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Abstract

Species distribution modelling has proven effective in locating cold-water coral hotspots in the deep sea. Maximum entropy 
(MaxEnt) and gradient boosting (GBM) are equally good at modelling rare species, but previous efforts to predict the distribution 
of deep-sea Antipatharia have mostly employed MaxEnt. This study investigates how algorithm choice (MaxEnt or GBM) and the 
application of backward stepwise variable pre-selection influence model performance and generalisation. Thirty-six models (four 
frameworks for nine black coral morphospecies) were built and evaluated using AUC, TSS, and the average TSS index (ATI), a 
novel metric that calculates TSS drops between training and test data to measure generalisation capability.ATI identified concerns 
in model generalisation that were not captured by AUC and TSS, making it a valuable tool for evaluating predictive model quality 
in conservation applications. MaxEnt outperformed GBM in predicting black coral distribution, and the pre-selection of variables 
did not improve performance. Satisfactory results were only obtained for the two  MaxEnt models of Stichopathes gravieri, pro-
viding insights into the implications of using small datasets in conservation efforts.

The inconsistencies in our findings do not lead us to recommend the use of a single model type in future studies; rather, we 
stress the importance of careful evaluation of model metrics with ecological knowledge of the species distribution when applying 
a dataset to conservation purposes. 

Keywords: species distribution modelling; MaxEnt; Gradient boosting; Evaluation metrics; Antipatharia.

Introduction 

Black corals (Anthozoa: Antipatharia), named for 
their skeletal colour, are widespread, long-lived, and 
slow-growing organisms that are commonly found at 
depths greater than 50 m  (Roberts et al., 2009; Wagner 
et al., 2012). Black corals are known to create habitats 
– named gardens, or forests – inhabited and used as a 
spawning ground by a great variety of organisms, includ-
ing endangered and commercially valuable species, and 
species that are adapted to live exclusively on black cor-
als (Wagner et al., 2012; Chimienti et al., 2020). Black 
corals are severely impacted by the shift of fishing effort 
towards deeper waters (Buhl-Mortensen & Mortensen, 
2004; Danovaro et al., 2021) and increases in extraction 
activities (Bradshaw et al., 2012; Wagner et al., 2012; 
White et al., 2012; Roberts & Cairns, 2014); impacts 

are exacerbated by their slow recovery rates. Because of 
these characteristics, antipatharians have been nominated 
as vulnerable marine ecosystem (VME) indicators, and 
black coral gardens are listed as VMEs – ecosystems 
whose components are at risk from the effects of human 
impacts – in the Northeast Atlantic Ocean (FAO, 2009). 
Therefore, it is crucial to understand the distribution of 
black corals to inform conservation management and 
promote their protection.

The role of species distribution models (SDMs) as 
tools to inform conservation management has been in-
creasingly significant in recent years (Kenchington et al., 
2019). By analysing the correlation between species oc-
currence and environmental conditions within their dis-
tribution range, the models can generate mapped predic-
tions of the likelihood of species presence, thereby aiding 
in conservation planning (Elith & Franklin, 2013). In 
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deep-sea ecology, SDMs have been successfully used to 
infer the distribution of taxa and habitats, including sev-
eral VMEs such as Scleractinia reefs, coral gardens, and 
sponge grounds (e.g., Howell et al., 2011; Ross & Howell, 
2013; Ross et al., 2015b; Howell et al., 2016; Lo Iacono 
et al., 2018; Chu et al., 2019; Bollinger et al., 2022; How-
ell et al., 2022; Palummo et al., 2023). The deep sea is a 
remote habitat difficult to investigate because of its vast 
extent and the economic and technical challenges related 
to its exploration (Bell et al., 2022).  Therefore, few, sin-
gle observations are the most common type of data that 
can be collected in these environments (Winship et al., 
2020; ICES, 2021). 

Modelling algorithms such as maximum entropy 
(MaxEnt) (Phillips et al., 2006), and gradient boosting 
(Ridgeway, 2007; Elith et al., 2008) have repeatedly been 
selected as the best performing to model datasets with a 
low number of occurrences (Elith et al., 2006; Elith & 
Graham, 2009;  Reiss et al., 2011; Merow et al., 2014; 
Shabani et al., 2016; Valavi et al., 2022), although cau-
tion was expressed with both algorithms when the sample 
size was very low (Wisz et al., 2008). Previous studies 
on the distribution of black corals employed MaxEnt 
(Yesson et al., 2017; Etnoyer et al., 2018; Lauria et al., 
2021; Lavorato et al., 2021), or combined the predictions 
of MaxEnt and gradient boosting with other small mod-
els using an ensemble approach (Lo Iacono et al., 2018). 
However, no previous study has explicitly investigated 
the performance and transferability capabilities of gradi-
ent boosting machines in modelling Antipatharia habitat 
suitability.

MaxEnt is a machine learning modelling method 
that predicts the distribution of a species by finding the 
most uniform distribution possible while satisfying the 
relationship between the species occurrence and environ-
mental parameters (Phillips et al., 2006). MaxEnt pre-
dicts the probability of species occurrence in a landscape 
of interest by fitting combinations of functions (also 
known as feature classes, being linear, product, quadratic, 
hinge, threshold, and categorical) to a set of environmen-
tal covariates (Elith et al., 2011; Phillips et al., 2006). 
The ability of MaxEnt to fit complex models can lead to 
predictions that are too specific to the training dataset; 
thus, MaxEnt allows the selection of a regularization pa-
rameter that smooths the distribution to prevent model 
overfitting and underfitting (Phillips et al., 2006; Phillips 
& Dudík, 2008; Elith et al., 2011). To increase the model 
performance, optimal feature classes and regularization 
parameters can be selected with the help of evaluation 
metrics such as the Akaike information criterion (Burn-
ham & Anderson, 1998). 

Gradient boosting machines (GBM) are algorithms 
that perform an iterative process on presence-absence 
data to improve boosted regression tree accuracy by se-
quentially fitting decision trees in order to reduce error 
introduced with each model (Friedman, 2002; Elith et al., 
2008). To ensure a good fit on the dataset, the tuning of 
the following hyper-parameters is usually recommended: 
the fraction of the training set observations randomly se-
lected to propose the next tree in the expansion (bag frac-

tion); the learning rate, a shrinkage parameter that deter-
mines the contribution of each tree to the model; and the 
tree complexity that controls the depth of the interactions. 
Together, learning rate and tree complexity control how 
many trees are needed to build an optimal model (Elith 
et al., 2008). 

