ecology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
⁴Department of Biology, Faculty of Arts and Sciences, Sinop University, Sinop, Turkey

Corresponding author: Hiba REZZAG MAHCENE; rezhiba@yahoo.fr

Contributing Editor: Joachim LANGENECK

Received: 14 March 2023; Accepted: 1 June 2023; Published online: 21 July 2023

Abstract

This study uses morphological and molecular evidence to describe a new intertidal species of *Perinereis* Kinberg, 1865 (Annelida: Nereididae) from northeast Algeria. *Perinereis louizomarum* n. sp. belongs to Subgroup 1A, which is distinguished by a single bar-shaped paragnath on area VI of the proboscis and a dorsal ligule that is either slightly or not expanded in the posterior parapodia. The new species differs from *P. cultifera* and similar congeners by having a bare area V and slightly enlarged posterior dorsal ligules. Furthermore, using newly generated and mined sequences from online databases, and mined sequences of *Perinereis* species from online, the analysis of cytochrome c oxidase subunit 1 (COI) mitochondrial gene sequences supported its status as new species. An identification key of the *Perinereis* species belonging to Subgroup 1A is also provided.

Keywords: Algeria; description; mtCOI; *Perinereis cultifera*; Systematics.

Introduction

In terms of environmental and socio-economic importance, *Perinereis* Kinberg, 1865 is possibly the most important nereidid genus. Species such as *P. aibuhitensis* (Grube, 1878), *P. cultifera* (Grube, 1840), and *P. linea* (Treadwell, 1936) are utilized in fishing and aquaculture industries (Lee et al., 1991). In particular, *P. cultrifera* (Grube, 1840) are regarded as biomarkers in aquatic environments, from shallow waters to abyssal zones (Wu et al., 1985), although some dwell in estuarine or even semi-terrestrial environments (Glasby et al., 2009; Villalobos-Guerrero et al., 2021).

To facilitate practical identification, this heterogeneous and speciose nereidid genus has traditionally been divided into six informal morphological groups (1A, 1B, 2A, 2B, 3A, and 3B) (Hutchings et al., 1991). In particular, the *Perinereis* Subgroup 1A (hereafter SG-1A) was proposed for species that share the presence of a single bar-shaped paragnath on area VI and posterior chaetigers with dorsal ligules slightly or not expanded; twelve of the species are currently valid: *Perinereis arabica* (Mohammad, 1971) from Kuwait, *P. calmani* (Monro, 1926) from Australia and Macclesfield Bank (South China Sea), *P. cultifera* (Grube, 1840) from the Tyrrenhenian Sea (Italy), *P. dongalae* (Horst, 1924) from Indonesia, *P. falsovariegata* (Monro, 1933) from South Africa, *P. floridana* (Ehlers, 1868) from the Gulf of Mexico (USA), *P. helleri* (Grube, 1878) from the Philippines, *P. rullieri* (Pilato, 1974) from the Mediterranean Sea (Italy), *P. taorica* (Langerhans, 1881) from Madeira, *P. tenuisetis* (Fauvel, 1915) from the Mediterranean Sea (Italy), *P. villalobosi* (Rioja, 1947) from the Gulf of California, and also *P. capensis* (Kinberg, 1865) from South Africa, which was formerly overlooked by Hutchings et al. (1991).

Perinereis cultifera is the most studied and culturally significant SG-1A species in the Mediterranean Sea, particularly Algeria. It is widely exploited on the Northeast Algerian coast as bait in sport angling and recreational fishing for sea bream (*Dicentrarchus labrax*), sole (*Solea solea*), and other varieties of fishes, such as paget (*Pagellus erythrinus*), small wolf (*Dicentrarchus*...
labrax) and marbled (Lithognathus mormyrus) (Rouabah, 2003). However, Scaps et al. (2000) and Rouabah & Scaps (2003a) revealed that P. cultrifera might be a complex of species based on the morphological and biochemical divergence of specimens collected in Saint-Cloud, Annaba (Algeria) and from Saint-Aubin-sur-Mer, Normandy (English Channel). Similarly, Rouabah et al. (2009) also found that the spawning season, mode of reproduction, age of maturity, and biometric characteristics of specimens assigned to P. cultrifera differ according to the geographic location of the populations in question. Hence, it is likely that two (or more) species are involved under the same species name, P. cultrifera, in the Mediterranean Sea and the eastern North Atlantic.

Moreover, a total of eight species of Perinereis have been reported from the Mediterranean Sea: Perinereis cultrifera (Grube, 1840) from the Tyrrenian Sea, Italy; P. floridana (Ehlers, 1868) from Florida, USA; P. linea (Treadwell, 1936) from Xiamen, China; P. macropus (Claparède, 1870) from the Tyrrenian Sea, Italy; P. marionii (Audouin & Milne Edwards, 1833) from Bay of Biscay; P. oliveirae (Horst, 1889) from Portugal; P. rullieri (Pilato, 1974), and P. tenuisetis (Fauvel, 1915) from Sicily, Italy (Fauvel, 1915; Prevedelli et al., 1990; Scaps et al., 2000; Rouabah & Scaps 2003a,b; Rouabah & Rouabah 2007; Rouhi et al., 2008; Arias et al., 2013; Meglaoui et al., 2015; Gasmi et al., 2016; Gillet, 2017; Bakalem et al., 2020; Villalobos-Guerrero et al., 2021; Rezzag-Mahcene et al., 2022). Only four species (P. cultrifera, P. macropus, P. rullieri, and P. tenuisetis) were originally described from the Mediterranean Sea. Two other species have been considered alien in the Mediterranean Sea: Perinereis linea (Arias et al., 2013) and P. nuntia (Zenetos et al., 2010); however, the presence of the former species in the region was recently questioned (Villalobos-Guerrero et al., 2021), whereas P. nuntia has been demonstrated as a complex of morphologically distinguishable species (Wilson & Glasby, 1993; Glasby & Hsieh, 2006), even between neighboring regions (Villalobos-Guerrero, 2019; Tosuji et al., 2019). The records of the other Perinereis species in the Mediterranean Sea need to be thoroughly assessed because it is likely that nominal species might be hidden in species complexes or correspond to new ones.

