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Abstract

Understanding the mechanisms that lead to the proliferation of large jellyfish populations over time is crucial to prevent and 
mitigate any possible negative impacts on human activities and ecosystem functioning. Rhizostoma pulmo (Macri, 1778) is an 
outbreak-forming species of the Mediterranean Sea that has been observed in anthropized areas including the Gulf of Taranto. To 
describe seasonal changes in the reproductive patterns of R. pulmo from May to December 2016, we measured jellyfish diameter, 
the number and diameter of oocytes using histological and biochemical analyses (lipids, carbohydrates, proteins, and organic 
matter), as well as the gonadal somatic index (GSI). Jellyfish size did not fluctuate considerably during the collection period, with 
specimens measuring between 19.5 and 38.2 cm in diameter. Our findings revealed a strong gonadal activity over the summer and 
a spawning event between September and October. Male and female gonad morphology was similar to other previously reported 
Rhizostomeae. Oocytes were categorized into three developmental classes, recognizable by their diameter and shape: <15 µm for 
pre-vitellogenesis, 15-30 µm for vitellogenesis, and >30 µm mature oocytes. The number of mature oocytes peaked in August, 
with smaller eggs recorded in May and October and larger eggs recorded near the end of the summer. The GSI fluctuated greatly 
between sampling dates, peaking in August. Lipid levels varied significantly throughout the sampling period, with the greatest 
value in May (277.26±98 µg lipid mg AFDW-1) and the lowest in September (70.36±41.5 µg lipid mg AFDW-1). Carbohydrates, 
proteins, and organic matter (62 ± 6 %) remained stable during the sampling period. The biochemical analyses of jellyfish sexual 
reproduction we report on here can be used as a tool for identifying jellyfish spawning periods and better understanding the repro-
ductive process that control jellyfish population dynamics.

Keywords: Reproductive cycle; Mediterranean Sea; Outbreaks; Biochemical composition; Lipids; Rhizostomeae.

Introduction

Jellyfish have rapid and seasonal population varia-
tions, which frequently result in blooming events when 
environmental conditions are favorable (reviewed by 
Bayha & Graham, 2014). However, in the last decade, cli-
mate change and human activities including overfishing, 
shipping, and habitat transformation could have boosted 
jellyfish natural proliferation (Purcell et al., 2007; 2012).

Jellyfish influence nutrient cycling in ecosystems 
through their population dynamics (boom and bust), serv-
ing as carbon sinks during bloom/outbreaks periods (Con-
don et al., 2011). Because of their high predatory pressure 
(e.g., fish eggs and larvae), when they are abundant, they 
cause a cascade effect on lower trophic level animals. 
They also have an impact on the pelagic food web by 

overlapping diets and competing with zooplanktivorous 
fish, limiting resources for higher trophic levels (Purcell & 
Arai, 2001). Large jellyfish populations can also have an 
impact on coastal human activities like fishing and tour-
ism, as well as pose a health risk (De Donno et al., 2014; 
Bosch-Belmar et al., 2017). This becomes particularly rel-
evant when outbreaks appear. Rhizostoma pulmo (Macri, 
1778), often known as “white barrel” or “sea lung,” is an 
outbreak-forming species that has increased in abundance 
throughout the Mediterranean basin in recent years (Le-
oni et al. 2021a). It is the largest endemic Mediterrane-
an jellyfish, with outbreaks throughout the Mediterranean 
Sea, including the Adriatic, Ionian Sea, and the Tunisian 
shelf, Western and Eastern basin (reviewed by Mariottini 
& Pane, 2010; Leoni et al., 2021a). This species has been 
seen in coastal marine environments with substantial an-
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thropogenic impact, such as the Mar Menor coastal lagoon 
(Fuentes et al., 2011), the Gulf of Trieste, and the Gulf of 
Taranto (Boero et al., 2016). In Apulia, in the southwestern 
part of the Gulf of Taranto, the species was known to occur 
en masse already in 2005, when tourist resorts first adopted 
anti-jellyfish nets to protect bathers (Piraino, unpublished 
observation) and with swarms occurring from April to De-
cember, with the highest concentration during summer-au-
tumn (from July to October) (Basso et al., 2019; Stabili 
et al., 2020), reaching up to 48,000 ind/km2 during out-
breaks (Leone et al., 2015). These huge outbreaks have a 
severe influence on both tourists and fisheries, obstructing 
nets (Fuentes et al., 2011). R. pulmo has also well-estab-
lished positive ecological impacts. In addition to being a 
food source for marine species, it provides a safe shelter 
for juvenile stages of commercial fish such as Trachurus 
mediterraneus (Steindachner, 1868) (Hays et al., 2018; 
Mir-Arguimbau et al., 2019). 

