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Abstract

When the Brody coefficient K is subject to temporal variation, data from tag-and-recapture
experiments permit analysis of seasonal growth. Temporal values for K can be estimated without
using a pre-determined oscillating function and the impact of seasonality on annual growth can be
analyzed more realistically. The method is applicable to intra-annual intervals of single or multiple
cohorts. 
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Introduction

Most published methods for fitting the
von Bertalanffy growth function (VBGF)
where seasonality in growth is evident re-
quire an additional mathematical assump-
tion as to how growth varies throughout the
year. These methods generally apply to size-
at-age data and are considered standard tools,
such as the PAULY-GASCHÜTZ (1979)
model and its modification by HOENIG &
CHOUDARY HANUMARA (1982), and
independently by SOMERS (1988). More
elaborated techniques have been devised to
improve the performance of seasonal VBGF
fittings for data from tagging experiments

(FRANCIS 1988), or size-at-age data (PAULY
et al. 1992). All such models approximate the
seasonal variation of the Brody coefficient
K by means of pre-set periodic functions. 

This study focuses on data from tagging
experiments and suggests a method for fit-
ting the VBGF in situations where the Brody
coefficient K - and hence length increments
- are subjected to temporal variations  which
do not necessarily correspond to a sinusoidal
function. Rather than ‘enriching’ the VBGF
with such an add-on function approximating
seasonal variation in K, this method deter-
mines the seasonal fluctuation of K over time
through a multiple linear regression proce-
dure. This is based on two assumptions



regarding K and L∞∞ as well as a number of
easily proven properties of the VBGF.

The method consists of two procedures.
The first procedure - the focus of this study
- optimizes the thirteen parameters of the
model which are L∞∞ and twelve monthly K’s.
The second procedure makes use of the es-
timated parameters and provides some ad-
ditional information permitting some more
insight into population growth. 

Supplementary methodological notes
are included in the last section (Theory).

Method 

The method operates under two basic
assumptions:

i) Fish growth follows the VBGF but is
subject to monthly variations in K. Th-
ese may cause fish to gain length in one
month or show no increment in anoth-
er (case when K is zero), or even to "sta-
tistically shrink" (K<0). K is the only pa-
rameter controlling the direction of in-
crement within a month; this means that
theoretical growth cannot be zero or neg-
ative when  K is positive.

ii) As age increases, fish length approach-
es an asymptotic value Lx which is uni-
form and independent of the impact of
seasonality on the growth pattern.    

Notation and basic relationships

The following notation is used for tag-
ging data of an individual:

–     Da and Db are the dates of tagging and
recapture respectively.

–     ta and tb are the estimated ages at tag-
ging and recapture respectively. 

–     La is the length at tagging and Lb is the
length at recapture.

–     ¢t is the time lapsed between tagging
and recapture and is expressed in years.
¢t can be calculated on the basis of Da
and Db when these are both known. Al-
ternatively, when  ¢t is known then on-
ly one of the Da or Db need be indicat-
ed in the input dataset.  

–     m0 is the starting month containing point
t0 (age at which length is zero – see equa-
tion (9)). Knowledge of m0 is a req-
uisite for determining the starting point
of a seasonal growth curve. Its role is
analogous to that of parameter ts used
in sinusoidal models2 that describe sea-
sonal growth. 

The method is based on some specific
properties of the classical VB model. Most
of these are self-evident; others are exam-
ined in more detail in Theory.

VBGF properties used by the present-
ed method:

Property 1. If the asymptotic length L∞∞ is
uniform and season-independent and the
growth rate  K is constant in the interval
[Da , Db] we can write: 

(1)

This property derives from assumption
(ii) given above. A more detailed discussion
is given in Theory.

Property 2. It can be proved by induction
(see Theory) that if the interval ¢t in (1)
consists of smaller intervals ¢ti (i.e. months
or fractions of months) in each of which a
monthly growth rate Ki applies, we will have:

(2)Lb = La + (L∞ - La)(1 - e - ∑Ki¢ti)

Lb = La + (L∞ - La)(1 - e - K¢t)

Medit. Mar. Sci., 11/1 2010, 143-154144



or its inverse form:

(3)

Property 3. Property 2 and expressions (1),
(2) and (3) reveal that the growth rate  K
in (1) is the compound mean of all month-
ly growth rates occurring between the two
dates  Da and  Db :

(4)

Property 4. When the start length La in (1)
is the length L0 at age zero, then any length
Lt at age  t will be:

(5)

K0,t being this time the running average of
the monthly growth rates occurring between
0 and  t. Expression (5) is the seasonal ver-
sion of the original VON BERTALANFFY
(1938) equation. 

