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Abstract

Luciobarbus guiraonis (Eastern Iberian barbel) is an endemic fish species restricted to Spain, mainly distributed in the Júcar 
River Basin District. Its study is important because there is little knowledge about its biology and ecology. To improve the 
knowledge about the species distribution and habitat requirements, nonlinear modelling was carried out to predict the presence/
absence and density of the Eastern Iberian barbel, based on 155 sampling sites distributed throughout the Júcar River Basin District 
(Eastern Iberian Peninsula). We used multilayer feed-forward artificial neural networks (ANN) to represent nonlinear relationships 
between L. guiraonis descriptors and variables regarding the physical habitat and biological components (macroinvertebrates, fish, 
riparian forest). The gradient descent algorithm was implemented to find the optimal model parameters; the importance of the 
ANN’s input variables was determined by the partial derivatives method. The predictive power of the model was evaluated with 
the Cohen’s kappa (k), the correctly classified instances (CCI), and the area under the curve (AUC) of the Receiver Operating 
Characteristic (ROC) plots. The best model predicted presence/absence with a high performance (k= 0.66, CCI= 87% and AUC= 
0.85); the prediction of density was moderate (CCI = 62%, AUC=0.71 and k= 0.43). The fundamental variables describing the 
presence/absence were; solar radiation (the highest contribution was observed between 2000 and 4200 WH/m2), drainage area 
(with the strongest influence between 3000 and 5.000 km2), and the proportion of exotic fish species (with relevant contribution 
between 50 and 100%). In the density model, the most important variables were the coefficient of variation of mean annual flows 
(relative importance of 50.5%) and the proportion of exotic fish species (24.4%). The models provide important information about 
the relation of L. guiraonis with biotic and abiotic variables, this new knowledge can help develop future studies and management 
plans for the conservation of this species in the Júcar River Basin District and, potentially, for the conservation of other endemic 
fish species of Barbus and Luciobarbus in Mediterranean rivers.

Keywords: Eastern Iberian Barbel, Luciobarbus, hydromorphology, Species distribution model, Mediterranean rivers, Fish habi-
tat, Artificial Neural Networks. 
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Introduction 

Ecological models are useful to understand the 
effects of environmental variables on species distribution 
and abundance and to assess the alteration of ecological 
patterns as a response to environmental changes (Jopp 
et al., 2011). These models can be integrated in decision 
support systems for ecological restoration, impact 
assessment, reserve design and conservation planning 
(Pearce & Ferrier, 2000; Guisan & Thuiller, 2005; 
Franklin, 2010; Drew et al., 2011; Olaya-Marín et al., 
2012; Olaya-Marín et al., 2013). Moreover, ecological 
modelling has become an important tool for learning 
about the implications of stressors like climate change, 
hydrological regime alteration, water pollution, and 

invasive species introduction on freshwater ecosystems 
(Drew et al., 2011). This constitutes an important line 
of research in Mediterranean rivers (Olaya-Marín et al., 
2013; Vezza et al., 2015) because 56% of the endemic 
freshwater fish species are threatened with extinction 
(Smith and Darwall, 2006). From a conservation point 
of view, models of species presence/absence and density 
may help in the search for better conservation and river 
restoration policies (Costa et al., 2012; Muñoz-Mas et 
al., 2012; Zarkami et al., 2012).

Machine learning (ML) techniques have been seen 
as a promising discipline to advance current knowledge 
of ecological processes and patterns (Olden et al., 
2008; Drew et al., 2011; Jopp et al., 2011; Leclere et 
al., 2011). These techniques have been developed from 
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artificial intelligence and applied in several disciplines 
of environmental sciences (Hsieh, 2009), owing to 
their ability to model nonlinear processes (Olden et al., 
2008; Hsieh, 2009). This ML feature allows us to derive 
better predictions and improve the effectiveness of 
decision making in environmental management (Evans 
& Cushman, 2009).