The performance of SDMs can be evaluated through 
several evaluation metrics. The area under the receiver 
operating characteristic (ROC) curve, AUC, is a frequent-
ly used method to measure and compare model perfor-
mance in presence-absence models (Lobo et al., 2008). 
Being threshold-independent, it provides a measure for 
the overall ability of the model to discriminate between 
presences and absences (Shabani et al., 2018). The true 
skill statistic (TSS) is a threshold-dependent metric that 
is measured as ‘sensitivity + specificity – 1’, and ranges 
from 1 (the model correctly predicts all the presences and 
absences), to -1 (none of the true occurrences are correct-
ly predicted). TSS is useful in the context of species dis-
tribution models as it accounts for chance agreement and 
provides a consistent measure of accuracy that is evaluat-
ed based on the model threshold (Cohen, 1960; Allouche 
et al., 2006; Shabani et al., 2018). When calculated on 
training data, TSS indicates how well the model is able to 
correctly classify the presences and absences within a da-
taset. When calculated on test data, it indicates how well 
the model generalizes on unexplored locations. 

The performance of a model does not depend only on 
the occurrence data, but also on the environmental vari-
ables selected as model predictors, which should repre-
sent the ecological niche in which the modelled species 
live (Elith & Franklin, 2013). However, the challenges of 
worldwide deep-sea exploration such as funding, ineffi-
ciency, and limited access to existing tools and resources 
make it difficult to obtain comprehensive occurrence and 
predictor datasets (Bell et al., 2022). Locations that are 
easier to reach or more topographically interesting can be 
sampled more than others, and these data are then used to 
model the environmental conditions across a larger spa-
tial extent. Predictor layers are often available at different 
spatial scales, which do not always match the scale of 
the ecological processes that we want to represent with 
predictive modelling (Winship et al., 2020). In the deep 
oceans, environmental predictors are often correlated, 
which again can lead to biased results (Segurado et al., 
2006; De Marco & Nóbrega, 2018). To account for var-
iable collinearity, Elith & Leathwick (2009) recommend 
pre-selection of predictors with a further modelling step 
to reduce the number of correlated variables used in the 
model and increase its accuracy. Variable pre-selection 
should, however be evaluated for each individual study 
as, while being supported by several studies (Ross & 
Howell, 2013; Anderson et al., 2016), other papers argue 
that a strict pre-selection may not benefit the model (Elith 
et al., 2011; Piechaud et al., 2014).

The biases introduced by scarce occurrence and pre-
diction datasets highlight the need for new technologies 
and methodologies to approach conservation manage-
ment in the deep sea. Reliable models that predict the 
distribution of deep-sea taxa are invaluable for devel-
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oping policies to conserve these ecosystems and protect 
vulnerable species (Kenchington et al., 2019). This study 
aims to address the challenges posed by deep-sea data 
scarcity by proposing a methodological approach capable 
of estimating the reliability of predictions in challenging 
environments. Specifically, this study aims to (i) analyse 
the predictive capability, model performance, and gener-
alization of MaxEnt and gradient boosting models when 
a small dataset of black corals is used to inform predictive 
mapping for conservation management, and (ii) evaluate 
the benefits of variable pre-selection through backward 
stepwise selection prior to modelling, and assess its im-
pact on model scores. 

Methods

This research was conducted in the deep waters of the 
Atlantic Ocean off the west coast of Ireland. The study 
area corresponds to the area of prediction (Fig. 1) and 
overlaps with most of the Irish exclusive economic zone 
(EEZ). It extends as far north as the Rosemary Bank, a 
seamount situated at the top of the Rockall Trough. The 
Irish continental slope, the Whittard Canyon, and Edoras 
Bank respectively define the eastern, southern, and west-
ern boundaries of the study area.

Environmental data

The predictors selected for this study are: (1) bathym-
etry; broad- and fine-scale bathymetric position indices 
(BBPI and FBPI); overall, planform and profile curva-
ture; terrain rugosity; slope; salinity; bottom temper-
ature; and water mass velocity (horizontal and vertical 
components) (Table 1). This array of predictors contains 
both geomorphological and environmental variables that 
were chosen for their ecological importance in determin-
ing the presence of cold-water corals. Terrain variables 

refer to physical characteristics of seabed features that 
can influence coral distribution. Terrain variables such 
as BBPI and FBPI are used to identify geological fea-
tures such as canyons or gullies (Howell et al., 2022). 
Rugosity and slope are used to identify areas of particular 
substrates and energy level, and are known to influence 
the distribution of cold water corals (Wagner et al., 2012; 
Anderson et al., 2016; Bargain et al., 2018). Although 
sometimes correlated with terrain variables, environmen-
tal predictors such as salinity and bottom temperature 
are site-specific, and are used to identify different water 
masses, which influence coral zonation (Arantes et al., 
2009; Roberts et al., 2009; Williams et al., 2010). Current 
velocity influences parameters such as transport of food 
particles and sediment, and larval dispersal (Thiem et al., 
2006; Taviani et al., 2011; Wagner et al., 2012, Anderson 
et al., 2016).

Raster grids for the first ten predictors were available 
from (Howell et al., 2022) (Table S1). The bathymetric 
layer was created from high-resolution multibeam ba-
thymetry data and resampled at a resolution of 200 m 
(Howell et al., 2022) to cover the selected portion of the 
Northeast Atlantic (Fig. 1a). The ArcGIS Benthic Terrain 
Modeler add-in (Walbridge et al., 2018) was subsequent-
ly employed to derive bathymetric position indexes, cur-
vatures, and terrain features (rugosity and slope) from the 
bathymetry data (Guinan et al., 2009; Ross & Howell, 
2013; Howell et al., 2022). Inner and outer radii of BBPI 
were set by Howell et al. (2022) to 5 and 50 raster cells 
to facilitate the identification of canyons and hills; they 
were set at 1 and 5 raster cells for FBPI to facilitate the 
identification of features at <1 km scale. Layers for bot-
tom salinity and bottom temperature, matching the extent 
of the bathymetry layer, were constructed using general-
ized additive models with information derived from CTD 
data (Howell et al., 2022). The horizontal and vertical 
bottom velocity layers were extracted from the Marine 
Institute Regional Ocean Modelling System (ROMS) 
averaged over the year 2020 at a resolution of 1.9 km 

Fig. 1:  Study area and sampling sites. (a) Extent of bathymetry layer; (b) Extent of velocity layer..
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(Nagy et al., 2020).  To align with the cell size of the 
other layers, velocity data were resampled to 200 m us-
ing the nearest neighbour method (implemented with the 
ArcGIS Subdivide Polygon tool) (Table S1). The velocity 
layers have a smaller extension when compared with the 
other predictors, failing to cover the full predicted area 
(Fig. 1b). Hence, when velocity was used as a variable 
in the model, the extent of predictions is delineated from 
a north-south line that excludes the Rockall Plateau and 
the Feni Ridge.