The combined use of morphology and DNA evidence is a powerful tool for disentangling nereid species complexes or discovering previously unknown species (Glasby et al., 2013; Sampertegui et al., 2013; Kara et al., 2020; Tosuji et al., 2019; Drennan et al., 2021; Wang et al., 2021; Teixeira et al., 2022). In particular, the mitochondrial cytochrome c oxidase I (COI) gene has been used to explain the interspecific relationships between nereidid species and their phylogeographic relationships; hence, used to analyze population structure, evolutionary relatedness, and delimitation of species (e.g., Park & Kim, 2007; 2017; Villalobos-Guerrero & Carrera-Parra, 2015; Kara et al., 2018; Villalobos-Guerrero et al., 2021; Villalobos-Guerrero et al., 2022).

The current study describes a new species from the Algerian coast that belongs to the Perinereis SG-1A genus. Morphological comparisons were made between Perinereis species from the Mediterranean Sea and those from SG-1A. In addition, partial sequences of the new species’ COI region were amplified to analyze genetic distances and compared to molecular data from other Perinereis species.

Material and Methods

Sampling sites

Nereidid specimens were collected from three stations on the northeastern coast of Algeria: El-Kala, Annaba, and Skikda (Fig. 1; Table 1). At each station, three replicates were sampled monthly during 2019 using a quadrat (25 cm × 25 cm) at 0.5 m depth on algae attached on hard bottoms at the intertidal and shallow sublittoral. The algae were scraped and deposited in containers to search for nereidid individuals. Several specimens were

Fig. 1: Map of the eastern coasts of Algeria showing the three sampling sites of this study.
found fragmented, with either the anterior or posterior end missing. Consequently, we also carried out a second method to prevent mechanical fragmentation. A small amount of powdered alum made of Kalunite was sprinkled on the rocky ground, which is natural potassium and does not contain aluminum hydroxide. No scientific studies to date have demonstrated natural alum stone toxicity.

Before fixation, the specimens were forced to evert the proboscis by exerting pressure gently on the prostomium, which eventually facilitated the observation of the paragnaths through the microscope. The specimens were fixed individually in 1.5 ml microcentrifuge tubes with a 4% formalin solution and then preserved in 70% ethanol.

After identification, the annelids intended for the genetic study were stored individually in 1.5 ml tubes containing ethanol at 90% and placed at a temperature of 4°C. Finally, all specimens examined in this study, including the type material, were deposited at the Muséum National d’Histoire Naturelle (MNHN), Paris.

Morphological observation

Examination of the morphological features of the specimens, terminology, and standards to describe the species, and preparation and edition of figures are detailed elsewhere (Villalobos-Guerrero et al., 2021 and references there cited). In addition, paired areas in the pharynx were indicated as ‘a’ for the left and ‘b’ for the right. Specimens were photographed using a digital camera (ZEISS AxioCam Icc1) and mounted on a stereomicroscope with a compound microscope with a portable adaptor. Description of the species is based upon the morphology of the holotype unless otherwise stated, while variations are indicated separately for all the material. Anomalies found in one specimen are also described.

DNA extraction, PCR amplification and molecular analysis

Partial sequences of mitochondrial cytochrome c oxidase subunit I (COI) region were amplified to analyze the genetic distances at the intraspecific level of *Perinereis* specimens collected in Algeria and to compare this data with other *Perinereis* species with sequences mined from BOLDSystems (BOLD) (Sujeevan & Hebert, 2007). DNA was extracted from tissue samples conserved in 90% ethanol using CTAB according to the protocol established by Winnepenninckx et al. (1993). The universal primer pair LoboF1 and LoboR1 (Lobo et al., 2013) was used to amplify a fragment of the gene COI (Table 2). Polymerase Chain Reaction (PCR) amplifications were carried out using 12 µl of Taq DNA polymerase (Thermo Scientific), 14.88 µl of molecular biology grade water, 2.5 mM of MgCl₂, 0.2 mM of each dNTP, 0.2 µm of each primer (10 µM) and 1 µl of template DNA to make up a total reaction volume of 25 µl. Thermal cycling conditions were settled as follows: initial denaturation at 94°C for 5 min, followed by 5 cycles of 94°C for 30 s, 45°C for 1 min and 30 s, and 72°C for 1 min, then by 45 cycles of 94°C for 30 s, 54°C for 1 min 30 s, and 72°C for 1 min and final extension time at 72°C for 5 min. Amplicons were Sanger sequenced at the GENEWIZ®, just the forward primer (LoboF1). Agarose gels with BET were used to control PCR product size. The products were then electrophoresed, one direction was sequenced for eight products, and only one was sequenced in two directions. All sequences generated were deposited in GenBank under accession numbers OP459427–OP459435, OP585368 (Table 3).