Rhizostoma pulmo has a life cycle similar to other Scy-
phomedusae, alternating between sexual and asexual gen-
erations. Adult jellyfish (pelagic) reproduce sexually by 
releasing gametes into the water column. Following fer-
tilization, the newly produced larvae (planulae) settle and 
metamorphose into polyps, which reproduce asexually by 
strobilation, budding, and podocysts formation (Fuentes 
et al., 2011). Long-term data reveal that R. pulmo’s recent 
increase in outbreaks frequencies is linked to positive tem-
perature anomalies, implying that the species prefers warm 
water (Leoni et al., 2021a). Furthermore, the white barrel 
jellyfish is very resistant to salinity and temperature fluc-
tuations (Fuentes et al., 2011). Temperature also regulates 
its life cycle, promoting budding and strobilation (Purcell 
et al., 2012), as has been shown in other Rhizostomeae 
(Schiariti et al., 2014). In addition to its increasing abun-
dance, R. pulmo medusae season has increased from 5 to 7 
months, most likely due to factors affecting early life stag-
es and a longer adult survival period (Leoni et al., 2021a).

During the jellyfish outbreak (July), lipidic extracts 
of female gonads of R. pulmo exhibit high contents of 
fatty acids, amino acid and osmolytes, known to perform 
important roles in marine biota (Angilè at al., 2020). Un-
derstanding R. pulmo’s life cycle and reproduction strate-
gies is thus a priority in order to predict abrupt outbreaks, 
devise mitigation and management techniques to prevent 
the potential detrimental effects of its outbreaks on hu-
man activities and the marine ecosystem. 

The biochemical composition of jellyfish gonads can 
be used to understand seasonal energy inputs (Rossi et 
al., 2017), and determine a species’ nutritional status. 
More specifically, macromolecules such as carbohydrates 
or lipids can be used as an indirect measure of a species’ 
ability to survive the reproductive phase (Rossi et al., 
2017). In this paper, we examine the reproductive cycle 
of R. pulmo in the Gulf of Taranto (Ionian Sea), a highly 
anthropized site in southern Italy. Through frequent sam-
pling, histological analyses of female gonads, an assess-
ment of number and diameter of oocytes, measurement 
of the gonad somatic index and biochemical analyses, we 
characterize R. pulmo’s spawning periods and investigate 
the energic potential invested into reproduction. 

Material and Methods

Sample collection 

Sampling was conducted in the Gulf of Taranto 
(northwestern Ionian Sea, Southern Italy). Jellyfish were 
randomly collected. During the field sampling, R.pul-
mo specimens appeared homogeneous in size, seemingly 
belonging to the same cohort. Between May and Decem-
ber 2016 in six sampling times, 18 adult female jellyfish 
(based on gonad color and laboratory testing) were cap-
tured at depths ranging from 1 to 3 meters. In addition, a 
few adult males were harvested to study the male gonad 
morphology. During each sampling, at least three females 
and few male jellyfish were captured, rapidly rinsed with 
0.2 µm-filtered seawater (FSW) and stored in a chilled 
box at 5°C during transfer to the laboratory.

Sample processing

In the laboratory, female jellyfish were washed in sterile 
FSW, examined under a stereomicroscope, and their diam-
eters were measured. The gonads were carefully surgically 
removed from the umbrella using forceps and a scalpel. 
For each jellyfish, one piece of gonads was preserved for 
histology, while two pieces of gonads were washed with 
double-distilled water, frozen in liquid nitrogen, and stored 
at -80 °C before freeze-drying for biochemical analysis (li-
pids, carbohydrates, organic matter, and proteins).