Occurrence data

Occurrence data were generated from the analysis of 
high-definition videos recorded using a Kongsberg OE 
14-366 colour zoom camera mounted on ROV Holland I, 
deployed from RV Celtic Explorer. The video data were 
collected during five expeditions conducted from 2013 
to 2018 (Table S2), comprising a total of 98 ROV dives, 
typically 4-12 hours in duration, across the North Porcu-
pine Bank (CE13008, CE18012), the Whittard Canyon 
(CE13008, CE14009, CE16006, CE17008), the Gollum 
Channel, and Belgica and Hovland mounds (CE17008). 
The dives covered a depth range from 605 m to 2710 m.

The presence of black corals was annotated using the 
Video Annotation and Reference System (VARS) soft-
ware (Schlining & Stout, 2006). When possible, the cor-
als were identified to the lowest taxonomic level based 
on an in-house identification guide, compiled from local 
knowledge, DNA sequencing of samples collected during 

video transects, and external taxonomic expertise. The 
colonies were grouped into morphospecies based on their 
morphological characteristics. The complete dataset com-
prises 11,363 black coral records, with 37 morphospecies 
annotated. The entries were linked to spatial information, 
and their longitude and latitude were defined.  

The occurrence data for all observed morphospe-
cies were aligned with the 200 m predictor raster grid 
and consolidated into one observation positioned in the 
middle of each grid cell (Downie et al., 2021; Howell 
et al., 2022), and the occurrence dataset was reduced to 
393 cells. Grid cells containing at least one observation 
of the morphospecies were considered presence points. 
Cells explored by video transect but with no species pres-
ence detected were treated as pseudoabsences for that 
species, as it is impossible to confirm the absence of a 
morphospecies from a whole 200 m x 200 m cell (Howell 
et al., 2022). To ensure model accuracy and performance 
and to mitigate the effects of a poor dataset (Stockwell & 
Peterson, 2002; Wisz et al., 2008), only morphospecies 
present in at least five per cent of the total explored cells 
were included in the modelling process. Hence, nine mor-
phospecies were modelled in this study: Antipathes di-
chotoma, Bathypathes m2, Leiopathes m1, Parantipathes 
hirondelle, Cladopathes plumosa, Stauropathes arctica, 
Stichopathes gravieri, Stichopathes m1, and Stichopathes 
m3 (details for each morphospecies are in Table S3).

Following Ross & Howell (2013), occurrence data 
and environmental predictors for each morphospecies 
were integrated by linking occurrence points with corre-
sponding environmental variable values. 

Table 1. Range of environmental predictors for the explored cells.

Variable name and de-
scription

Unit Minimum Maximum Source

Bathy – Bathymetry m (meters) 365.27  2768.33 Howell et al., 2022

BBPI – Broad-scale 
bathymetric position index

– -779 618

Curv – Overall curvature m⁻¹ (1/meters) -0.31 0.35

FBPI – Fine-scale 
bathymetric position index

– -120 129   

PlanC – Planform 
curvature

m⁻¹ (1/meters) -0.19 0.19

ProfC – Profile curvature m⁻¹ (1/meters) -0.19 0.20

Rug – Rugosity – 0.00003 0.02003

Sal – Bottom salinity PSU (Practical 
Salinity Unit)

34.94    35.95     

Slo – Slope ° (angle) 0.85     37.13    

Temp – Bottom 
temperature

°C (Celsius 
degrees)

3.21     10.79   

VelX – Current velocity 
(horizontal component)

m/s (meters per 
second)

-0.32      0.19    Nagy et al., 2020

VelY – Current velocity 
(vertical component)

m/s (meters per 
second)

-0.61 0.19    
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Modelling

Each morphospecies was modelled with four dif-
ferent algorithm combinations: (1) MAV (MaxEnt All 
Variables), a maximum entropy model without variable 
pre-selection; (2) MSV (MaxEnt Selected Variables), a 
maximum entropy model with variable pre-selection; (3) 
GAV (GBM All Variables), a gradient boosting model 
without variable pre-selection; and (4) GSV (GBM Se-
lected Variables), a gradient boosting model with variable 
pre-selection. 

A principal component analysis and a correlation 
analysis were conducted to identify groups of collinear 
variables (|r| > 0.7); (Dormann et al., 2013). The princi-
pal component analysis (Fig. 2) of the environmental pre-
dictors used in this study revealed three main clusters of 
variables: (1) depth, salinity, and temperature, negatively 
correlated with slope, rugosity, and vertical and horizontal 
velocity; (2) Overall curvature, planform curvature and 
FBPI, negatively correlated with profile curvature; (3) 
BBPI, negatively correlated with rugosity. Furthermore, 
the correlation analysis (Fig. S1) identified the following 
pairs of highly correlated variables: (1) depth – tempera-
ture (r = 0.856); (2) overall curvature – FBPI (r = 0.769); 
(3) overall curvature – planform curvature (r = 0.835); 
(4) overall curvature – profile curvature (r = 0.901); (5) 
FBPI – profile curvature (r = 0.701); and (6) salinity – 
temperature (r = 0.816). To investigate the information 
brought by all predictors, and to retain one variable for 
each correlated pair, initial “starting combinations” were 
created (Table S4). As species zonation is primarily influ-
enced by temperature rather than depth (e.g., Järnegren & 
Kutti, 2014; Ross et al., 2015a), only the variable combi-
nations involving temperature were kept: (1) TC: BBPI, 
overall curvature , rugosity, slope, temperature, vertical 
velocity, horizontal velocity; (2) TFP: BBPI, FBPI, plan-
form curvature, rugosity, slope, temperature, vertical ve-

locity, horizontal velocity; and (3) TPP: BBPI, planform 
curvature, profile curvature, rugosity, slope, temperature, 
vertical velocity, horizontal velocity. 