The obtained sequences were checked manually with the Bioedit sequence editor (Hall, 1999). After checking individual 1, no difference was observed between the sequencing of the two strands. Both sequences (forward and reverse) were used to build a consensual sequence, which was compared with the other eight individuals. Sequences were aligned using ClustalW implemented in MEGA-X (Kumar et al., 2018). Nucleotide-sequence divergences of the partial sequences of the COI region were used to calculate the intraspecific and interspecific pairwise genetic distances using the Kimura two-parameter (KP2) model (Kimura, 1980). This newly obtained data for Algerian specimens of *Perinereis* was compared with mtCOI sequences of other species mined from BOLD: *Perinereis aibuhitensis*, *P. brevicirris*, *P. cultrifera*, *P.
<table>
<thead>
<tr>
<th>Species</th>
<th>GenBank COI</th>
<th>Location</th>
<th>n</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. aibuhitensis (Grube, 1878)</td>
<td>KC800611, KC800612, KC800613, KC800614</td>
<td>China</td>
<td>4</td>
<td>Deng, unpubl. data</td>
</tr>
<tr>
<td></td>
<td>KY129885</td>
<td>China</td>
<td>1</td>
<td>Chen et al., unpubl. data</td>
</tr>
<tr>
<td></td>
<td>KF611806</td>
<td>Korea</td>
<td>1</td>
<td>Kim et al., (2015)</td>
</tr>
<tr>
<td>P. brevicirris (Grube, 1866)</td>
<td>JX503024, JX503025, JX503026</td>
<td>South Korea</td>
<td>3</td>
<td>Kim et al., unpubl. data</td>
</tr>
<tr>
<td></td>
<td>KC800628, KC800630</td>
<td>China</td>
<td>2</td>
<td>Deng, unpubl. data</td>
</tr>
<tr>
<td>P. cultrifera (Grube, 1840)</td>
<td>MN812983</td>
<td>Arcachon–France, Portugal</td>
<td>1</td>
<td>Alves et al., 2020</td>
</tr>
<tr>
<td>P. euinii Park & Kim, 2017</td>
<td>MN256545, MN256546</td>
<td>Unknown</td>
<td>2</td>
<td>Xing & Zhang, unpubl. data</td>
</tr>
<tr>
<td>P. lousizomarum n. sp.</td>
<td>KC800624, KC800625, KC800627</td>
<td>China</td>
<td>3</td>
<td>Deng, unpubl. data</td>
</tr>
<tr>
<td></td>
<td>KY129883</td>
<td>China</td>
<td>1</td>
<td>Chenet et al., unpubl. data</td>
</tr>
<tr>
<td>P. suluana (Horst, 1924)</td>
<td>JX420245, JX420246, JX420247, JX420251, JX420252, JX420253</td>
<td>Australia</td>
<td>6</td>
<td>Glasby et al., (2013)</td>
</tr>
<tr>
<td>P. vallata (Grube & Kröyer in Grube, 1858)</td>
<td>JX676143, JX676159, JX676180</td>
<td>India</td>
<td>3</td>
<td>Iyyaparajananrasimapallavan et al., unpubl. data</td>
</tr>
<tr>
<td></td>
<td>HQ705192, HQ705194, HQ705195</td>
<td>Chile</td>
<td>3</td>
<td>Sampertegui et al., (2013)</td>
</tr>
<tr>
<td>P. wilsoni Glasby & Hsieh, 2006</td>
<td>KC800623, KC800629, KC800631</td>
<td>China</td>
<td>3</td>
<td>Deng, unpubl. data</td>
</tr>
<tr>
<td></td>
<td>KY129887, KY129888, KY129889</td>
<td>China</td>
<td>3</td>
<td>Chen et al., unpubl. data</td>
</tr>
<tr>
<td>Nereis pelagica (Linnaeus, 1758)</td>
<td>HQ023615</td>
<td>Canada, Manitoba</td>
<td>1</td>
<td>Carr et al., 2011</td>
</tr>
<tr>
<td>Myrianida rubropunctata (Grube, 1860)</td>
<td>GQ856203</td>
<td>Ferrol, Spain</td>
<td>1</td>
<td>Nygren & Pleijel, 2010</td>
</tr>
</tbody>
</table>
suluana, P. wilsoni, and P. vallata, including Nereis pelagica (Linnaeus, 1758) and Myrianida rubropunctata (Grube, 1860) (Syllidae) as outgroups (Table 3). These species were chosen because the number of BOLD available sequences is equal to or greater than that obtained in this study for Perinereis Algerian individuals. Based on the K2P model, the same sequences were used to calculate intraspecific genetic distances.

Results

Molecular analyses

A total of 581 bp of the partial mtCOI sequences was analyzed from nine P. louizomarum n. sp. individuals. The intraspecific pairwise distances between the COI sequences were relatively low (Table 4), with a mean intraspecific distance of 0.02%. The nine sequences represent three haplotypes. Six annelids shared the most abundant sequence. Neither insertion nor deletion was detected between the nine individual sequences. The interspecific pairwise distances based on six Perinereis species showed mean values between 0.173 and 0.276; however, for P. louizomarum n. sp., they varied from 0.262 to 0.325 (Table 5). According to the Neighbour-Joining tree construction, all the Perinereis species formed distinct clusters, except P. brevicirris, separated into three clades. In particular, P. louizomarum n. sp. clustered in a genetically different group with a high bootstrap value (Fig. 2). The morphological and molecular evidence obtained in this study allows us to confirm that the latter is a new species.

Morphology

A new Perinereis species was discovered among the rocky shores of Northeast Algeria. Perinereis louizomarum n. sp. has a single bar-shaped paragnath on area VI of the proboscis, and the proximal dorsal ligule is slightly expanded. The new species suits within the Subgroup 1A sensu Hutchings et al. (1991). Perinereis louizomarum n. sp. closely resembles the Mediterranean Sea species P. cultrifera and P. rullieri. However, morphological comparisons based on the descriptions, redescriptions, and illustrations of the type specimens (fide Grube, 1840; Pilato, 1974; Hutchings et al., 1991; Park & Kim, 2017) reveal that P. louizomarum n. sp. can mainly be differentiated from both species by the counting of paragnaths on areas III and V, the form of distal dorsal ligules, and the location of dorsal cirri.

SYSTEMATICS

Family NEREDITIDAE de Blainville, 1818
Genus Perinereis Kinberg, 1865
Perinereis Kinberg, 1865: 175; 1910: 52.

Type species

Perinereis novaehollandiae Kinberg, 1865, by subsequent designation (fide Hartman, 1949). It is considered a junior synonym of P. amblyodonta Schmarda, 1861 (Ehlers, 1904; Hartman, 1959).

Table 4. Intraspecific pairwise distance of Perinereis louizomarum n. sp. calculated by Kimura-2-Parameters model.