Currently, ML is a cornerstone and one of the most 
active research areas in the field of artificial intelligence 
(Jopp et al., 2011). Artificial neural networks (ANN) 
are one of the most effective ML techniques to capture 
nonlinearities in ecological problems (Lek et al., 2005; 
Franklin, 2010; Feio & Poquet, 2011), the use of ANN 
in freshwater studies demonstrates this affirmation. Such 
models have been successful in predicting the density 
and biomass of Salmo trutta (Baran et al., (1996), the 
presence/absence of other fish species (Mastrorillo et 
al., (1997), and also in predicting fish and decapod 
presence (Joy & Death, (2004). Fish presence/absence is 
well classified by ANN, both in temperate zones (Tirelli 
et al., 2009; Tirelli & Pessani, 2011) and tropical ones 
(Hauser-Davis et al., 2010), even when modelling with 
unbalanced datasets (in terms of prevalence). Olaya-
Marin et al. (2012) found satisfactory results in modelling 
native fish richness with ANN; their approach provided 
an evaluation of the effects of hydromorphological 
changes and river restoration actions (weir removal) in 
three Spanish Mediterranean rivers.

This study focused on the Eastern Iberian barbel 
(Luciobarbus guiraonis) because it is a Mediterranean 
endemic freshwater fish mainly distributed in the Júcar 
River Basin, in Spain (Doadrio, 2001; Jiménez et al., 

2002), and its ecology and biology is poorly known 
(Doadrio, 2001); moreover, this species is facing a high 
risk of extinction and its population is estimated to 
decline by 30% in the next ten years (Crivelli, 2006). 
The ichthyofauna of the Iberian Peninsula has a high 
endemicity (Doadrio & Aldeguer, 2007); therefore, 
the study of aquatic ecosystems in this area should be 
supported by reliable models to predict future ecological 
changes, in order to understand potential alterations and 
avoid their occurrence through the implementation of 
restoration actions (Clark et al., 2001; Drew et al., 2011; 
Olaya-Marín et al., 2012).

In this paper, we evaluate the ability of ANN to 
identify the factors affecting the density and presence/
absence of L. guiraonis in the Júcar River Basin District at 
the basin scale. The aims of this study were (i) to identify 
relevant environmental variables affecting the presence/
absence and abundance of L. guiraonis and (ii) to assess 
the ranking of variable importance in the estimation of 
fish presence/absence and abundance.

Materials and Methods 

Study area and data collection
The research was conducted in the main channels 

of the Júcar, Cabriel and Turia rivers (Eastern Iberian 
Peninsula). This area is characterised by torrential 
storms in the humid seasons, severe droughts in the 
dry seasons and a hydrological response controlled by 
the rainfall regime, which is typical in Mediterranean 

Fig. 1: Study area showing the distribution of the 145 sampling sites in the three rivers (Jucar, Cabriel and Turia rivers).
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environments (Granado-Lorencio, 1996; Vila-Gispert 
et al., 2005). Temporal irregularities of rainfall 
cause particular variability, expressed by interannual 
differences in discharge (Granado-Lorencio, 1996; 
Gasith & Resh, 1999). The natural hydrological regime 
in these rivers has been altered by dams and weirs, used 
for hydropower generation and water consumption for 
agricultural, industrial and domestic activities. The most 
altered habitats are in the middle and lower parts of the 
catchments, in which there is a poor development of 
riparian vegetation caused by agricultural pressures and 
wastewater discharges (Martínez-Capel et al., 2008). 
This situation is mainly evidenced in the stretches 
located between the Alarcón Dam and the mouth of the 
Júcar river (Fig. 1).

Mediterranean fish communities are known for their 
low species richness, high endemicity (Ferreira et al., 
2007) and the predominance of Cyprinids, which possess 
high specific diversity, are exclusive to epicontinental 
water bodies, and have typical morphofunctional and 
physiological adaptations to fluctuating environments 
(Granado-Lorencio, 1996; Granado-Lorencio, 2000). 
Knowledge of the specific ecological requirements of 
Mediterranean freshwater fish inhabiting the Iberian 
Peninsula is scarce (Ferreira et al., 2007; Aparicio et al., 
2011; Maceda-Veiga & De Sostoa, 2011). Although some 
studies about the habitat requirements of cyprinids at 
the microhabitat and mesohabitat scale have been made 
in the Iberian Peninsula (Vezza et al., 2015), studies at 
the basin scale are limited. L. guiraonis is a cyprinid 
species and it has been poorly studied; consequently, 
there is little information about its biology and ecology, 
most of it having been inferred from similar species like 
Luciobarbus graellsii and Luciobarbus bocagei (Doadrio, 
2001). However, these extrapolations could lead to 
erroneous conclusions about the ecology of L. guiraonis 
and the design of inadequate restoration measurements 
and management actions (Aparicio et al., 2011).