In the MAV and MSV algorithm combinations, the 
distribution of each morphotype was modelled using 
MaxEnt v. 3.4.4. MaxEnt was used following a sam-
pling-with-data (SWD) approach, that entails using ab-
sence or pseudo-absence data when these are available, 
rather than using randomly generated background points 
(Phillips et al., 2006, Phillips & Dudík, 2008; Howell et 
al., 2022). This helps correct for the sample bias intro-
duced by having presence and background (absence) data 
from the same sampling campaign (Phillips & Dudík, 
2008).  

A default MaxEnt model (auto features on, no thresh-
old; regularization = 1) was built for each initial varia-
ble combination. Corrected Akaike information criterion 
(AICc) was calculated for all three models (Burnham & 
Anderson, 1998), and the predictor array of the model 
with the lowest AICc was used as a starting array for var-
iable selection. The contribution of each variable was es-
timated through a jackknife test of variable importance, 
and the variables that least contributed to the model gain 
were progressively eliminated following the parsimony 
approach outlined in Howell et al. (2022).  The varia-
ble combination scoring the lowest absolute AICc was 
considered optimal. All the possible arrays of probability 
functions (automatic, hinge, and threshold features) were 
tested, and the one yielding the model with the lowest 
AICc was kept. More MaxEnt models were built using 
a standard array of regularisation parameters (R = 0.001, 
0.01, 0.1, 1, 3, 5, 7, 10), and AICc was calculated for each 
one. Middle regularisation values were iteratively tested 
until the model with the lowest AICc was found, and the 
R of that model was used to build the optimal model (Ta-
ble S6, S7).

In the GAV and GSV algorithm combinations, the 

Fig. 2: Principal component analysis showing the degree of correlation between the environmental predictors used in this study
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morphospecies were modelled using R v. 4.1.2 (R Core 
Team) with the ‘gbm’ package v. 2.1.8.1 (Ridgeway, 
2007). The optimal bagging fraction was selected using 
the gbm.bfcheck() function from the ‘gbm.auto’ package 
v. 1.5.0 (Dedman et al., 2017). Because of the small oc-
currence dataset, a tree complexity of two (Elith et al., 
2008) was applied to all models. A model (optimal bag 
fraction, tree complexity = 2, learning rate = 0.01) was 
built for each of the three starting variable combinations, 
and AICc was calculated for each one. The variable com-
bination that produced the model with the lowest AICc 
was used as a starting array for variable selection. The 
contribution of each variable was estimated with the sum-
mary() function of ‘gbm’. The optimal number of trees 
and learning rate combination were determined through 
an iterative process minimizing the AICc value to identi-
fy the optimal model for predictions (Table S8). 

Model evaluation

For each morphospecies, for each modelling ap-
proach, data were randomly sampled from the occurrence 
dataset and divided into ten 70% training and 30% testing 
subsets used to generate ten additional models. This train-
test-split approach was selected as it can be more inform-
ative than a usual k-fold validation because it generates 
multiple estimates of model parameters and evaluation 
metrics from multiple data splits, reducing the variance 
of the estimates (Guisan et al., 2017). To prevent spa-
tial autocorrelation, each subset was manually assembled 
to ensure that test and training points were not sampled 
from the same sites (Peterson & Soberón, 2012). Only 
the subsets which had a prevalence ratio within a range 
of ±0.01 from the original dataset were kept (Howell et 
al., 2022). 

Each model produced probability values indicating 
the likelihood of presence of the morphospecies in a cell. 
These values were translated into binary presence-ab-
sence using optimality thresholds calculated with the 
R-package ‘Presence-Absence’ v. 1.1.9  (Freeman & 
Moisen, 2008a; Ross & Howell, 2013). Three thresh-
olding techniques were selected: (1) maximization of 
kappa statistics ‘MaxKappa’, promising when only pres-
ence data are available (Freeman & Moisen, 2008b; Liu 
et al., 2013); (2) maximization of sensitivity-specificity 
sum ‘MaxSens+Spec’, and (3) predicted-observed prev-
alence equality ‘predprev=obs’, the latter both suggest-
ed for their implications in conservation as they provide 
unbiased estimates of species prevalence (Freeman & 
Moisen, 2008b). Five model performance indices (Per-
cent Correctly Classified – PCC, specificity, sensitivity, 
kappa, and AUC) were calculated and averaged to eval-
uate the performance of each thresholding method in the 
training, test, and full datasets (Fielding & Bell, 1997). 
The threshold returned by the method that maximized 
performance and minimized the standard deviation of the 
model, while ensuring a true skill statistics (TSS) value 
different from zero, was selected (and will be referred as 
the ‘best threshold’). When in doubt between two meth-

ods, the one yielding the most restrictive (higher) thresh-
old was chosen. This optimal threshold was applied to the 
predictive values returned by the optimal models for both 
model evaluation and mapping.

The performance of each optimal model was eval-
uated using the area under the receiver operating char-
acteristic (ROC) curve (AUC) and the true skill statistic 
(Fielding & Bell, 1997; Allouche et al., 2006; Velasco & 
González-Salazar, 2019), for which probability values 
were transformed into binary predictions using the best 
threshold for each model. 

Drops in model performance between training and 
test data were calculated for each algorithm-variable 
combination and used to evaluate the level of model 
generalization capability. For each morphospecies, TSS 
values were computed for the ten trained (TSStrain) and 
ten tested (TSStest) models. The ratio of TSStest to TSStrain 
was then determined to evaluate model performance on 
the test data. It is expected that model fits will decrease 
when comparing performance on the training data to that 
on the unseen test data, and a portion of this performance 
drop will reflect the inability of the model to generalize to 
the test data (overfitting). The ratios of TSStest to TSStrain 
were averaged to derive a single score, referred to as the 
average TSS index (ATI), which summarizes the extent 
of model overfitting.