Property 5. By considering expressions (2)

and (4) we can write: 

(6)

Property 6. When each of the time intervals
in (4) is equal to 1/12 years then any seg-
ment of twelve successive monthly K’s
will furnish the same arithmetic mean (or
annual average):

Moreover the running average K0,t in
(5) will oscillate about KA (Fig. 1). It
can easily be proved that the annual av-
erage   coincides with the annual growth
rate resulting from the classical VB mod-
el when lengths are measured at regular
annual intervals and seasonal variations
of  K are ignored (see Theory). Such cas-
es of comparability, however, can only be
found in size-at-age data and not in tag-
ging experiments where the time at liber-
ty is expressed in variable time intervals.
This point is further analyzed in Discus-
sion.

KA = (1/12) ∑ Kj 
12

j=1

L∞ - Lb
L∞ - La

- In = K¢t =∑ Ki¢ti

Lt = L0 + (L∞ - L0)(1 - e - K0,tt)

1
¢t

K = ∑ Ki¢ti

La = Lb - (L∞ - Lb)(e∑Ki¢ti - 1)
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Fig. 1: Oscillation of the running average K0,t during four years of growth. The plot made use of the
simulated data of the Example and the assumption that the starting month m0 is 8. Note that K0,t is
equal to KA when ages are exact year multiples and that as age increases, KA is the limit of K0,t.



The two procedures of the presented method:

As mentioned in the Introduction the
proposed method is applicable in situa-
tions where dates of tagging and recapture
are available. The individuals are general-
ly of different cohorts, and lengths may be
measured over time intervals in which dif-
ferent growth rates apply. The method is
implemented by means of two distinct pro-
cedures. The first procedure uses trial val-
ues of L∞∞ to optimize the parameters of
a multiple linear regression model. The
second procedure is a computational sup-
plement to the first: making use of the re-
sults of the optimization approach to esti-
mate the ages of individuals at tagging and
recapture. VB growth curves are created
illustrating both input and theoretical lengths
(Figs 2 and 3).

First procedure: Optimization of growth
parameters by means of a multiple linear
regression model

Measured lengths at tagging and re-
capture of individuals are contained in a
dataset of  N tag-and-recapture records. If
the dates of tagging and recapture are known
the right term of expression (6) (which can
involve a variable number of monthly peri-
ods or fractions of months), can always take
the following standard form of twelve month-
ly elements:

(7)

where:

–     L∞∞  is a trial value of the uniform as-
ymptotic length;

–     The twelve coefficients K1, . . . , K12 rep-
resent monthly K values to be estimated.

–     The values of the twelve independent
variables X1, . . . , X12 are the frequencies
with which months appear in the time
lapsed between tag and recapture.

L∞ - Lb
L∞ - La

- In = Y = ∑ KjXj 
12

j=1
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Fig. 2: Plotting of input data and theoretical lengths resulting from the simulated tagging data of the
Example. There are three starting months equal to 3, 4, and 8 respectively, thus resulting in three dif-
ferent VB curves. Dotted lines indicate that for individuals with different starting months there can
exist theoretical lengths that are smaller than those corresponding to earlier ages (first case), or that
individuals may have different theoretical lengths although they are of the same age (second case).



These values depend only on the input
dates at tagging and recapture and
are not affected by the trial values of
L∞∞ . The monthly frequencies will be
zeroes for months that do not fall be-
tween tag and recapture. For the oth-
ers the frequencies will be fractions of
a month or multiple months (see nu-
merical Example). 

By writing formula (7) for all  N records
we obtain a multiple linear regression ma-
trix which can be processed by means of
standard methods available in most com-
puters3. For each trial L∞∞ there will be
twelve estimates for the monthly K’s and
a goodness-of-fit indicator R2. Optimal L∞∞
and K’s are those that maximize R2. Since
the parameters that take part in the opti-
mization process are L∞∞ and the twelve
monthly K’s, it follows that when dealing
with tagging data the degrees of freedom
of the model are N – 13.

Second procedure: Supplementary out-
puts based on the results of the optimiza-
tion approach

This procedure exploits further the re-
sults from the multiple linear regression
model and produces the following two sets
of supplementary outputs: (a) estimated
absolute ages of individuals at tagging and
recapture and, (b) estimated starting months
m0 for all individuals (refer to Notation
for an explanation of m0). A detailed de-
scription of the related algorithm is given
in Theory. 