The density and presence/absence of Luciobarbus, 
the proportion of exotic fish species, the total density of 
invasive fish and fish predator density were calculated 
from field data. These data were collected by single-pass 
electrofishing during the spring, summer and autumn 
from 2004 to 2010, in 145 sampling sites in the main 
channels of the Júcar, Cabriel and Turia rivers. The limits 
of the sampling sites were open (no netting) and the 
minimum length of the sites was 50 m.

Response and predictive variables 
The sampling dataset consists of 145 sites along the 

main channels of the three Mediterranean rivers (Fig. 1). 
Fish density and presence/absence were the dependent 
variables for the models in function of biological and 
habitat variables. Species density was recorded as the 
number of fish caught per m2.

Twenty-seven environmental variables were used 

as potential predictors in the ANN models (Table 1), 
these variables were selected by taking into account their 
ecological importance for the fish life cycle (Oberdorff 
et al., 1995; Granado-Lorencio, 1996; Jackson et 
al., 2001; Bernardo et al., 2003; Costa et al., 2012). 
These environmental data were obtained from three 
sources (Table 1): in situ (fieldwork), GIS analysis and 
official monitoring networks (MN) of stream flow and 
biological variables (Confederación Hidrográfica del 
Júcar, Government of Spain). Geographical variables 
(i.e. altitude, distance from the source, length of channel 
without artificial barriers, and others) were computed 
in ArcGIS 9.3.1 with a 5-metre resolution digital 
elevation model supplied by the National Geographical 
Institute of Spain. Altitude, water temperature, and the 
longitudinal natural channel slope play an important 
role in the distribution of fish communities throughout 
the rivers, since they influence flow velocity, water 
oxygenation and the magnitude of sediments transported 
by the stream (Jackson et al., 2001; De Sostoa, 2002); 
factors that affect the development of different habitats 
for fish life (Bernardo et al., 2003; Costa et al., 2012). 
The length of channel without artificial barriers, number 
of tributaries between artificial barriers and drainage 
area between artificial barriers were included in the 
research because dams and weirs are physical obstacles 
that limit fish migration along the river (García de Jalón 
& González del Tánago, 2007; García de Jalón et al., 
2007); moreover, longitudinal connectivity restoration is 
critical to reestablish the natural dynamics of freshwater 
ecosystems (Lake et al., 2007). Other geographical and 
hydrological variables, such as distance from the source, 
drainage area, potential insolation or solar radiation, 
magnitude and variability of river discharge, are key 
factors for Mediterranean ichthyofauna conservation 
(Granado-Lorencio, 2000; Filipe et al., 2010; Hermoso 
& Clavero, 2011).

It is well known that water quality affects the 
distribution and composition of fish communities 
(Schlosser, 1991; Jackson et al., 2001). We considered 
water quality indices such as the Iberian Biomonitoring 
Working Party (IBMWP) and the general physico-
chemical water quality index (ICGp), because they give 
an integrative estimation of environmental quality and 
helped us to reduce dimensionality. The IBMWP is a 
modification of the Biological Monitoring Working Party 
score system (1978), adapted to the Iberian Peninsula 
by Tercedor and Sánchez-Ortega (1988; 1996). This 
index assesses biological quality in water bodies based 
on macroinvertebrates; IBMWP values are distributed in 
five ranges of water quality: 101: very clean water; 100-
61: unpolluted or not appreciably altered water; 60-36: 
partially polluted water with some evident effects; 35-16: 
very polluted water; 15: heavily polluted water.