By dividing the TSS of the test set by the TSS of the 
training set, ATI provides insight into the generalisation 
ability and performance of a model. An ATI score equal 
or close to 1 represents the ideal scenario and suggests 
that the model fits the training data well and generalises 
well on unseen data. An ATI score lower than 1 suggests 
a drop in performance between the training and test data, 
and is likely an indicator of model overfitting; the small-
er ATI is, the worse the model generalises on new data. 
An ATI score greater than one is an unlikely scenario, 
in which the model cannot capture the environmental-oc-
currence relationships in the training dataset, while in-
flating generalisation because of predictable, imbalanced 
test data (e.g., far more pseudoabsences than presences).

Mapping

The environmental similarity between the sampling 
sites and the predictive extent was assessed using Mul-
tivariate Environmental Similarity Surfaces (MESS) 
analysis. This analysis was conducted using the MaxEnt 
software for MaxEnt models, and the MESS() function of 
the ‘modEvA’ package (Barbosa et al., 2013) for GBM 
models. For each approach and for each morphospecies, 
a mask was created to retain only the cells that were en-
vironmentally similar to the sampled cells (MESS values 
> 0).

Probability values generated by the optimal MaxEnt 
(cloglog output) and GBM models were imported into 
ArcGIS Pro 3.0.3. The data were thresholded to create 
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a probability layer that treated all the values below the 
optimal threshold as constant absences. The probability 
values output by the ten train-test models were used to 
calculate a standard deviation layer with the Cell Statistic 
Spatial Analyst.  

The overlay proportion for each raster and the differ-
ences between the likelihood of presence predicted by 
different frameworks were calculated using the R pack-
age ‘raster’ v. 3.6-26. 

Results

Variables contributing to each of the 36 models (nine 
species using four modelling strategies) built are provid-
ed in Table 2. Metrics (AUC, TSS, ATI) evaluating mod-
el quality for the four modelling strategies employed for 
each species are provided in Table 3.  

ATI as a metric of model quality

AUC alone does not adequately discriminate 
against models. Using the thresholds proposed in Coet-
zee et al. (2009), all 36 models presented either useful 
(0.7<AUC<0.9; 13 models: 4 MAV, 8 MSV, 1 GAV) or 
excellent (AUC>0.9; 23 models: 5 MAV, 1 MSV, 9GAV, 
8GSV). Where the four models appear excellent based on 
AUC for any given species, we could expect that those 
four models would predict similar distributions. The four 
models of Stauropathes arctica meet this AUC criterion 
of AUC > 0.9, but the predicted distributions generated 
by these models are widely different (Fig. 3). TSS values 
of these models also indicate that that the models should 
be useful, as all four models had TSS values >0.6 (Coet-
zee et al., 2009), hence TSS and AUC combined do not 
discriminate model quality. 

Several models built in this study scored well in both 
AUC and TSS, but model generalisation dropped when 
the model was tested on new locations, yielding low ATI 
scores and producing unreliable distribution maps. Ex-
amples of this are the models for Stauropathes arctica, 
with low ATI ranging from 0.086 to 0.404 across all the 
modelling approaches (Fig. 3). Similarly, the MAV, GAV, 
and GSV, models of Stichopathes m1 and Cladopathes 
plumosa returned ATI scores between 0.187 and 0.478, 
and 0.263 and 0.299 respectively. The models also result-
ed in predictive maps suggesting an erroneous distribu-
tion of the species, in the form of extended predictions 
outside the ecologically expected area of distribution of 
the species, or very conservative, likely overfitted predic-
tions limited to a small number of cells (Fig. 4). . 

Only for one species (Stichopathes gravieri) was 
more than one model obtained that had high AUC, TSS 
and ATI values. In this scenario, we would expect the 
predicted distributions of both models to be very similar. 
Both models of Stichopathes gravieri created in MaxEnt 
met these three criteria, with ATI values among the best 
observed in this study (Table 3). Both models predicted 
the presence of the corals in similar locations, which di-

versify from the canyons and slopes where occurrence 
data were collected (e.g., the coral is also predicted to oc-
cur on seamounts and coral mounds). The predicted dis-
tribution of the model built using all variables is slightly 
broader than that produced with a preselected variable ar-
ray (Fig. 5). However there is agreement in the response 
curves returned by the two models (Fig. S4.1 and S4.2), 
which show BBPI and temperature as the sole drivers of 
the coral distribution (although more importance is given 
to depth in the MAV model, because of its collinearity 
with temperature). The map makes ecological sense, pre-
dicting Stichopathes gravieri on the continental slope and 
coral mounds/seamounts. 

GBM or MaxENT for small datasets?

ATI suggested that all models produced in GBM 
were overfitted and did not reach acceptable thresholds 
of transferability. When the probability of distribution 
was examined over each predictor used in this study (Fig. 
S6), the models often failed to predict across the full 
variable range occupied by presence points, with GBM 
predictions often condensed within a narrow interval of 
the variable’s range. On average, models built using the 
GBM approach obtained higher AUC and TSS values 
than MaxEnt models, but the low ATI values (Table 3) re-
veal a general trend of overfitting. In fact, low ATI values 
were evident across all modelling approaches, but there 
was a complete absence of high ATI values observed in 
GBM models (min 0.086, mean 0.252, max 0.478; Ta-
ble 3). Moreover, signs of overfitting are detectable in all 
GBM models for most predictors (Fig. S4.3 and S4.4), 
with response curve that did not seem to agree on which 
the main drivers of the morphospecies distribution.

To pre-select or to not pre-select variables

Variable pre-selection in MaxEnt tends to lead to a 
decrease in TSS. Using the thresholds proposed in Coet-
zee et al. (2009), TSS values indicated six of the nine 
MaxEnt models without variable pre-selection were 
useful (0.6<TSS<0.8; five models) or good to excellent 
(TSS>0.9; one model). When variables were pre-select-
ed, five models were below the useful threshold, four 
were above it, and no models were good to excellent. 
When the nine species are considered individually, pre-
selecting variables in MaxEnt led to negligible change 
(<0.02) in TSS for two species, a small increase (<0.15) 
for two species, and decreases in TSS for five species, 
some of which were substantial (0.098, 0.221, 0.245, 
0.399, 0.552). The effects of preselection were slightly 
more variable in GBM models, but since GBM appears 
less suitable for modelling low data black coral datasets, 
we do not consider that further here. Response curves of 
both MAV and MSV models agree in suggesting BBPI and 
depth/temperature as general drivers of the distribution 
of most corals. However, information brought by some 
predictors was lost when using the MSV approach (Fig. 
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S4). Velocity seemed to influence the distribution of mor-
phospecies with more complex morphologies (fans and 
bushy: Bathypathes and Stauropathes, and Leiopathes), 
but these variables were excluded from the MSV models 
of Bathypathes m2 and Leiopathes m1, suggesting that 
pre-selection of variables does not necessarily enhance 
MaxEnt models.