VB plots 

In tagging experiments, individuals of
the same age may have different predict-
ed lengths since their seasonal growth curves
may have different starting months m0 (No-
tation earlier and examples in Fig. 2).  This
means that there will be as many VB curves
as there are different starting months m0
in the samples. However according to Prop-
erty 6 individuals with ages that are exact
multiples of 12 months will have the same
predicted lengths irrespective of their re-
spective m0.  

Multiple VB curves may be mathemat-
ically exact but are not very convenient for
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Fig. 3: Plot of a probabilistic seasonal curve generated from the input data and results of the Example.
The curve converges to the same asymptotic length L∞ = 100. 



practical use. An alternative approach is to
set-up a probabilistic VB curve in which for
a given age there will correspond only one
predicted length. This length will be the weight-
ed mean of all lengths predicted by each of
the VB curves discussed above. The weight-
ing factors will be the relative frequencies of
the starting months  m0 in the samples. 

For instance in the 22 tagging records
of Example, starting month m0 = 8 appears
ten times, m0 = 3 nine times and m0 = 4
three times (right column of Table 1). As-
suming that the relative frequencies 10/22,
9/22 and 3/22 are representative of the in-
dividuals in the population, a probabilistic
VB curve can be constructed in which pre-
dicted lengths are calculated by first multi-
plying the theoretical lengths of each curve
by their respective relative frequency (i.e.
10/22, 9/22, or 3/22) and adding them to-
gether (Fig. 3). 

Note that probabilistic VB curves will
have an asymptotic limit identical to the L∞∞
estimated earlier, and that in general they
will be more realistic than those resulting
from non-seasonal approaches (see relat-
ed paragraph in Discussion).

Example: Simulated tagging data

In this example the multiple linear re-
gression approach was applied to 22 records
of simulated tagging data generated with L∞∞
= 100 cm and twelve monthly K values shown
at the bottom of Table 1. The simulated tag-
ging records were generated with the fol-
lowing starting month frequencies: 10 records
with m0 = 8,  9 records with m0 = 3 and 3
records with m0 = 4. Tag and recapture dates
Da ,  Db were deliberately set to the start-
ing and ending day of a month in order to
facilitate visualization of the month fre-
quencies that were used as values of the
twelve independent variables X1, . . . , X12

in equation (7). For instance in the second
record of Table 1 the time lapsed between
1 June 2007 and 30 June 2008 is expressed
as 2x(1/12) years for June and 1x(1/12) years
for all other months. Had the tagging date
been 20 June 2007 the frequency of June
would have been (0.333 + 1)x(1/12). In or-
der to express X1, . . . ,X12 as integral num-
bers, column Y was multiplied by 12.

Table 1 also illustrates the input matrix
(column Y and the twelve independent vari-
ables X1, . . . , X12) that was used by the
LINEST linear regression procedure of MS-
Excel at the trial value L∞∞ = 100. 

Application of the first procedure: Optimization
process

A simple MS-Excel macro was prepared
to generate trial  L∞∞ values in the range of
90 – 110 cm using increments of 1 cm. Each
trial value of  L∞∞ generated 22 values of the
dependent variable Y by means of formula
(7). The LINEST procedure of the MS-Ex-
cel was then applied to the input matrix con-
sisting of column Y and the twelve columns
representing the independent variables (i.e.
month frequencies) X1, . . . , X12. Each run
of LINEST resulted in twelve estimates for
K’s and a goodness-of-fit  R2. Optimal  L∞∞
and K’s were those for which R2 = 1. As ex-
pected these optima coincided with the
values of  L∞∞ and  K’s that were used to sim-
ulate the lengths at tagging and recapture.

Application of the second procedure: Cal-
culation of additional parameters

On the basis of the optimized parame-
ters  L∞∞ and the twelve monthly  K’s the
second procedure of the method was ap-
plied in order to calculate for each individ-
ual the starting month m0 and the absolute
ages at tagging and recapture respectively

Medit. Mar. Sci., 11/1 2010, 143-154148
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(see Method earlier). This complementary
approach permitted the construction of three
VB curves and of a probabilistic VB curve
as shown in Figures 2 and 3 respectively. 

Impact of seasonality on the Brody coeffi-
cient K

Figures 1 and 2 reveal that the impact
of seasonality on growth is more visible in
early ages and that this impact progressively
diminishes with age. This is explained by re-
calling formula (5). From the way Ko,t is
formulated it is easy to prove (see Theo-
ry) that: (i)  Ko,t oscillates about the annual
average  KA and; (ii)  KA is the limit of
Ko,t as the oscillation diminishes with age.
Figure 1 illustrates an example of the os-
cillation of  Ko,t based on the twelve month-
ly K’s estimated in the Example.  The first
Ko,t of the curve is the monthly K corre-
sponding to starting month m0 = 8. It is re-
called that in the Example  the annual av-
erage  KA is 0.58. 