The ICGp is a variation of the general quality index 
(Martínez-Muro, 2003; CHJ, 2008), originally developed 
by Provencher & Lamontagne (1977); it results from the 
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combination of 11 parameters and scores range from 
0 (heavily polluted water) to 100 (very good quality). 
Biological processes, specifically the interactions 
between species, influence fish distribution (Fitzpatrick 
et al., 2007; Broennimann et al., 2012), but these kinds of 
variables are commonly neglected in species distribution 
modelling (Davis et al., 1998; Fitzpatrick et al., 2007). 
To deal with this issue, we have included in our analysis 
some variables related to the fish community and species 
interactions; specifically, the proportion of exotic fish 
species (%), total density of invasive fish (Fish/m2), and 
fish predator density (Fish/m2), because exotic species 
are one of the main threats for endemic ichthyofauna in 
Mediterranean rivers (Granado-Lorencio, 1996; Doadrio, 
2001; Smith and Darwall, 2006). The exotic and invasive 
species were quantified separately, in accordance with 
the terminology by Copp et al. (2005). These authors 
defined an exotic species as a species that enters an 
ecosystem from outside the historic range of that species, 
and they define an invasive species in an ecosystem as 

a non-indigenous species that may cause damage to 
the economy, environment, human health, recreation or 
public welfare.

At ungauged locations, the mean monthly flow 
was calculated through a linear interpolation based on 
the relationship between flow in natural conditions and 
the accumulated drainage area between gauged sites 
(Leopold & Maddock, 1953; Leopold et al., 1964; 
Caissie & El-Jabi, 1995; Caissie, 2006a). River discharge 
and its pattern of variability define the lifecycle traits 
of Mediterranean fish species (Ferreira et al., 2007); 
therefore, several variables regarding the magnitude and 
variability of river flows (at monthly scale) during the 
previous years and in the spawning season before the 
fish sampling (from April to June) were considered. The 
riparian habitat quality index (QBR, Munné et al., 2003) 
was introduced in the study to assess the morphological 
conditions of the sampling sites. QBR integrates four 
components and synthesises various qualitative features 
that describe the conservation status of the riparian 

Table 1. Potential environmental variables selected to build the presence/absence and density predictive models.
Variable Code Method Range Mean
Channel length without artificial barriers (km) CWB GIS 0.8-79.0 43.8
Number of tributaries between artificial barriers TAB GIS 0.0-54.0 28.7
Altitude (m a.s.l) ALT GIS 28.0-1286.0 553.8
Drainage area (km2) DRA GIS 95.0-18296.0 4189.0
Drainage area between artificial barriers DAB GIS 3.0-4624.0 866.0
Distance from the source (km) DHS GIS 20.5-383.7 168.0
Natural slope of the channel (%) NSL GIS 0.0-6.8 0.44
Solar radiation (WH/m2) SOR GIS 1153.0-6298.0 3915.6
Water temperature (ºC) WAT MN 5.8-19.9 13.6
Mean Annual flow rate (m3/s) FMA MN 0.03- 12.22 5.1
Mean monthly flow (Two year before sampling) (m3/s) MMF 0.10- 13.63 5.13
Inter-annual mean flow (5 years before sampling) FIA MN 0.11- 12.36 6.02
Coefficient of variation of mean monthly flows  
(5 years before sampling)

FIM MN 0.23-1.09 0.65

Coefficient of variation of mean annual flows (5 years 
before sampling)

FCV MN 0.15-0.91 0.36

Inter-monthly flow variation of the mean monthly flows 
(5 years before sampling)

FVM MN 0.36-3.37 0.83

Maximum monthly flow during spawning (April to June 
before sampling) (m3/s)

MaxMF MN 0.01- 26.38 7.82

Mean monthly flow during spawning (April to June 
before sampling) (m3/s)

MeanMF MN 0.01- 21.02 6.3

Minimum monthly flow during spawning (April to June 
before sampling) (m3/s)

MinMF MN 0.00-7.87 2.73

Mean monthly low flow (of the two months with the 
lowest monthly flow for the year before sampling) (m3/s)