<table>
<thead>
<tr>
<th></th>
<th>Ind. 1</th>
<th>Ind. 3</th>
<th>Ind. 4</th>
<th>Ind. 5</th>
<th>Ind. 6</th>
<th>Ind. 7</th>
<th>Ind. 8</th>
<th>Ind. 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ind. 3</td>
<td>0.0250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ind. 4</td>
<td>0.0163</td>
<td>0.0330</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ind. 5</td>
<td>0.0162</td>
<td>0.0473</td>
<td>0.0127</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ind. 6</td>
<td>0.0179</td>
<td>0.0538</td>
<td>0.0079</td>
<td>0.0046</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ind. 7</td>
<td>0.0162</td>
<td>0.0554</td>
<td>0.0079</td>
<td>0.0108</td>
<td>0.0060</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ind. 8</td>
<td>0.0163</td>
<td>0.0440</td>
<td>0.0047</td>
<td>0.0077</td>
<td>0.0031</td>
<td>0.0031</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ind. 9</td>
<td>0.0130</td>
<td>0.0406</td>
<td>0.0111</td>
<td>0.0093</td>
<td>0.0077</td>
<td>0.0093</td>
<td>0.0062</td>
<td></td>
</tr>
<tr>
<td>Ind. 10</td>
<td>0.0365</td>
<td>0.0238</td>
<td>0.0393</td>
<td>0.0517</td>
<td>0.0626</td>
<td>0.0641</td>
<td>0.0451</td>
<td>0.0484</td>
</tr>
</tbody>
</table>

Table 5. Interspecific pairwise genetic distances of Perinereis species (K2P distances).

<table>
<thead>
<tr>
<th>Species</th>
<th>P. aibuhitensis</th>
<th>P. brevicirris</th>
<th>P. cultrifera</th>
<th>P. pelagica</th>
<th>P. suluana</th>
<th>P. vallata</th>
<th>P. wilsoni</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. brevicirris</td>
<td>0.241</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. cultrifera</td>
<td>0.274</td>
<td>0.276</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. pelagica</td>
<td>0.267</td>
<td>0.270</td>
<td>0.257</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. vallata</td>
<td>0.222</td>
<td>0.222</td>
<td>0.251</td>
<td>0.254</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. wilsoni</td>
<td>0.235</td>
<td>0.173</td>
<td>0.264</td>
<td>0.237</td>
<td>0.255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. louizomarum n. sp.</td>
<td>0.325</td>
<td>0.285</td>
<td>0.268</td>
<td>0.282</td>
<td>0.262</td>
<td>0.282</td>
<td></td>
</tr>
</tbody>
</table>
Perinereis louizomarum n. sp.

urn:lsid:zoobank.org:act:A068FBA0-EB4D-4239-A98B-F4D1EF12ABDE
[Argelian name: ver vert de roche]

Figures 4, 5

Type material. Mediterranean Sea, Algeria. Holotype: MNHN-IA-TYPE 2065, El-Kala (36.89815° N, 8.450911° W), Annaba, Skikda, 22 May 2019, coll. H. Rezzag Mahcene, 0.5 m, substratum covered by algae, rock, and sand, atokous female, in good condition.

Paratypes. Mediterranean Sea, Algeria. Six specimens (MNHN-IA-TYPE 2066), El-Kala, Algeria (36.89815° N, 8.450911° W), 02 May 2019, coll. H. Rezzag Mahcene, 0.5 m, among rocks covered by algae, atokous. Two specimens, one of them contains only the proboscis (MNHN-IA-TYPE 2067), El-Kala, 24 March 2019, 0.5 m, among rocks covered by algae, atokous, coll. H. Rezzag Mahcene. One specimen (MNHN-IA-TYPE 2068), Skikda (36.87191° N, 6.900911° W), 25 January 2020, coll. H. Rezzag Mahcene, 0.5 m, among rocks covered by algae, atokous.

Additional material. Mediterranean Sea, Algeria. One specimen (MNHN-IA-TYPE 2069), La Montagne Beach, El-Kala, Algeria (36.89815° N, 8.450911° W), 02 May 2019. Two specimens (MNHN-IA-TYPE 2070), Rezgui Rachid Beach, Annaba, Algeria (37.53547°N, 8.289361°W), 13 March 2019.

Diagnosis. Perinereis species belonging to subgroup 1A. Specimens with a crescent-shaped bar on area VI; areas VI–V–VI ridge pattern π-shaped; area V without paragnaths; areas VII–VIII with anterior band of paragnaths consisting of two rows; area III without laterally isolated paragnaths; posterodorsal tentacular cirri extending to chaetigers 4–6; distal dorsal ligule subequal in length throughout body; neuroacicular ligule markedly projected; falcigers with cameral shaft divided into four partitions.

Description. Holotype atokous female, complete, in good condition, 56 mm LT, 12 mm L10, 3.2 mm W10, with 58 chaetigers. Body color brownish (Fig. 3A), with brown pigmentation on dorsum of prostomium (except mid-posteriorly; Fig. 3B), inner part of palpophores (Fig. 3A, B), proximal half of palpostyles and antennae (Fig. 3A, B), entire cirrophores of tentacular cirri extending to chaetigers 4–6; distal dorsal ligule subequal in length throughout body; neuroacicular ligule markedly projected; falcigers with cameral shaft divided into four partitions.

Prostomium campanulate, as long as wide (Fig. 3B); anterior end broad, distally complete; anterolateral gap between antenna and palpophore narrow, three-quarters as wide as basal diameter of antennae. Palpophores sub-conical, thick, as long as wide, two-thirds of entire prostomium (Fig. 3A); sub-distal transverse groove distinct, deeply embedded. Palpostyles ovoid, large, one-third as wide as diameter of palpophore (Fig. 3A).

Antennae tapered, thick, extending forwards slightly beyond palpophore and posteriorly to distal third of length of prostomium; antennae separated with gap as wide as three-quarters of basal diameter of antennae (Fig. 3A, B), entire cirrophores of tentacular cirri (Fig. 3A, B), pygidium, pygidial cirri and on dorsum of all segments, more intense posteriorly.