Discussion

On the basis of the theory and example
presented we may conclude that in the case
of data from tagging experiments season-
ality of growth can be modelled without
making assumptions as to its form. A glance
at Figures 1 and 2 shows that the numeri-
cal properties of the running average  Ko,t
suffice to explain the impact of monthly vari-
ations in K without incorporating an os-
cillating function into the VBGF. 

From the viewpoint of applicability, the
present study stresses that if sufficient and
reasonably accurate samples of tagging da-
ta are available, the resulting estimates of
L∞∞  and monthly K’s can further be ex-
ploited to offer a better insight into the as-
pects of population growth. To be noted

that analysis of tagging data seems to be
less susceptible to statistical noise than da-
ta on size-at-age. Measuring errors apart
(since they can affect both tagging and size-
at-age), the case of an individual showing
zero or negative growth during the time at
liberty is a case that needs to be considered.
In size-at-ages however such a case may be
accidental and caused by the inclusion of
individuals with different starting months
m0 (Fig. 2). 

A possible risk in the optimization of
L∞∞ is the presence of old individuals in the
samples. The logarithmic term in equation
(7) must not contain zero or negative items;
this restriction limits the trial values of  L∞∞. 

The authors also examined situations
where non-seasonal models apply to tag-
and-recapture data in which seasonality may
be evident. Figure 4 illustrates two cases in
each of which the non-seasonal VONBIT
procedure for tagging data was applied
(STAMATOPOULOS & CADDY, 1989).
In the first case use was made of the simu-
lated data of the Example, while the second
case used actual data for male Panulirus
homarus from the west coast of India
(MOHAMED & GEORGE , 1971). Both
plots show a rather high dispersion of points
which in the case of simulated data (see Ex-
ample) is known to be totally due to sea-
sonality, while in the second case it could
be interpreted as statistical noise. This fact
suggests that when non-seasonal tagging ap-
plications show similar plots, point disper-
sion might be partially reduced if the mod-
el in use also takes into consideration the
effect of seasonality on growth. However,
as already mentioned in Method, a pre-
requisite for such an approach would be the
inclusion of tagging and recapture dates in-
to the input dataset.

As a last remark the authors wish to
point out that from the methodological view-
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point the present study mainly deals with
conceptual rather than statistical aspects.
The reason is that if the idea of focusing on
the natural oscillation of K is accepted, then
the authors do not exclude the possibility
that optimizing the seasonal parameters L∞∞
and monthly K’s can be achieved by ap-
proaches that are statistically more elegant
and computationally more robust. The choice
of multiple linear regression was driven
by the fact that the latter is convenient,
known to most users and readily available
as a standard statistical instrument. 

A simple Excel-based program can be
provided to users who wish to process and
analyze seasonal tagging data. 
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Theory

This section provides guidance for the
derivation of some of the properties and
approaches presented in Method. 

Proof of Property 1

We first recall the two classical VB for-
mulae: 

(8)

(9)

which apply when  K is assumed to be uni-
form in age intervals [0 , t] and [t0 , t] respec-
tively. Expression (8) is the original von
BERTALANFFY (1938) equation while
expression (9) is its transformed version by
BEVERTON & HOLT (1957). The proof of
Property 1 derives from expression (8).  Let us
consider an individual with two theoretical
lengths: La at tagging date Da and Lb at
recapture date Db = Da+ ¢t. The growth

rate  K is assumed to be uniform in the inter-
val  [Da , Db]. We then set-up tagging and
recapture ages ta = 0 and tb = ¢t respective-
ly. Using the above settings we can write (8)
with  La playing the role of  L0 and  Lb that
of Lt, thus obtaining:

, hence Property 1.

Proof of Property 2

The second proof concerns the case
where the interval ¢t in expression (1) is
made up of n smaller intervals ¢ti
(i=1,2,…,n), in each of which different
growth rates  Ki apply. It will be proved by
induction that in such a case we can write:

(10)Lb = L0 + (L∞ - L0)(1 - e                )

- ∑ Ki¢ti 
n

1

= La + (L∞ - La)(1 - e - K¢t) 

Lb = L0 + (L∞ - L0)(1 - e - Ktb) = 

Lt = L∞ [1 - e - K(t - t0)]

Lt = L0 + (L∞ - L0)(1 - e - Kt)



We first observe that the property holds
for n=1  since in the case of only one time
interval ¢t expression (1) is valid. Next it will
be shown that if  (10) is true for  n intervals
it will also be true for n+1 intervals, in which
case the property will be fully proved. Since
(10) is assumed to be true for  n intervals,
length  L at the end of interval ¢tn will be
given by: 

(11)

On the other hand by applying formula
(1) to lengths  L and Lb in the interval
¢tn+1 we will have:

(12)

By substituting in (12) the expression for
L in (11) we obtain:

, hence Property 2.