MeanLMF MN 0.00- 8.18 2.9

Sampling year FIY n/a 2004-2010 n/a
River name RN n/a 1-3 n/a
Proportion of exotic fish species (%) PEF In situ 0.0-100.0 37.6
Total density of invasive fish (Fish/m2) DIF In situ 0.000-0.008 0.002
Fish predator density (Fish/m2) FPD In situ 0.0000-0.0035 0.0005
Index of Riparian Habitat Quality QBR MN 10-100 73.28
Iberian Biomonitoring Working Party IBMWP MN 61.0-260.0 124.3
Physicochemical Index of water quality ICGp MN 67.6-87.0 80.5
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area: total vegetation cover, vegetation cover structure, 
vegetation cover quality, and river channel morphological 
alterations. Each feature can be evaluated from 0 to 25 
and the total valuation can range from 0 to 100. QBR is 
accepted as a good approximation of riparian quality in 
several regions, including Mediterranean environments 
(Aguilella et al., 2005; Garófano-Gómez et al., 2011). 
Finally, the fish sampling year and river name were used 
as potential predictive variables in order to discern if the 
consecutive years of data (timeline) or the river were 
relevant in predicting the density and presence/absence 
of L. guiraonis.

Artificial neural networks modelling
Artificial neural networks (ANN) are mathematical 

models inspired by the structure of the nervous system, 
the neuron being its fundamental building block (Lek et 
al., 2005; Olden et al., 2008). ANN are valuable tools in 
ecological studies because they have proved to be flexible, 
robust and generalisable (Lek et al., 2005; Olden et al., 
2008; Alpaydın, 2010). The most prevalent type of ANN 
in ecological applications is the multilayer perceptron 
(MLP) (Özesmi et al., 2006), which has been successfully 
applied in problems of pattern recognition, forecasting, 
signal processing and modelling of complex nonlinear 
systems (Lek et al., 2005; Goethals et al., 2007). 

An MLP network basically consists of a set of 
sensory units in the input layer, one or more hidden 
layers of active nodes (artificial neurons) and an output 
layer of computational nodes. All input to a neuron in a 
particular layer comes from preceding layers through 
unidirectional connections characterised by their strength. 
The weights quantify the connection strength, thus the 
training (learning) phase of the ANN can be interpreted as 
the process of obtaining the best calibrated weight values, 
which are updated during the training process to reduce 
the differences between the observed and the predicted 
outputs. This process ends when a given stopping criterion 
is reached, which is important to determine whether the 
model has been optimally or sub-optimally trained. The 
use of a cross-validation set during the process allows the 
application of the so called early stopping criteria, which 
implies stopping the training phase when cross-validation 
error increases in a specified number of iterations. 
Therefore, further training may produce an overfitting 
of the training data without improving the generalisation 
performance of the network. 

MLP regressions have been used in this research to 
predict the presence/absence and density of L. guiraonis, 
this means that simulated values were rounded to integer 
values in order to generate the final prediction of each 
model. Presence/absence is treated as a binary variable, 
where presence was denoted by 1 and absence was 
represented by 0. Density was converted to an ordinal 
variable, according to the number of fish per square 
metre; class 1 means a density of zero, class 2 comprises 

densities between 0.001 and 0.019, and class 3 comprises 
densities in the range from 0.020 to 0.066 ind/m2 (Table 
2). These categories were created according to data 
frequency, by aggregating a similar number of records in 
the three classes.

The generalisation capacity of ANN can be restricted 
by the distribution pattern and magnitudes of the original 
data. Data pre-processing is highly recommended 
before building the ANN models (Goethals et al., 2007). 
Accordingly, the input environmental variables were first 
transformed to ranges of similar order of magnitude; they 
were proportionally scaled between 0 and 1 in their range of 
values (e.g. Olden & Jackson, 2002; Park et al., 2008; Tirelli 
& Pessani, 2009; Qin et al., 2010). Another aspect playing 
a crucial role in the overall performance of the resulting 
network is the process of input variables selection; a two-
step methodology was used herein. Firstly, an exploratory 
analysis to identify collinearity among the potential 
predictors was carried out by hierarchical cluster analysis 
using squared Spearman correlations (ρ2) as a similarity 
measure. In the case of highly correlated variables (ρ2> 0.8), 
only the one with the highest ecological interpretability was 
chosen (Olaya-Marín et al., 2012). Secondly, a forward 
stepwise method was conducted to eliminate irrelevant 
inputs, thus reducing network architecture complexity 
(Gevrey et al., 2003). 