Prostomium campanulate, as long as wide (Fig. 3B); anterior end broad, distally complete; anterolateral gap between antenna and palpophore narrow, three-quarters as wide as basal diameter of antennae (Fig. 3A, B), entire cirrophores of tentacular cirri (Fig. 3A, B), pygidium, pygidial cirri and on dorsum of all segments, more intense posteriorly.

Antennae tapered, thick, extending forwards slightly beyond palpophore and posteriorly to distal third of length of prostomium; antennae separated with gap as wide as three-quarters of basal diameter of antennae (Fig. 3A, B). Paired eyes black, arranged in trapezoid form, gap between both pairs twice as wide as diameter of posterior pair of eyes (Fig. 3A, B); anterior pair of eyes oval, subequal to basal diameter of antennae, with gap between both eyes 5.5 times their diameter, with lens barely distinct, purplish, covering 40% of eye; posterior pair of eyes rounded, slightly narrower than basal diameter of antennae, with lens distinct, purplish, placed centrally in eyes and covering 40% of it.

Tentacular belt 3 times wider than long, 1.5 times as long as chaetiger 1, with even anterior margin, dorsal
without marked transverse wrinkles.

Tentacular cirri slender, smooth (Fig. 3A); postero-dorsal cirri extending posteriorly to chaetiger 2, 1.5 times as long as anterodorsal cirri; anterodorsal cirri extending posteriorly to chaetiger 1; posteroventral cirri extended over first third of prostomium; anteroventral cirri as long as two-thirds of posteroventral cirri and as long as palpophore; cirrophores of anteroventral cirri ring-shaped, remaining cirrophores cylindrical, postero-dorsal cirrophores 1.5 times as long as anterodorsal cirrophores, anteroventral cirrophores broadest, posteroventral cirrophores narrowest.
Proboscis everted, with maxillary and oral rings cylindrical, wider than long. Jaws edentulate, with distal half dark reddish, remaining yellow amber; 2 canals emerging from pulp cavity (Fig. 3C).

Proboscis with brownish, wear and small paragnaths on maxillary ring and dark-red and coarse paragnaths on oral ring; consisting of cones, except bars on area VI and areas VII–VIII (Fig. 3D–I). Area I: 2, longitudinal row of cones, distal one smaller. Areas IIa: 5 and IIb: 8, one or two irregular rows of uneven cones in oblique patch. Area III: 4, four slightly uneven cones in subcircular patch, without distinct isolated lateral groups. Areas IVa: 12 and IVb: 17, three irregular transverse rows of uneven cones in slightly curved patch. Area V: 0. Areas VIa: 1 and VIb: 1, crescent-shaped bars (Fig. 3F), right with concave base but asymmetrical and pointed (Fig. 3G). Areas VII–VIII: 38, two well-separated bands of coarse and uneven paragnaths, with anterior band consisting of two transverse nearly-aligned rows of cones and p-bars (Fig. 3E, I) (furrow rows with one p-bar, ridge rows with one cone), posterior band with two transverse rows of cones displaced from each other (paragnaths present only on ridge rows, with two cones on each region). Ridges of areas VI–V–VI with α-shaped pattern (Fig. 3D, H). Gap between areas VI and VIII broad, as wide as palpophore (Fig. 3D, H). Paired oesophageal caeca present (Fig. 3J).

Parapodia without glandular patches on dorsum of segments (Fig. 4K). Notopodia consisting of dorsal cirrus, dorsal ligule (distal and proximal), notopodial prechaetal lobe and median ligule in biramous parapodia (Fig. 4A–E).

Dorsal cirri conical, thick, extending beyond distal region of dorsal ligule in anteriormost and anterior parapodia (Fig. 4A, B), shorter than that in middle and posterior parapodia (Fig. 4C–E), then subequal in posteriormost parapodia; dorsal cirri 3–3.5 times as long as proximal region of dorsal ligule in anteriormost parapodia (Fig. 4A), 2–2.5 times as long as that in anterior parapodia (Fig. 4B), subequal to or slightly longer than that in following parapodia (Fig. 4C–E); attached basally to dorsal ligule in anteriormost parapodia (Fig. 4A), one-third in anterior parapodia (Fig. 4B), medially in following parapodia (Fig. 4C–E).

Proximal region of dorsal ligule even throughout body; shorter than distal region of dorsal ligule in anteriormost and anterior parapodia (Fig. 4A, B), subequal to that in following parapodia (Fig. 4C–E); one glandular patch sub-oval in anterior parapodia (Fig. 4B), becoming distinctly smaller towards posterior end.

Distal region of dorsal ligule extending markedly beyond end of notoaciculae throughout (Fig. 4B–E); thick, bluntly rounded and slightly longer than median ligule in anterior parapodia (Fig. 4B), longer than median ligule in following parapodia (Fig. 4C–E), bluntly triangular in middle parapodia (Fig. 4C), becoming digitiform towards posterior end (Fig. 4D, E); one massive glandular patch covering entirely distal dorsal ligule of anterior parapodia (Fig. 4B), much compact in middle and posterior parapodia.

Notopodial prechaetal lobe blunt, thick and short (Fig. 4B) in anterior parapodia, becoming narrower and reduced to notoaciculae papilla from parapodia 14 (Fig. 4C–E).

Median ligule thick, bluntly rounded in anterior parapodia (Fig. 4B), bluntly triangular in middle parapodia (Fig. 4C), becoming digitiform towards posterior end (Fig. 4D, E).

Neuropodia consisting of neuroaciculae ligule with inferior lobe, ventral ligule, and ventral cirrus (Fig. 4A–E); superior and postchaetal lobes absent throughout.

Neuroaciculae ligule shorter than ventral ligule in anteriormost parapodia (Fig. 4A), distinctly longer than that in anterior and middle parapodia (Fig. 4B, C), becoming subequal to or slightly shorter than that towards posterior end (Fig. 4D, E); 1.5–1.7 times as wide as ventral ligule in anteriormost and anterior parapodia, as wide as that in following parapodia.