Ecological distribution of the morphospecies

Ridgeline plots of variable distribution revealed that 
presences and pseudoabsences of most morphospecies 
overlapped, indicating unclear niche differentiation. Bat-
hypathes m2, Parantipathes hirondelle, and Stichopathes 
m1 seem to occur more frequently within a depth range 
of 1000-2000 m. Similarly, Parantipathes hirondelle, Cl-
adopathes plumosa and Stichopathes m3 do not seem to 
occur at salinities between 35.2 and 35.8 PSU. Models 
suggested current velocity as a driver of the distribution 
of corals with more complex colony shapes, but a niche 
was not identified through occurrence data. 

It was possible to identify an environmental niche for 
Stichopathes gravieri. The models returned BBPI, depth 
and temperature as drivers of its distribution. This coral 
seems to mostly occur in habitats between 500 and 1500 
m, from flats to depressions, and temperatures >8°C. Al-
though it was observed on inclined terrains, “slope” was 
not a terrain variable relevant for the coral distribution 
(Fig. 6).

Discussion

ATI as a metric of model quality

The Average TSS Index (ATI) is good at describing 
the ability of a model to generalise to new locations. ATI 
allowed us to identify inaccurate models that otherwise 
would have been considered ‘good’ when evaluated 
through standard metrics. The use of one single evaluation 
metric is discouraged (Araújo et al., 2019); for instance, 
AIC and AUC are often incorrectly used as the sole crite-
ria by which models with the best prediction capacity are 
selected (Lobo et al., 2008; Velasco & González-Salazar, 
2019). Drops in model performance between calibra-
tion and evaluation data (AUCdiff) have previously been 
used to evaluate the degree of model overfitting (War-
ren & Seifert, 2011; Boria et al., 2014). However, being 
a threshold-independent metric, AUC cannot measure 
the accuracy of prediction of SDMs, as these require a 
unique threshold to be selected to transform the probabil-
ity of species presence into presence-absence predictions 
(Shabani et al., 2018). Biases can therefore be introduced 
by using erroneous thresholds, but can also be counteract-
ed by selecting relevant thresholds tailored to the proba-
bility values returned by the models. Nonetheless, neither 
TSS alone, nor the combined use of TSS and AUC, was 
sufficient to discriminate model quality in this study.

Where models with low ATI values produced in-Ta
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consistent predicted distribution (e.g., Sta. arctica, C. 
plumosa, Sti. m1; Fig. 3 and 4), we cannot assume that 
any particular modelling framework is better. The models 
built for Stauropathes arctica predict a considerable oc-
currence of this coral in the Gollum Channel, but such a 
prevalence has not been documented in previous surveys 
(Tudhope & Scoffin, 1995). Models built for Stichopathes 
m1 (GAV, GSV) and C. plumosa (GSV) predict presence 
in the Rockall Basin, a region mainly characterized by 
fine-grain mud and sand sediment (Masson et al., 2002). 
Although some antipatharians are able to live on soft sub-
strates, the holdfast of these genera is adapted for hard 
surfaces (Wagner et al., 2012) making the distributions 
predicted herein unlikely. These inconsistent predictions 
of a morphospecies’ distribution are likely indicative of a 
paucity of information provided to the model, potentially 
through using too small occurrence datasets, a too broad 
cell-size, or because the resolution of environmental pa-

rameters is too low to capture the relationship between 
the environment and the coral observations throughout 
the whole spatial extent (ICES, 2021).

As per AUC and TSS, ATI scores should also not be 
used as a sole indicator, but should be evaluated with 
other indicators, maps, and response curves to obtain a 
full picture of the model goodness of fit and generalisa-
tion. For instance, good ATI scores were observed for 
the MSV models of Stichopathes m1 and m3, which dis-
played unrealistic predictive maps and an oversimplifica-
tion of the model response, with most of the distribution 
explained by too few predictors. Inflated ATI scores were 
obtained as a consequence of dividing a low TSStest by a 
low TSStrain. Therefore, ATI should also be paired with 
in-depth evaluation of model sensitivity and specificity 
to ensure that good ATI values reflect good model gen-
eralisation, and are not artifacts resulting from low TSS 
values in the training and test dataset. As ATI, like TSS, 

Fig. 3: Predicted distribution of Stauropathes arctica when using (a) MaxEnt with all variables, (b) MaxEnt with variable pre-se-
lection, (c) GBM with all variables, and (d) GBM with variable pre-selection. Black dots refer to the cells treated as presences for 
the morphospecies.



410 Mediterr. Mar. Sci., Special Issue 26/2, 2025, 400-417

is a threshold-dependent method, the threshold should be 
carefully selected for the model applied. This becomes 
particularly relevant when working with small datasets, 
where threshold selection can be inflated to boost mod-
el accuracy (Bean et al., 2012). Thus, the application of 
ATI in future studies should be supported by thoughtful 
selection of model threshold, and is not recommended 
for models that apply a standard threshold to all predic-
tions without careful consideration of its implications on 
threshold-dependent metrics. Model ground-truthing or 
independent validation is encouraged before submitting 
predictive maps for conservation management. Given the 
challenging nature of collecting independent data in the 
deep-sea (Bell et al., 2022), a tool like ATI, capable of 
recognising early-stage issues with model generalization, 
could be used as an exploratory tool for species distribu-
tion models where independent data for ground-truthing 

is not available. In the absence of ground-truthing data, 
which is a common in deep-sea science, model agree-
ment and plausibility of predictions could be useful tools 
to assess model generalisation. 