Several MLP models were built and tested, in order to 
establish (by systematic trial and error) the optimal number 
of neurons in the hidden layer and the optimal transfer 
function in the hidden and output layers. Commonly, transfer 
functions are nonlinear; they transform the weighted sum of 
inputs into an output signal (Zhang et al., 1998; Isa et al., 
2010) and it is typical to use the same transfer function in 
hidden and output layers (Lek et al., 2005; Goethals et al., 
2007). MLP results are very sensitive to the implemented 
transfer functions in their layers (Piekniewski & Rybicki, 
2004; Isa et al., 2010). Generally, the selection of a transfer 
function is based on the best performance by trial and error 
(Isa et al., 2010), by comparing different transfer functions 
in the hidden and output layers. In this work, two transfer 
function combinations (hidden layer/output layer) were 
tested: hyperbolic tangent/linear, and logistic/linear; the 
combination offering the best performance was selected (Isa 
et al., 2010; Olaya-Marín et al., 2012). 

The ANN models were designed with a single hidden 

Table 2. Range and total number of data classes used to build 
the presence/absence and density predictive models.

Model Class Range Number of data 
Presence/
Absence

Presence 1-1 102
Absence 0-0 43

Density
Class 1 0-0 43
Class 2 0.001-0.019 52
Class 3 0.020-0.066 50
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layer and the number of neurons optimised by trial and 
error. Bishop (1996) has shown that a single hidden layer 
is sufficient for statistical applications with reasonable 
computation requirements. Moreover, the use of a single 
hidden layer is comparable to results using multiple hidden 
layers (Kurková, 1992). The dataset was randomly divided 
into three sections (training: 60%, validating: 20% and 
testing sets: 20%), these percentages are frequently used 
in the literature (Ryan et al., 2004; Qin et al., 2010). The 
optimisation method used to train the networks (Demuth 
et al., 2010) was the gradient descent with momentum and 
adaptive learning rate backpropagation algorithm (traingdx 
function in Matlab), with a momentum constant of 0.9 and 
a learning rate of 0.01.

Three efficiency indices were used to evaluate the 
predictive capacity of the models: the percentage of 
Correctly Classified Instances (CCI) (Buckland & Elston, 
1993; Fielding & Bell, 1997), Cohen’s kappa (Cohen, 
1960) calculated upon the confusion matrix (Table 3), and 
the area under the curve (AUC) of the Receiver Operating 
Characteristic (ROC) plots (Hanley & McNeil, 1982). 
Cohen’s kappa measures the proportion of correctly 
classified points after accounting for the probability of 
chance agreement (Drew et al., 2011). Kappa ranges from 
0 to 1. According to previous studies (Koch et al., 1977; 
Manel et al., 2001; Drew et al., 2011) the index can be 
valued as poor (0.00 to 0.39), moderate (0.40 – 0.59), 
substantial (0.60 to 0.79) or excellent (0.80 to 1). AUC is 
calculated as the area under the ROC curve (Franklin, 2010) 
and it is applicable only to binary variables (e.g., presence/
absence). AUC is interpreted as the probability of correctly 
classifying a pair of randomly selected subjects, one from 
the presence group and the other from the absence group 
(Fielding & Bell, 1997; Franklin, 2010). AUC ranges from 
0.50 to 1: a value between 0.50 and 0.70 indicates a low 
discrimination (poor model performance); from 0.70 to 
0.90, moderate discrimination; and higher than 0.90, high 
discrimination (Swets, 1988; Manel et al., 2001).

The selection of a parsimonious model is important in 
order to find a robust model, for example when different 
options of model structure or variables can be used upon 

the same database. We took into account the number of 
parameters using the Akaike Information Criterion (AIC). 
This performance metric considers the fitting error and the 
number of variables used to reach that error, and is useful 
to assess the relationship between performance and neural 
network size. A smaller AIC means a better performance 
in relation to the number of parameters used by the model. 
Thus, choosing the model with the smallest AIC implies 
selecting the simplest one, with the least inputs and hidden 
neurons. This criterion is valuable because models with 
fewer variables are much easier to interpret, have a lower 
level of prediction uncertainty (Jorgensen and Fath, 2011), 
and an optimal ANN architecture is the simplest model that 
adequately captures the relationships in the training data 
(D’Heygere et al., 2006). 