Inferior lobe as small, blunt process in anteriormost and anterior parapodia, becoming narrower and reduced from parapodia 18.

Ventral ligule well-developed throughout, thick; digitiform and shorter than median ligule throughout, except bluntly rounded in anterior parapodia (Fig. 4B).

Ventral cirri digitiform and thick in anterior-most parapodia (Fig. 4A), becoming conical in following ones; as long as two-thirds of ventral ligule throughout.

Aciculae black, with basal end uncoloured. Notoaciculae absent in first 2 parapodia (Fig. 4A). Neuroaciculae extending beyond distal end of notoaciculae throughout (Fig. 4B–E). Neuroaciculae longer than median ligule in anterior parapodia (Fig. 4B), distinctly shorter than that in following parapodia (Fig. 4C–E).

Notochaetae all homogomph spinigers throughout; 15–16 spinigers present in anterior parapodia, 5–7 spinigers in following parapodia.

Upper neurochaetae consisting of homogomph spinigers and heterogomph falcigers, both present throughout; 8 spinigers present in anteriormost parapodia, 12 spinigers in anterior parapodia, 3–4 spinigers in following parapodia; 3–4 falcigers present throughout.

Lower neurochaetae consisting of heterogomph spinigers and heterogomph falcigers, both present throughout; 1–2 spinigers present in all parapodia; 24–26 falcigers in anteriormost and anterior parapodia, 5–6 falcigers in middle parapodia, 4–5 falcigers in posterior parapodia.

Blade of both homogomph (Fig. 4F) and heterogomph spinigers (Fig. 4G) finely serrated towards toothed edge, evenly spaced. Blade of heterogomph falcigers short (b/a ratio 0.75–1.1), convex, terminal tooth blunt with inconspicuous tendon, serrations present in about one-third to two-fifths (0.31–0.4) of total blade length (Fig. 4H–K); supracircular blades of similar size (Fig. 4H, J), subacicular ones becoming slightly shorter and thicker downwards in parapodia (Fig. 4I, K). Shaft of falcigers camered, with cavity divided sub-distally into four longitudinal partitions (Fig. 4J, K).

Pygidium well developed, as long as last 3 chaetigers; anal cirri thick, short, equalling length of last 6 chaetigers, with small cirrophores (Fig. 3K).

Variation. Total length of complete specimens: 35–42
mm; L15: 9–12 mm, W15: 4–5 mm, 37–62 chaetigers. Anterior to dorsal tentacular cirri extending back to chaetiger 3–4. Posterodorsal tentacular cirra extending back to chaetiger 4–6. Jaws smooth, sometimes with 1–2 (rarely 3) thick and blunt denticles. Number and arrangement of paragnaths: area I with 1–2; area II with 3–8; area III with 1–5; area IV with 6–19; area V without paragnaths, rarely 1–2; area VI with crescent-shaped bar, sometimes with concave base and pointed tip; area VII–VIII with 26–38, in two bands, anterior row with p-bars present, less distinct in coarser paragnaths, posterior row with cones on ridge rows only, albeit occasionally seem also present on furrow rows. Anal cirri as long as last 4–5 chaetigers.

Anatomical anomalies. One specimen (62 mm long,
3 mm wide, 62 chaetigers) with (1) three antennae of similar size, with the middle one thinner than laterals and bearing ceratophore (Fig. 2L); (2) two palpodes on right palpspheme (Fig. 3M); and (3) three tentacular cirri in the right side (Fig. 3M). Additionally, another specimen was found with area VII without paragnaths.

Habitat. Rocky shores covered by algae at 0.5 m depth, including Corallina sp., Dictyopteris sp., Ulva lactuca Linnaeus, and Colpomenia sinuosa (Mertens ex Roth) Derbès & Solier, and also found among the bivalve Mytilus galloprovincialis (Lamarck, 1819).

Etymology. The species’ name combines the first author’s ‘parents’ names, Louiza and Omar, to honor their devotion, love, and the warm life they made for her. The name is a noun in the genitive (ICZN, 1999).

Type locality. Annaba, Algeria, Mediterranean Sea.

Taxonomic remarks. Perinereis louizomarum n. sp. is a member of the Perinereis species SG-1A. Among the other 13 species within this subgroup (after Hutchings et al., 1991), P. louizomarum n. sp. is similar to P. cultrifera from the Tyrrhenian Sea (Grube, 1840; Hutchings et al., 1991; Park & Kim, 2017), P. floridana from the Gulf of Mexico (Ehlers, 1868; de León-González & Solis-Weiss, 1998) and P. rullieri from the Mediterranean Sea (Pilato, 1974) by having two well-distinguished bands of paragnaths on the areas VII–VIII, dorsal cirri of similar length to or slightly longer than distal dorsal ligule in anterior parapodia, and neuropodia without poschetta lobe. Nevertheless, P. louizomarum n. sp. is distinguishable from these three species by the following features: (I) the lower number of denticles on jaws (normally 0, occasionally 2 or 3), in contrast to the higher number in P. cultrifera (4), P. floridana (9) and P. rullieri (4–5); (II) the absence of laterally isolated paragnaths on area III, in comparison to their presence in P. cultrifera and P. rullieri (rarely absent); (III) the lower number of paragnaths on areas III (1–5) and V (typically 0, rarely 1 or 2), in contrast to the higher number in P. cultrifera (area III: 5–12; V: 3, rarely 2, 4 or 5), P. floridana (area III: 16; V: 1, rarely 2) and P. rullieri (area III: 5–9, rarely higher; V: 3, rarely fewer or higher); (IV) the bluntly rounded distal dorsal ligule in anterior parapodia, in comparison to that conical or bluntly conical in P. cultrifera, P. floridana and P. rullieri; (V) the dorsal cirri located medially on dorsal ligule in posterior parapodia, in comparison to that conical or bluntly conical in P. cultrifera, P. floridana and P. rullieri; (V) the dorsal cirri located medially on dorsal ligule in posterior parapodia, in comparison to that conical or bluntly conical in P. cultrifera, P. floridana and P. rullieri. Additionally, P. louizomarum n. sp. is different from P. floridana by having notopodial prechaetal lobes, at least in anterior parapodia, and neuropodia without superior lobe throughout the body, in contrast to their absence and presence in P. floridana, respectively.