When multiple models of a certain species are pres-
ent, the literature advocates for using ensemble models 
(Breiner et al., 2015), which have already been used to 
successfully predict the distribution of cold water corals 
(e.g., Georgian et al., 2019; Bargain et al., 2018; Lo Iaco-
no et al., 2018; Innangi et al., 2024; Vinha et al., 2024). 
By combining possible model outputs into a single set 
of predictions, ensemble modelling takes advantage of 
the relative strengths of individual algorithms and can 
reduce uncertainty in habitat prediction (Shabani et al., 
2016; Araújo & New, 2007; Colin et al., 2017; Valavi et 
al., 2022). ATI might be a useful metric to discrimina-
te models before building an ensemble, as it could give 

Fig. 4: Wide variations in the predicted distribution of Stichopathes m1 when using (a) MaxEnt with all variables, (b) GBM with 
all variables, and (c) GBM with variable pre-selection, and the predicted distribution of Cladopathes plumosa when using (d) 
MaxEnt with all variables, (e) GBM with all variables, and (f) GBM with variable pre-selection.Black dots refer to the cells treated 
as presences for the morphospecies.
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more information on the generalisation and transferabili-
ty of the models to be included in the ensemble (e.g., as a 
check for overfitting). In this study, for instance, ensem-
bling MaxEnt and GBM models for Stichopathes gravie-
ri could have introduced an error brought by the overfit-
ted gradient-boosting models. ATI could also be used as a 
reference metric for weighted averaging of species distri-
bution modelling, giving more importance to predictions 
of models that are good at generalising to new locations.

GBM or MaxEnt for small datasets?

In this study, MaxEnt appears to be better at pre-
dicting the distribution of black corals when small oc-
currence datasets are available. Through MaxEnt, it was 
possible to obtain a model of Stichopathes gravieri (for 
which we had the most comprehensive occurrence data-
set) that balanced model performance and generalisation. 

This allowed for the environmental and spatial niche of 
the species to be defined; Stichopathes gravieri seems to 
be a generalist in terms of seabed features, but requires 
defined depth (500-1500m) and temperature (8-11°C) 
ranges. 

GBM is known to perform worse than MaxEnt when 
the models are built using very small occurrence datasets (n 
= 10) (Wisz et al., 2008). In this study, the occurrence data 
were likely not comprehensive enough of the whole range 
of environmental conditions that drive the distribution of 
our morphospecies. MaxEnt, which can build highly com-
plex and nonlinear response curves (Merow et al., 2014) 
between species occurrence and environmental predictors, 
produced models more favourable of generalisation. Gra-
dient boosting builds sequential models that correct the er-
ror of previous ones. When the model is built with an insuf-
ficient dataset, as apparently in this study, GBM struggles 
to discriminate between the real occurrence-environment 
patterns and the noise present in the training data (Elith 

Fig. 5: Threshold-defined predicted distribution of Stichopathes gravieri when using Maxent without (a) and with (b) variable 
selection before modelling. (c) Difference between the threshold-defined likelihood of presence generated by the two frameworks. 
Brighter cells indicate areas where the species presence is predicted by MAV and not MSV; darker cells indicates areas where 
the species presence is predicted by MSV and not MAV. Black dots refer to the cells treated as presences for the morphospecies.

Fig. 6: Ridgeline plots showing the distribution of presences, pseudoabsences and predicted likelihood of presence of Stichopathes 
gravieri across the bathymetry, BBPI and temperature range of the study extent
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et al. 2008). Hence, a GBM model built with insufficient 
information will maximise performance at the expense of 
generalisation, leading to overfitting. 

It is important to provide the model with the right 
amount of data to accurately describe the environmental 
range in which a species is likely to be found (Wisz et al., 
2008). Likely, the sample size for S. gravieri was large 
enough to comprehensively capture the environmental 
variation associated with the coral distribution, which re-
sulted in a satisfactory MaxEnt model. In contrast, this 
variation was not fully represented in the smaller data-
set of other morphospecies. The minimum recommended 
size suggested by Wisz et al. (2008) for MaxEnt models 
is too limited to produce reliable models across the vast 
spatial extent of the Irish margin, where complex inter-
actions between geomorphological and environmental 
variables drive species occurrence. Biases introduced by 
small datasets could be overcome by using taxonomically 
broader groups, but with caution, as using data at low tax-
onomic levels can result in questionable maps, as species 
characterised by distinct life histories and environmental 
needs could potentially be mixed (Winship et al., 2020). 

When comparing the frequency distributions of pre-
dicted occurrence probabilities among the modelling 
frameworks, it is evident that GBM values were more 
skewed, and the median and mean were lower in all 
cases (Fig. S5). MaxEnt has been previously reported 
to overestimate the probability of occurrence in unsam-
pled localities and to underestimate it in sampling sites 
(Fitzpatrick et al., 2013; García-Roselló et al., 2015), a 
bias that seems to be linked to the smoothing capabili-
ties of the regularization feature integrated in the soft-
ware (Fourcade et al., 2014). The skewed distributions 
obtained for the GBM models seem more realistic, both 
in terms of predicted prevalence and in terms of reflecting 
the real distribution of probabilities. Although this may 
not be relevant in terms of mapping the species distribu-
tion since the application of an optimal threshold would 
maintain the best values for predictions, it is important to 
take this bias into consideration when estimating predic-
tions for conservation purposes. 

Despite MaxEnt appearing to perform better, these re-
sults do not suggest the exclusive use of a single model 
type in future studies, as the predictive ability of the mod-
els will change with the input data. Using multiple mod-
elling strategies will ensure that issues related to unrelia-
ble predictions are dealt with. Methodological challenges 
such as the scarcity of presence data, sampling bias, and 
spatial autocorrelation are known to affect the balance 
between model complexity and goodness of fit of both 
MaxEnt and GBM models (ICES, 2021). Since main-
taining this balance is crucial, it is important to adopt an 
evaluation framework that assesses both these aspects 
(Warren & Seifert, 2011; Araújo et al., 2019) perhaps by 
including TSS and ATI as indicators of model generalisa-
tion, while knowing that these metrics cannot replace the 
benefit of ground-truthing studies. 

To pre-select or to not pre-select variables.

The tendency for TSS to decrease with variable 
pre-selection suggests that pre-selection does not lead to 
improved models. Full automation of variable selection 
has been discouraged by previous work, as ecological-
ly important variables could be excluded from the study 
(Davies & Guinotte, 2011; Yesson et al., 2017; Tong et al., 
2023). In this study, including more ecologically relevant 
predictors when modelling with small datasets helped to 
compensate for the lack of data from unsampled areas, as 
proxy variables could detect unseen patterns. Important 
variables such as velocity were sometimes excluded from 
MaxEnt models, over-simplifying them and causing erro-
neous predictions.