Histological analysis

A piece of gonad from each R. pulmo specimen (n=18 
female gonad parts from 18 individual medusae) was re-
moved and dehydrated with a series of increasing ethanol 
concentrations (80% to 100%), then cleared in xylene 
(histological grade) and impregnated in paraffin (56-58 
°C). The tissue was embedded in paraffin, sectioned at 
0.7 µm using a Leica microtome (RM 2155), and stained 
with toluidine blue.

Oocytes count and measurement

Histological sections were studied using a light mi-
croscope (Nikon Eclipse 50i, Tokyo, Japan) outfitted with 
a camera and image processing software. The oocyte 
count was performed on ten sections per specimen (n=18 
female jellyfish). All visible oocytes were counted using 
a manual counter in a 3 mm2 region of the ovary. Each 
slice had 10 oocytes measured along a line (100 oocytes 
per specimen) from a random starting point. The mean di-
ameter (d) was calculated according to Szafranski et al., 
2014 by using the formula: 
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ter) measured in µm, and “w” is the width of oocytes (i.e., 
minor diameter) measured in µm. 

Gonad somatic index

The gonad somatic index (GSI) is commonly utilized 
to assess the seasonality of the reproductive cycle (Byrne, 
1990). Here, it was calculated for 3 jellyfish for each 
sampling date. Jellyfish were dissected under a stereom-
icroscope and gonads were frozen in liquid nitrogen and 
stored at -80°C. After freeze-drying, gonads were weight-
ed and the GSI was computed as follows:

Bioche
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mination (λ= 750nm) using approximately 10 mg of sam-
ples DW, homogenized in 2 mL of 1N NaOH following 
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Organic matter

A fraction of the dry weight of each sample was heat-
ed for 4 h at 450 ˚C. Ashes were re-weighted in order to 

calculate the ash free dry weight as: AFDW = DW-AW 
(ash weight).

Statistical analysis

One-way permutation univariate analysis of variance 
(PERMANOVA) was used to test monthly differences 
in jellyfish size, egg abundance and size and Gonadal 
Somatic Index (GSI). In addition, differences in organ-
ic matter and protein, carbohydrate and lipid contents of 
jellyfish gonads were investigated by using univariate 
and multivariate PERMANOVAs (Anderson, 2001). The 
analyses were based on Euclidean distances on untrans-
formed data, using 9999 random permutations of the ap-
propriate units (Anderson & Braak, 2003).  The analyses 
were performed using PRIMER v. 6 software (Clarke & 
Gorley, 2006) including the PERMANOVA + add-on 
package (Clarke & Gorley, 2006; Anderson, 2008). All 
data are expressed as mean ± SD.

Results

Size distribution 

Jellyfish sizes (bell diameter) did not vary significant-
ly during the sample period (Table 1, Fig. 1). The biggest 
individuals sampled seemed to appear in late summer 
reaching 39 cm, while the smallest were observed during 
spring with the smallest diameter of 16.9 cm.

Male and female gonads

Our histological analysis shows that male gonads con-
tain sperm follicles, where spermatogenesis takes place. 
Some specimens were immature male while others were 
mature and spermatozoa with flagellum were visible in-
side the follicles (Fig. 2A, B). In the final stage of sper-
matogenesis, the aboral part of the follicle (facing gastro-
dermis) is filled by mature sperms (Fig. 2B) that are then 
released, through a pore, in the genital sinus (Fig. 2C).

Female gonads (Fig, 2D, E, F) have a convoluted 
shape. Pre-vitellogenic oocytes are embedded in the gas-
trodermis and are characterized by a round shape (Fig. 
2F). As oogenesis proceeds, oocytes increase their size; 
vitellogenic oocytes are round shaped and contain yolk 
granules and a germinal vesicle facing the gastrodermis, 
containing a nucleolus (Fig. 2F). Late-vitellogenic /ma-
ture oocytes are lighter in color due to the increased yolk 
content and are characterized by a large germinal vesicle 
(Fig. 2D, E, F).

According to the description above, the oocytes were 
grouped into 3 size classes based on their diameter: 
<15 µm= oocytes in pre-vitellogenesis; 2) 15-30 µm= oo-
cytes in vitellogenesis; 3) >30 µm mature oocytes
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Histological analysis (number and size)

The number of oocytes fluctuated during the sampling 
interval (Table 1). In particular, lower quantities of oo-
cytes were observed in May and October while the peak 
was reached during August (Fig. 3). The maximum num-
ber of oocytes found was 101/mm2, while the minimum 
was 15.81/mm2.