Based on the biogeographic overlap, P. tenuisetis described from the Mediterranean Sea also warrants comparison with the new species. Perinereis louizomarum n. sp. can readily be distinguished from P. tenuisetis by the following diagnostic characteristics: in P. louizomarum n. sp., the aciculae are black, the dorsal cirri are placed medially on dorsal ligule in posterior parapodia, and neu-rochaetae have heterogomph spinigers and falcigers; in contrast, P. tenuisetis has yellow light aciculae, dorsal cirri placed basally on dorsal ligule in the same parapodia, and subacicular neurochaetae with homogomph spinigers and falcigers.

Key to species of Perinereis Kinberg, 1865 belonging to the Subgroup 1A

This key includes all species now regarded as Perinereis Subgroup 1A sensu Hutchings et al. (1991). Perinereis dongalae originally described from Celebes, Indonesia by Horst (1924), is currently known only by the brief description and scarcely illustrated epitokeous stage. Hylleberg et al. (1986) synonymized the species with P. striolata (Grube, 1878) without examination of the type material.

1. Area I with 7 or more paragnaths
 — Area I with up to 4 paragnaths
2. Area I with 16 paragnaths; area V with P. arabica
 — Area I with up to 8 paragnaths; area V
 — Aciculae light yellow; dorsal cirri placed basally on dorsal ligule in posterior parapodia; neurochaetae with homogomph falcigers; subacicular neurochaetae with homogomph spinigers
 — Aciculae dark brown or black; dorsal cirri placed medially or subdistally on dorsal ligule in posterior parapodia; neurochaetae with heterogomph falcigers; subacicular neurochaetae with heterogomph spinigers
3. Aciculae light yellow; dorsal cirri placed basally on dorsal ligule in posterior parapodia; neurochaetae with homogomph falcigers; subacicular neurochaetae with homogomph spinigers
 — Areas VII–VIII with anterior band only, up to 13 paragnaths
 — Areas VII–VIII divided into two well-separated bands (anterior and posterior), with more than 20 paragnaths
4. Areas VII–VIII with anterior band
5. Ridges of area VI distally and sub-medially coalesced (areas VI–V–VI ridge pattern λ-shaped); area III without laterally isolated paragnaths; area V without paragnaths; areas VII–VIII with 10 or more paragnaths
 — Aciculae dark brown or black; dorsal cirri placed medially or subdistally on dorsal ligule in posterior parapodia; neurochaetae with heterogomph falcigers; subacicular neurochaetae with heterogomph spinigers

Perinereis dongalae (Fauvel, 1915) (Sicily, Italy)
Perinereis tenuisetis (Fauvel, 1915) (Kuwait)
Perinereis arabica (Hammad, 1971) (Celebes, Indonesia)
Perinereis tenuisetis (Fauvel, 1915) (Sicily, Italy)
Discussion

Perinereis cultrifera was first described from Italy and has since been documented along the coasts of several regions (Fauvel, 1923; Day, 1967; Wu et al., 1985). The species' global distribution has been questioned several times, most recently by Park & Kim (2017). A thorough redescription is still required to delimit its morphology; however, the original description (Grube, 1840) and a few comments and illustrations provided on the type material (Park & Kim, 2017) provide primary features that can be used to evaluate specimens from other localities. This was true for the Algerian specimens examined here.

Perinereis louizomarum n. sp. belongs to the atokous form of P. cultrifera and was mainly of an atokous type in the Mediterranean Sea. For instance, the species' global distribution has been questioned several times, most recently by Park & Kim (2017). A thorough redescription is still required to delimit its morphology; however, the original description (Grube, 1840) and a few comments and illustrations provided on the type material (Park & Kim, 2017) provide primary features that can be used to evaluate specimens from other localities. This was true for the Algerian specimens examined here. P. louizomarum n. sp. is discovered after a thorough comparison with the relevant literature.

Gravier & Dantan (1928) indicated that the reproduction of P. cultrifera was mainly of an atokous type in the Mediterranean Sea by the very few epitokous specimens found during their samplings. However, Durchon (1955, 1957, 1965) proposed that these different modes of reproduction but also to differences in the spawning season, age at maturity, morphology and biochemical characteristics. The authors concluded that three different populations could be found: (I) the epitokous form of the English Channel and Atlantic, characterized by having an elevated and a higher number of chaetigers (up to 120); (II) the atokous form of Algeria, in which the number segment is below 80; and (III) the epitokous form from Tunis with biometric features between the two above-described forms. Perinereis louizomarum n. sp. belongs to the atokous form of P. cultrifera (Durchon, 1957) since

Discussion

Perinereis cultrifera was first described from Italy and has since been documented along the coasts of several regions (Fauvel, 1923; Day, 1967; Wu et al., 1985). The species' global distribution has been questioned several times, most recently by Park & Kim (2017). A thorough redescription is still required to delimit its morphology; however, the original description (Grube, 1840) and a few comments and illustrations provided on the type material (Park & Kim, 2017) provide primary features that can be used to evaluate specimens from other localities. This was true for the Algerian specimens examined here. Perinereis louizomarum n. sp. is discovered after a thorough comparison with the relevant literature.