Proof of property 6

Here we shall prove that if KA is the
annual average of twelve monthly K’s then
the running average K0,t used in expression
(5) will: (i) oscillate about KA and, (ii) will
have KA for its limit as age increases.
Without loss of generality we make the
assumption that the period between age  t0
at which length is zero and any age t contains
n monthly intervals. In this case equation (4)
takes the simpler form:

.

If the period [t0 , t] contains exactly  y
years it follows that  n will be an exact mul-
tiple of 12 and last equation becomes: 

.

In other words when the running aver-
age K0,t is calculated over 12 monthly peri-
ods of whatever order its value is always
equal to the annual average KA (Fig. 1).
This also means that even when seasonality
in growth is evident, the non-seasonal
VBGF is still valid provided that lengths are
measured at regular annual intervals. In
such a case the resulting  K will be the
annual average KA.

We next consider the case when the
period [0 , t] contains  y years (y≥1)  and  p
months (0<p<12). Equation for K0,t
becomes:

As  y increases the terms (1 + p / 12y) and

tend to become  1  and  0  respectively; this
in turn means that as age increases the run-
ning average K0,t has for its a limit the annu-
al average KA.

Algorithm for estimating ages and start-
ing months  m0 for individuals

Let us assume that optimal values for
L∞∞ and monthly  K’s have been computed at
an earlier stage. We then consider an individ-

( ∑ Ki) / 12y
p

i=1

1
(1+p / 12y)

= [KA + ( ∑ Ki) / 12y]
p

i=1

1
(12y+p)

K0,t = (12yKA + ∑ Ki) =
p

i=1

1
12y

K0,t = 12yKA= KA

1
n

K0,t = ∑ Ki

Lb = La + (L∞ - La)(1 - e                 )

- ∑ Ki¢ti 
n+1

j=1

Lb = L + (L∞ - L)(1 - e - Kn+1¢tn+1)

L = La + (L∞ - La)(1 - e                )

- ∑ Ki¢ti 
n

j=1
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ual with lengths  La and  Lb at tagging and
recapture respectively. First task will be the
estimation of  L0 at a relative age  t = 0. We
start by assigning a relative age of 1/12 to the
beginning of the month containing tagging
date Da. In this manner the relative age  ta at
Da is known and so is  tb = ta + ¢t. Evident-
ly relative age 0 will be at the beginning of the
preceding interval (Fig. 5). On the basis of
the above observations the two growth paths
in the intervals [0 , ta] and [0 , tb] are known
and we can write formula (5) twice:

(13)

(14)

If La = Lb (case of zero growth) length
L0 can be estimated from either (13) or (14). 

If  La # Lb we can eliminate the term
(L∞∞ - L0) between (13) and (14) to obtain:

(15)

Starting with the newly estimated L0 we
apply a repeating process in which formula
(3) calculates lengths in reverse order. For
instance by setting  Lb = L0 in (3) we can
calculate La at age 0-1/12. We then set
Lb = La and re-calculate La at age 0-2/12.
The process is repeated until La has become
zero or negative. Meanwhile we keep track
of all successive alterations of ages and
months as shown in Figure 5. 

If the final La is zero then the relative
age at the beginning of the current interval
will itself be the VB parameter t0.  If La is
negative (see example in Fig. 5) then param-
eter t0 is given by VB formula (9).

With t0 estimated ages ta - t0 and        tb
- t0 will represent estimated absolute ages at
tagging and recapture respectively for the
individual under study.

By applying the above algorithm to all
individuals in the input dataset we obtain a
set of results containing estimated absolute
ages at tagging and recapture as well as
starting months m0. In this manner input
and estimated data can be plotted as shown
in Figures 2 and 3.

1 - e - K0,tata

e - K0,tata - e - K0,tbtb
L0 = La - (Lb - La)

Lb = L0 + (L∞ - L0)(1 - e - K0,tbtb)

Lb = L0 + (L∞ - L0)(1 - e - K0,tbtb)
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Fig. 5: Graphical representation of the numerical process for the estimation of starting month m0 and
absolute ages at tagging and recapture of an individual. 
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