Oocytes at different stages of maturation were ob-

served during the sampling period and within each sam-
pling month, as shown by temporal variations of jellyfish 
oocyte diameter (Table 1). The largest eggs (i.e., diame-
ter length) were observed at the end of summer (35±14 
µm) reaching a maximum value of 67.33 µm. Converse-
ly, May and October were characterized by the smallest 
average egg sizes, 23±10 µm and 26±14 µm respectively, 
with a minimum value of 5.37 µm (Fig. 4A).

Size class distribution followed a similar trend to that 

Table 1. Results of One-way PERMANOVA comparing the jellyfish size, egg number, egg size, gonad index (GI), together 
with the biochemical composition and organic matter of R. pulmo by month in the Gulf of Taranto across the sampling times. df  
-  degrees of freedom; MS  -  mean squares; Pseudo-F -  F critic; P(perm)  -  permutational level of probability; Perms - number of 
unique permutations; TI - sampling time; Res - residual. *= p < 0.05; ** = p < 0.01; ***= p < 0.001; ns - not significant.

Jellyfish Size OM 

Source     df       MS Pseudo-F P (perm) Perms df      MS Pseudo-F P (perm) Perms

TI 5 32.84 1.32 ns 7089 5 39.43 0.98 ns 9947

Res 12 24.89  12 40.41  

Total 17  17  

Egg number Carbohydrate 

Source     df       MS Pseudo-F P (perm) Perms  df     MS Pseudo-F P (perm) Perms

TI 5 2.69E+05 172.76 *** 9953 5 631.44 2.02 ns 9952

Res 174 1555.3  12 311.96  

Total 179  17  

Egg size Lipid 

Source    df       MS Pseudo-F P (perm) Perms df      MS Pseudo-F P(perm) Perms

TI 5 5698.4 38.71 *** 9950 5 17820 5.70 ** 9957

Res 1794 147.19  12 3124.1  

Total 1799  17  

GSI Protein 

Source     df        MS Pseudo-F P (perm) Perms df      MS Pseudo-F P (perm) Perms

TI 5 26.26 5.87 * 9947 5 46035 2.95 ns 9952

Res 12 4.472  12 15583  
Total 17  17   

Fig. 1: Jellyfish diameter during the sampling period. Data represent mean and SD.
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Fig. 2: Histological section of R. pulmo gonads. A Shows a view of the male gonad. B Sperm follicles with mature spermatozoa. 
C Follicle during a spawning event. D General view of a female gonad. E, F Oocytes at a different stage of maturation; gs: genital 
sinus.

Fig. 3: Number of oocytes in female specimens along the sampling period. The number of oocytes refers to an area of 1 mm2.
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of the oocyte diameter. Mature oocytes were most abun-
dant the end of summer (less pre-vitellogenic oocytes), 
with the lowest abundance occurring in May and Octo-
ber, when higher pre-vitellogenic oocytes presence was 
observed (Fig. 4B).

Gonad-somatic index

Temporal fluctuations in GSI values were detected by 
the PERMANOVA analysis (Table 1). The GSI value fell 
in a range between 0.46 and 7.02 % during the duration of 
our investigation. In August, it reached the highest values 
between 7.03 and 13.69 % (Fig. 5). No significant corre-
lation was found between GSI and jellyfish bell diameter 
(R2=0.0268; p<0.05).

Biochemical analysis (lipids, carbo, proteins, and OM)

Significant fluctuations were found in gonad lipid 
composition throughout the sampling period. Lipids were 
higher in May (277.26±98 µg lipid mg AFDW-1), while 
they reached the lowest value in September (70.36±41.5 
µg lipid mg AFDW-1) (Fig. 6). 

The statistical analysis on carbohydrates and proteins 
did not show significant differences across the sampling 
times. Carbohydrates did not show large fluctuations 
during the investigated sampling period (Fig. 6); the 
highest carbohydrate concentration was found in May 
(90.21±22.3 µg carbohydrates mg AFDW-1), the lowest 
in October (53.21±10.4 µg carbohydrates mg AFDW-

1). Protein content was high in September and October 
(1000.66±133.2 µg proteins mg AFDW-1). In addition, 
organic matter did not vary significantly throughout the 
sampling period covering a range between 62 ± 6 %. 