Gravier & Dantan (1928) indicated that the reproduction of P. cultrifera was mainly of an atokous type in the Mediterranean Sea by the very few epitokous specimens found during their samplings. However, Durchon (1955, 1957, 1965) proposed that these different modes of reproduction but also to differences in the spawning season, age at maturity, morphology and biochemical characteristics. The authors concluded that three different populations could be found: (I) the epitokous form of the English Channel and Atlantic, characterized by having an elevated and a higher number of chaetigers (up to 120); (II) the atokous form of Algeria, in which the number segment is below 80; and (III) the epitokous form from Tunis with biometric features between the two above-described forms. Perinereis louizomarum n. sp. belongs to the atokous form of P. cultrifera (Durchon, 1957) since
no traces of epitokal modifications were found in our specimens, including a mature female, and the number of segments was below 70. Nevertheless, further surveys to collect the species should be carried out throughout the year to obtain individuals in different life stages since specimens representing both forms of reproduction have been documented to coexist in Algeria (Gravier & Dan- tan, 1928; Durchron, 1957).

Complementing morphological taxonomy with the molecular approach permits the direct comparison of species among a global reference library using fragments of specimens at any stage of the life cycle, therefore furnishing a universal master tool for the identification and discovery of cryptic forms (Costa & Carvalho, 2007). Several studies have examined variation in mitochondrial DNA sequences in a region of the COI gene as a dependable approach to distinguish polychaete species (e.g., Glover et al., 2005; Bleidorn et al., 2006; Rice et al., 2008; Plei- jel et al., 2009; Barroso et al., 2010; Nygren & Pleijel, 2011). For instance, species regarded as cosmopolitan were detected as species complexes of several cryptic species, such as the amphinomid Eurythoe complanata (Pallas, 1766) (Barroso et al., 2010) or the phyllodocid Eumida sanguinea (Örsted, 1843), the latter comprising about ten species (Nygren & Pleijel, 2011).

In the present study, besides the morphological, reproductive, and biochemical differences settled in previous studies, P. cultrifera is confirmed as a species complex in the European seas but based on DNA sequence data. The mtCOI sequences available in GenBank for four specimens, called ‘P. cultrifera’ from the South European Atlantic shelf (northern Portugal and northwest France) (Table 3), were compared with those retrieved here from the Western Mediterranean (Algeria). Interestingly, those sequences of P. cultrifera from the South European Atlantic shelf resulted in two distinct clades (Fig. 2), which suggests that two populations of ‘P. cultrifera’ are present in the region. Marked genetic differences between these two populations with those specimens from Algeria were also found (Table 5). In addition to P. cultrifera, the sequences of the remaining six species also show distinct pairwise distances, which are relatively comparable with those documented to distinguish Perinereis species (Park & Kim, 2017; Villalobos-Guerrero et al., 2021), supporting the establishment of P. louizomarum n. sp. as a new species. Based on the mtCOI sequences of the South European Atlantic populations, one of them represents the ‘P. cultrifera’ Type I indicated by Scaps et al. (2000) and Rouabah & Rouabah (2007), and at least one likely represents an undescribed species. However, the material of both populations needs to be examined to understand and delimit their morphology, including the reproductive patterns of epitokal characters, which are considered relevant in nereids to distinguish among closely related species (Read, 2007; Conde-Vela & Salazar-Vallejo 2015; Villalobos-Guerrero & Bakken 2018; Villalobos-Guerrero & Idris 2021).

On the other hand, Lobo et al. (2016) reported that polychaetes are suitable candidates for surveilling benthic ecosystems. An innovative and alternative approach to develop a rapid evaluation of the ecological status of marine ecosystems is through genomic observations (Hajibabaei et al., 2011; Avó et al., 2017; Aylagas et al., 2018). Studies on the molecular characterization of polychaete fauna along the Algerian waters are limited. Expanding the genetic studies of polychaetes in Algeria is recommended to see if environmental parameters impact them. Aylagas et al. (2014) suggested that the most abundant species encountered during monitoring programs should be sequenced with accurate taxonomic marking to assess ecological status reliably. Vijapure et al. (2019) reported that the polychaete DNA libraries could be expanded with sequences commonly found during ecological monitoring surveys.

Marine environments exposed to many anthropogenic pressures show a gradual and continuous loss of diversity (Halpern et al., 2008). Erpenbeck et al. (2016) proposed regular monitoring of the ecological quality of marine and estuarine waters. It is often achieved by establishing species inventories that can be used as a benchmark against which future disturbances of diversity loss can be measured. Therefore, appropriate management strategies can be applied in areas where species richness is declining or where the loss of diversity is expected to be imminent (Thomsen & Willerslev, 2015). Aylagas et al. (2018), Lejzerowicz et al. (2015), and Bevilacqua & Terlizzi (2016), reported that biomonitoring mainly relies on morphological taxonomy, which is often criticized as labor-intensive, time-consuming and costly. To avoid these problems, Bik et al. (2012) and Sigamani et al. (2016) have proposed the integration of genetics into biological assessment methods in addition to classical taxonomy.

Acknowledgements

The authors would like to thank the staff of the Laboratory of Applied Animal Biology (LBAA) and the Laboratory of Biology of Organisms, Stress, Health, and Environment (BIOSSE). This study was supported by the PHC program (The Hubert Curien Tassili) partnership 19 MDU 202, which is an Algerian-French cooperation program that was co-financed by France through the Ministry of Europe and Foreign Affairs (MEAE) and the French Ministry of Higher Education, Research and Innovation (MESRI), and by Algeria, through the Ministry of Higher Education and Scientific Research (MESRS). CONACYT supported TFVG under the Postdoctoral Stays for Researchers in Mexico grant and is also thankful to Dr. Omar Valencia Méndez (CICESE) for providing facilities and installations during the writing process of this study. We also thank the curator of the MNHN, Professor Tarik MEZIANE, who processed and provided the catalog number of the specimens. We also appreciate the acute comments and suggestions provided by Torkild Bakken, Joachim Langeneck, and an anonymous reviewer that contributed significantly to the improvement of this manuscript.
References

secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima, reformata (10th revised edition), 824 pp.

Sekar, V., Rajasekaran, R., Prasannakumar, C., Sankar, R., Srid-