While temperature, depth and other bathymetry-de-
rived variables are all known key drivers of coral spe-
cies distribution in deep-sea environments (Roberts et al., 
2009; Yesson et al., 2017; Chu et al., 2019; Auscavitch et 
al., 2020; Lavorato et al., 2021; Tong et al., 2023), tem-
perature is thought to be the primary driver of cold-water 
coral distribution across vast regions (e.g., Ross et al., 
2015a). When both variables were used in model build-
ing, bathymetry tended to explain black coral distribution 
more than temperature. This apparent contradiction is 
mainly due to the correlation between the two variables, 
as shown by the moderate effect of temperature observed 
in the response curves of MAV models. Moreover, Max-
Ent is good at weighing the importance of each varia-
ble (Phillips et al., 2006), as demonstrated by the many 
flat response curves of predictors that did not explain the 
distribution of the morphospecies. Therefore, including 
more ecologically relevant predictors when modelling 
with small datasets could help compensate for the lack 
of data from unsampled areas, as proxy variables could 
detect unseen patterns of coral distributions. 

The loss of information caused by fitting fewer varia-
bles seemed to lead to more issues than the potential over-
fitting caused by the use of correlated variables. The use 
of correlated variable pairs has been consistently high-
lighted as a concern in predictive distribution modelling 
(Dormann et al., 2013; Araújo et al., 2019; Winship et 
al., 2020; Zurell et al., 2020) and is discouraged in mod-
elling frameworks aimed at informing decision-making 
processes (ICES, 2021). However, correlated variables 
have previously been included in models because of their 
ecological significance (e.g., Davies & Guinotte, 2011) 
and our results suggest there are benefits of doing so. 
MaxEnt models consistently showed a balance in the re-
sponse curves of correlated variables; for instance, when 
one variable was identified as a key driver, the response 
curve of its correlated predictors would be returned 
flat to moderate.  Using too few predictors can lead to 
over-simplified models, which cannot properly infer the 
likelihood of species presence (Warren & Seifert, 2011). 
In this study, variable pre-selection caused the drop of 
relevant predictors such as velocity for Bathypathes and 
Leiopathes morphospecies. 

Even though the same number of predictors was al-
ways available to MaxEnt and GBM, MaxEnt tended to 
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build simpler models with fewer variables. This can be 
attributed to the ability of GBM models to capture com-
plex interactions among predictors (Elith et al. 2008), 
which is particularly relevant in ecological modelling 
where environmental factors often interact in intricate 
ways (ICES, 2021). 

Other limitations

A final consideration is the implications of modelling 
with an intrinsically biased dataset. Because of the tech-
nical challenges common to deep-sea research (Bell et 
al., 2022), the occurrence points used in this study were 
mainly collected from canyons, slopes and escarpments. 
These habitats are characterised by a restricted range of 
terrains and variables that do not fully cover those found 
in the whole study area, highlighting a significant sam-
pling bias in the data (Fig. S6). For most morphospecies, 
presences and pseudoabsences were spread across the full 
range of predictors, instead of occupying restricted nich-
es. This likely ‘confused’ the models, that were not able 
to correctly classify which predictors were most relevant. 
Sampling bias can sometimes be overcome through spa-
tial filtering (Boria et al., 2014; Araújo et al., 2019), but 
this would have overly thinned the already small datasets 
used in the study. Successful ecological modelling should 
use datasets that are representative of the real species 
distribution (Araújo et al., 2019), but as different areas 
were not explored, our datasets may not be representative 
of the whole extent of the coral niche. Therefore, future 
expeditions and data collection should target unexplored 
ranges of the predictors to increase knowledge about the 
true extent of coral occurrence.

Although the small size of the occurrence dataset like-
ly had the largest influence on model performance, there 
are other pertinent factors.  Occurrence datasets retrieved 
from image data, as was the case here, can suffer from 
issues with taxon identification. While OTUs are useful 
and easily accessible taxonomic units for image-based 
datasets, organisms with slightly different niches can be 
grouped in the same morphospecies, introducing a bias 
(Winship et al., 2020). In addition, cell size (200 m), 
leads to uncertainty since cells are never fully explored, 
and the downscaling of predictors (i.e. velocity) could 
also have introduced bias. Downscaling is a known cause 
of uncertainty in predictive modelling, as the values in 
the cells derive from a smooth mathematical function, in-
stead of mirroring reality (ICES, 2021). 

It is also important to consider the ecological implica-
tions of model resolution when comparing the predictions 
to the spatial scale of the study, as mismatches between 
the two may lead to certain species-environment relation-
ships (Davies & Guinotte, 2011; Winship et al., 2020) 
being overlooked. The resolution used herein (200 x 200 
m) was shown to produce models of Desmophyllum per-
tusum reef and Pheronema carpenteri aggregations in our 
focal area that perform better than lower resolution (750 
m x 750 m) models (Howell et al., 2022). Nonetheless, 
if higher resolution terrain and environmental variables 

were available, then likely more subtle drivers of species 
distribution could be detected.

Conclusions

In this study, thirty-six models (four different mod-
elling frameworks for nine black coral morphospecies) 
were explored. In all the models but one species, the mod-
els were deemed as unsatisfactory, likely because of the 
paucity of occurrence datasets. Nonetheless, most of the 
datasets were not below the minimum sample size rec-
ommended for MaxEnt models (>30) (Wisz et al., 2008) 
and resulted from very extensive ship time (98 dives in 
five different locations of the North-east Atlantic) that en-
compassed several environmental conditions suitable for 
coral presence. 

The Average TSS Index (ATI, an index reflecting the 
change in TSS from training and test datasets) highlights 
problems with models that are not recognised by consid-
ering AUC and TSS alone. This metric should be con-
sidered an exploratory tool to be used together with tra-
ditional evaluation methods, but which does not replace 
ecological knowledge of species distribution. Thus, this 
research presents a framework for evaluating future deep-
sea coral models that could avoid erroneous predictions 
being used for conservation purposes. We additionally 
provide two realistic and highly similar models for the 
black coral Stichopathes gravieri across the entire Irish 
EEZ, along with a description of its environmental niche. 
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