Looking at the overall biochemical analysis, multi-
variate PERMANOVA showed significant changes in the 

Fig. 4: Oocytes diameter distribution. A Oocytes diameter during the sampling period. B Percentage of each size class during the 
sampling period.

Fig. 5: Gonad somatic index. A Percentage of the gonad somatic index during the sampling period. B Relationship between gonad 
somatic index (GSI) and jellyfish bell diameter.
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biochemical composition of jellyfish gonad in R. pulmo 
across the sampling times (Table 2). 

Discussion 

In this paper, using an integrated approach that com-
bines histological and biochemical analyses, we study the 
scyphozoan Rhizostoma pulmo’s intra-annual changes in 
gonad content and investigate its energetic investment in 
reproduction. 

We show that the diameters of R. pulmo ranged from 
16.9 to 39 cm, in accordance with prior observations in 
the same area (Leone et al., 2015; De Domenico et al., 
2019; Basso et al., 2021). R. pulmo individuals typical-
ly grow following a Von Bertalanffy Growth Function 
(Fernández-Alías et al., 2020; Leoni et al., 2021b), and the 
average size of the individuals within the population in-
crease with time (Fernández-Alías et al., 2023). Although 
jellyfish size did not change significantly throughout the 
sampling months, larger specimens of R. pulmo were de-

tected during the spawning period. Data collected from 
R. pulmo in the Black Sea, showed a seasonal change in 
jellyfish diameter ranging between 14.5 to 42.5 cm (cor-
responding to August and October peak) (Dönmez & Bat, 
2019). Data from other outbreak-forming species, such as 
Pelagia noctiluca and Aurelia coerulea von Lendenfeld, 
also show seasonal variation in sizes. In particular, A. co-
erulea, endemic to the Mediterranean lagoons, has varied 
size classes throughout the year, with larger specimens 
found in September (Scorrano, 2014; Fernández-Alías et 
al., 2023; Marques et al., 2015). Pelagia noctiluca is char-
acterized by a jellyfish cohort (6-8 cm diameter) present 
the whole year, and two more cohorts with smaller and 
bigger jellyfish that appear from February to May. This 
period (spring) is also distinguished by Pelagia spawn-
ing events, which are characterized by larger specimens 
(>120mm) (Milisenda et al., 2018).

We also show that R. pulmo is a gonochoric species, 
with oocytes and sperm follicles evident in the gonads 
of several individuals. During spermatogenesis, spermat-
ocytes develop near the follicle wall and mature within 

Fig. 6: Biochemical analysis of R. pulmo gonadal tissue showing the variation of lipids, carbohydrates, and proteins along time. 
Lipids, and carbohydrates are expressed in µg mg AFDW-1. Data represents mean and SD.

Table 2. Multivariate PERMANOVA comparing the biochemical composition of jellyfish gonad in R. pulmo across the sampling 
times. df  -  degrees of freedom; MS  -  mean squares; Pseudo-F -  F critic; P(perm)  -  permutational level of probability; TI - sam-
pling time; Res - residual; Perms - number of unique permutations . *  = p < 0.05. 

Source df MS Pseudo-F P (perm) Perms

TI  5 64487 3.39 * 9939

Res 12 19019  

Total 17  
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the follicular cavity. Male spawning occurs once mature 
through the release of free spermatozoa in the genital 
sinus (Fig. 2C), as seen in other rhizostomeae (Schiariti 
et al., 2012), although other species, such as Cassiopea 
andromeda, spawn via spermatozeugmata (i.e., packag-
es of spermatozoans) (Hofmann, 1996; Mammone et al., 
2023). Once the sperms have been discharged, the fol-
licle enters the spent phase (post-evacuation), which is 
distinguished by open spaces in the lumen (Schiariti et 
al., 2012). All sexually mature males have spent follicles, 
which indicate a “spawning print”. However, it remains 
unclear whether spermatogenesis resumes and further 
investigations with male R. pulmo specimens should be 
conducted to gain a fuller picture of the species’ repro-
duction.

