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SI 1 - Detailed SDM methods.

Delimitation of the study area for the SDMs

The definition of the area adopted in the SDMs was based on depth, provided the focus species is dependent on 
light availability. We masked the environmental variables by considering only areas where the maximum depth was 
within the 95th quantile of occurrences records (Fig. S2). 

Occurrence data preparation

As a pre-modeling step, we moved records with coordinates on land to the closest cell corresponding to the sea 
using the R-package ‘ellipsenm’ (Cobos et al., 2022), provided that the distance would not surpass 10 km. Out of 
the 180 literature-provided records, 162 were maintained in the same location indicated by the coordinates, 14 were 
moved to the closest marine cell, and 4 were discarded due to the distance from the closest cell being greater than 10 
km. Out of the 292 presence records collected in our surveys, 275 were kept in the same location, and 17 were moved 
to the closest marine cell.

As the available data is presence-only, we used additional background data to run the models. We ran a sensitivity 
analysis to determine the number of background data that would yield better models by generating different amounts 
of background data. We identified the same number of background points as presences across the study area as pro-
ducing the most robust results. Background points represent the conditions available in the environment compared 
to those found where the species is known to occur (Barbet-Massin et al., 2012; Iturbide et al., 2018). An alternative 
method would be the generation of pseudo-absence in areas where the species is not expected to be found (Bar-
bet-Massin et al., 2012), which involves either geographical or ecological assumptions. The decision of not generating 
pseudo-absence data was due to the very nature of this study, which describes the discovery of a population thriving 
out of the species’ previously known geographical and environmental spaces.

Model training and testing

The prediction of suitable areas for C. nodosa was carried out with the ‘sdm’ R-package (Naimi & Araújo, 2016). 
As SDM results may vary considerably depending on the selected algorithm (Diniz-Filho et al., 2009; Thuiller, 2004), 
we adopted an ensemble forecasting approach (Araújo & New, 2007), which combines results from different algo-
rithms in one consensus model. We used six algorithms, representing distinct modeling approaches, according to 
IUCN guidelines (IUCN, 2022). We used three statistical (GAM, GLM, and MARS), one classification (DOMAIN), 
and two machine learning (RF and BRT) algorithms (Franklin, 2010; Rangel & Loyola, 2012; Grenouillet et al., 
2011). We ran five repetitions for each algorithm, adopting the cross-validation approach, with five partitions of the 
data (80% for training and 20% for testing), amassing 300 SDMs, 150 considering only the occurrences from the lit-
erature, and 150 using those combined with the presences found in our surveys. We evaluated the models according 
to the True Skill Statistics (TSS) and the area under the receiver-operator curve (AUC). TSS is a threshold-dependent 
metric that ranges from -1 to 1, with positive values indicating model performance better than random results (Al-
louche et al., 2006). AUC is threshold-independent, and ranges from 0 to 1, AUC equals 0.5 indicate performances as 
good as a randomly generated model, while models with AUC ≥ 0.7 are considered robust predictions (Swets, 1988; 
Lobo et al., 2008). Out of the 150 SDMs based only on the occurrences from the literature, 74 were considered satis-
factory (mean AUC ≈ 0.84; mean TSS ≈ 0.63). The models including the occurrences collected in our surveys yielded 
124 satisfactory predictions out of 150 (mean AUC ≈ 0.91; mean TSS ≈ 0.67. In both analyses, RF produced the most 
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satisfactory models (TSS ≥ 0.5), while DOMAIN and GLM yielded the least trustworthy predictions (Table S2). 

Ensemble forecast

Models with TSS ≥ 0.5 were selected as having produced useful predictions (Zhang et al., 2015) and combined 
in the ensemble models. Subsequently, we transformed all selected models into binary predictions, according to the 
threshold determined by the maximum sensitivity plus specificity (Liu et al., 2005, 2013). We then combined the bina-
ry models into an ensemble forecast by summing the values in the binary predictions and considering only the pixels 
for which the majority of the models classified as suitable for the species occurrence. Finally, we verified whether the 
occurrence records from each dataset could be predicted correctly by the corresponding final model. We carried out 
this last step by simply extracting the values at the presence locations from the final binary models, with 1s referring 
to correct predictions and 0s to failed predictions.

Table S1. Occurrences of C. nodosa meadows across the Eastern Mediterranean sea compiled from the literature review, available 
in https://zenodo.org/records/13120938.

Table S2: GAM results. The binomial response variable was the presence of seagrass meadows in a transect (number of successes) 
relative to the number of absences of the meadows (failures). Depth, latitude and season were used as predictors. 

Predictors Odds Ratios CI p

(Intercept) 0.00 0.00 – 0.00 <0.001

season [Spring] 0.18 0.09 – 0.37 <0.001

season [Summer] 1.89 1.22 – 2.93 0.005

season [Autumn] 5.79 2.94 – 11.40 <0.001

Smooth term (depth) <0.001

Smooth term (cordinate lat) <0.001

R2 0.466



3Mediterr. Mar. Sci., suppl.data, 25/2, 2024, 1-4

Table S3: SDM results for the models built based solely on data extracted from the literature (B), and for those including the data 
collected in our surveys (B). Each table shows the number of selected models according to the criterion of yielding TSS ≥ 0.5, 
and the means

Literature data

Algorithm Selected models mean AUC mean TSS
brt 17 0.8240 0.5909

domain 2 0.8050 0.5440
gam 9 0.8013 0.5790
glm 4 0.8008 0.5623

mars 17 0.8024 0.6021
rf 25 0.8963 0.7216

All data

Algorithm Selected models mean AUC mean TSS
brt 25 0.9146 0.6713

domain 13 0.8422 0.5688
gam 25 0.9046 0.6531
glm 11 0.8395 0.5650

mars 25 0.9117 0.6531
rf 25 0.9560 0.7839

Fig. S1: Mediterranean Sea. The darker shade of blue represents the study area adopted in this work - the Eastern Mediterranean 
Basin. The lighter shade represents the areas that were excluded from our study, namely the portions of the Mediterranean Sea 
located East to the Strait of Sicily, and the Adriatic Sea.
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Fig. S2: Eastern Mediterranean Basin. The darkest shade of blue represents the study area masked by depth, adopted for the SDMs 
- the cells within the Eastern Mediterranean Basin where the maximum depth was within the 95th quantile of occurrences records. 
The intermediate shade of blue represents the cells within the study area that were excluded by the depth criterion. The lightest 
shade represents the aforementioned areas that were excluded from our study.
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