Histological slides show that in R. pulmo’s female 
gonads, oogonia can form anywhere in the endoderm, 
without a centrifugal maturation gradient (i.e., oogonia 
form only in the proximal portion of the endoderm) as 
previously observed by Avian & Sandrini (1991). This 
is also a characteristic of A. aurita, but unlike other 
outbreaks-forming species like P. noctiluca. R. pulmo 
spawning involves the gastrodermis to thin and fenes-
trate, allowing the release of oocytes, followed by exter-
nal fertilization (Holst et al., 2007; Hamner & Dawson, 
2008).

Female specimens from the Gulf of Taranto displayed 
oocytes from pre-vitellogenesis to mature, reaching a 
maximum diameter (of 67.3 µm) during late summer, 
smaller (150-180 µm) than previously recorded by Avi-
an & Sandrini (1991). Mature oocytes were smaller than 
those of other Mediterranean and outbreak-forming jel-
lyfish, such as P. noctiluca (250-320 µm) (Ramondenc 
et al., 2019), A. aurita (160-180 µm) (Avian & Sandrini, 
1991), and C. andromeda (140 µm) (Mammone et al., 
2023). 

In both male and female specimens, gametes were 
present at various stages of maturation, indicating an 
asynchronous mechanism similar to that observed in 
rhizostomes and semaeostomes (Avian & Sandrini, 1991; 
Schiariti et al., 2012; Mammone et al., 2023).

In female specimens, oocytes were detected through-
out the sampling period, with increased gonadal activity 
throughout the summer. The number of oocytes is highly 
variable in August and October, with the lowest fluctu-
ation in May. Other outbreaks-forming species, such as 
P. noctiluca, produce oocytes throughout the year, with 
two distinct peaks in the spring and late summer, just be-
fore spawning (Milisenda et al., 2018). R. pulmo and P. 
noctiluca appear to use a semi-continuous reproductive 
strategy, with an increased gonadal activity as tempera-
tures rise. Furthermore, our findings reveal an increase in 
egg numbers in late fall. Recent studies revealed the pres-
ence of mature specimens during the winter, supporting 
the hypothesis that rising temperatures affected not only 
abundance and ontogenic rate, but also the duration of 
the medusae season, which for R. pulmo increased from 
5 to 7 months (2008-2018) (Fuentes et al., 2011; Leoni et 
al., 2021b).

Female gonad maturity can be estimated using egg 

diameter as a proxy (Toyokawa et al., 2009). Eggs in 
various stages of maturation were found throughout the 
sampling period, suggesting an iteroparous or seasonal 
iteroparous reproduction strategy, as seen in other rhiz-
ostomeae such as C. andromeda (Mammone et al., 2023) 
and outbreaks -forming species such as P. noctiluca 
(Canepa et al., 2014; Milisenda et al., 2018). Our results 
for the percentage of each size class reveal a trend of 
more pre-vitellogenic oocytes in May and October. Fur-
thermore, the mean egg diameter is reduced throughout 
these months, which coincides with a decline in oocyte 
abundance, possibly indicating either the commencement 
of a new gametogenic cycle for the examined population, 
or a cohort replacement (Fernández-Alías et al., 2020, 
Leoni et al., 2021b). Some reproduction phases can be 
identified in R. pulmo, just as they are in P. noctiluca. 
Indeed, moments with a higher ratio of vitellogenic eggs 
represent the moment of maximal gamete differentiation; 
lower egg number and higher pre-vitellogic represent the 
spawning period/beginning of the gametogenic cycle, 
while the remainder of the sampling period represents an 
intermediate situation (Milisenda et al., 2018). Compar-
ing the phases of these two species, we note that, in addi-
tion to the occurrence of these distinct phases, R. pulmo 
appears to have a later spawning season than P. noctiluca, 
which is most likely due to the two species’ different life 
cycles and environmental conditions in the sampled re-
gion.

To assess the spawning period, also the morphometric 
index (GSI) was utilized. It indicates the energy invest-
ment during gonadal development, which is related to 
environmental parameters such as temperature and food 
resources. Our findings reveal that the highest value of 
R. pulmo GSI was seen in August, indicating an increase 
in energy directed toward gonadal growth rather than 
somatic tissue in preparation for a subsequent spawning 
episode (late summer). Our findings support Fernán-
dez-Alías et al. (2020) conclusion that gonadal devel-
opment is seasonal and that is influenced by favorable 
environmental conditions rather than bell size, since no 
correlation between bell diameter and GSI is observed. 
R. pulmo GSI appears to be consistent with the peak of 
oocyte quantity but not with the fraction of higher devel-
oped eggs. 

The GSI of the outbreaks-forming Mediterranean jel-
lyfish P. noctiluca reaches the peak in May, however it is 
not observed to be associated to its peak in oocyte abun-
dance recorded in April (Milisenda et al., 2018). 

Macromolecules such as lipids and carbohydrates are 
trackers of metabolic processes that occur over a short 
period of time, potentially affecting animal fitness and re-
flecting moments of food scarcity (Rossi et al., 2006a). 
Furthermore, lipid-carbohydrate storage enables to better 
comprehend a species’ energetic investment in reproduc-
tion. Our data show a high proportion of R. pulmo gonads 
organic matter (62 ± 6%), similar to what was discovered 
by Stabili et al. (2018) where the organic matter percent-
age was around 60 ± 10%, and in accordance with other 
outbreaks-forming species such as P. noctiluca (41-59%) 
(Milisenda et al., 2018).
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R. pulmo jellyfish has a greater dry weight percent-
age (29.5 ± 6.6) compared to outbreaks-forming species 
such as Aurelia sp.1 (23.9 ± 3.3) (Leone et al., 2015). The 
biochemical composition was dominated by protein, fol-
lowed by lipids and carbohydrates, which confirmed pre-
vious observations by Stabili et al. (2018) in other spec-
imens of R. pulmo as well as in other outbreaks-forming 
jellyfish such as P. noctiluca (Milisenda et al., 2018). De-
spite their huge size, the dry weight of most rhizostomeae 
is primarily constituted of proteins, with lipids and carbo-
hydrates accounting for small components (Leone et al., 
2013; Lucas, 2009).

Protein concentrations were high (> 600 µg mg 
AFDW-1), consistent with earlier data (761.76 ± 25.11; 
Stabili et al., 2018), but significantly lower than in P. 
noctiluca (max: 187.83 ± 6.38; Milisenda et al., 2018). 
Overall, our findings are consistent with biochemical 
composition changing with reproductive cycle time, diet, 
and seawater temperatures (Lucas & Lawes, 1998; Roff, 
1992).

Lipids varied significantly during the sampling peri-
od, beginning in May and peaking in August, coinciding 
with the peak of oocyte quantity. Lower lipid content was 
observed between September and October, consistent 
with a decline in oocyte abundance and supporting the 
idea of a spawning event at this time of year. The peak of 
lipids observed in August is consistent with the reproduc-
tive peak, further testifying that lipids are the most effec-
tive macromolecules in terms of energy storage. The lipid 
content (70-277 µg mg AFDW-1) was consistent with pri-
or observations for this species (Stabili et al., 2018), and 
greater than the lipid content of whole jellyfish reported 
by Leone et al. (2015).

Our results demonstrate a steady carbohydrate con-
tent (53.21±10.43 to 90.21±22.33 µg mg AFDW-1) across 
the whole period, indicating a continuous energy source 
for the specimens. Similar values were obtained in other 
R. pulmo specimens (59.66±2.72) sampled by Stabili et 
al. (2018). Our results highlight no substantial difference 
in organic matter content across the sampling period, as 
seen in other species such as P. noctiluca (Milisenda et 
al., 2018).

Conclusion 

Rhizostoma pulmo is the largest outbreaks-form-
ing species, which can affect the environment and pro-
duce socioeconomic problems in various areas, such as 
on tourism (e.g., stings) or fishing (e.g., clogging nets). 
Moreover, R. pulmo appears to be benefiting from climate 
change, although the temperature is not the only factor 
influencing the population dynamics. 

Thus, studying its inter-annual changes can provide 
vital insights for predicting potential outbreaks. Our find-
ings revealed a strong gonadal activity over the summer 
and a spawning event between September and October. 
The number of oocytes peaked in August, and larger eggs 
were detected near the conclusion of the summer, where-
as May and October had the smallest eggs on average. 

These findings were backed by biochemical data, which 
showed significant variation in lipid levels during the 
sample period, with the greatest value occurring in May. 
Overall, our findings suggest that precise knowledge on 
the barrel jellyfish’s life cycle should be prioritized in or-
der to assist in predicting large outbreaks and devising 
potential ways to control their spread.
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