Finally, to evaluate the importance of input variables 
in each model, the partial derivatives method (PaD) was 
implemented (Dimopoulos et al., 1995; Lek et al., 1995). 
PaD method can be used to analyse the output changes as 
a response of small variations in each input variable, thus 
to estimate the relative importance of the input variables 
to predict presence/absence and density.

Results

The correlation matrix of the input variables 
indicated that altitude (ALT) and drainage area (DRA) 
were strongly correlated (Fig. 2). Following the 
literature, DRA has a higher ecological importance for 
fish and is broadly used to explain variations among 
aquatic communities (Ibarra et al., 2003; Olaya-Marín et 
al., 2012); thus, ALT was removed as potential predictive 
variable. Minimum monthly flow (MinMF, April-June) 

Table. 3. Error matrix used to calculate the percentage of 
correctly classified instances (CCI) and Cohen’s Kappa.

Observed
Predicted Presence Absence
Presence a (true positive) b (false positive)
Absence c (false negative) d (true negative)

Fig. 2: Hierarchical clustering using squared Spearman correlation (ρ2) of environmental variables. Nomenclature is shown in 
Table 1. The variables in boxes were excluded in further analyses.
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was highly correlated (ρ2 = 0.97) with the mean monthly 
flow of the 2 lowest flows (MeanLMF); MeanLMF was 
discarded because MinMF acts as a critical threshold 
for habitat availability, mainly in terms of wetted area 
and water depth, with a direct effect on the recruitment 
and density of the youngest fish cohorts. Maximum 
monthly flow (MaxMF) has a correlation of 0.98 with 
mean monthly flow (MeanMF); MaxMF is important 
because is related to high flows and floods, which are 
important to maintain habitat diversity and may occur 
between April-May, during the L. guiraonis spawning 
period (Doadrio, 2001), we excluded MeanMF from 
further analyses. According to Figure 2, the number of 
tributaries between artificial barriers (TAB) had a strong 
correlation with the channel length without artificial 
barriers (CWB); however, we preserved both of them for 
the input selection through the forward stepwise method, 
given their importance for upstream and downstream 
migration, and the creation and availability of spawning 
habitats for the Mediterranean fish (Granado-Lorencio, 
2000; Olaya-Marín et al., 2012).

The hyperbolic tangent in the hidden layer and linear 
in output layer were the best transfer functions to predict 
presence/absence of L. guiraonis. Figure 3a shows that 
Cohen’s kappa increases at a high rate, from 1 to 8 predictive 
variables, and the rate of improvement is dramatically 
reduced from 8 to 19 variables; using 20 variables results 
in another significant increment (maximum k=0.85). The 
density model (Fig. 3b) reached the best performance using 
logistic and linear transfer functions; the best performance 
with a small number of inputs was reached by the model 
with 5 input variables. By using 10 or 15 variables, there 
was a potential for better performance; nevertheless, we 
selected the model with 5 predictors because a model with 
a reduced number of input variables is more interpretable 
and applicable (Drew et al., 2011).

To predict the presence/absence of L. guiraonis, the 
best neural network architecture found had three layers (i.e. 
8→6→2) with eight nodes in the input layer, six neurons 
in the hidden layer, and two neurons in the output layer 
(Fig. 5a). The model with 12-inputs (12→9→2) has a 
kappa of 0.77 (Fig. 3 and Table 4), but it was not selected 
because it has almost twice the number of parameters of 
the 8-input model. This involves a test-AIC of 243.88 
in the 12-input model and a test-AIC of 113.4 (68 neural 
network parameters) in the 8-input model (Table 5 and 
Fig. 4). Moreover, both models have a kappa coefficient 
classified as substantial. The eight predictive variables 
in the selected presence/absence model were (in order 
of importance): solar radiation (SOR), drainage area 
(DRA), proportion of exotic fish species (PEF), mean 
annual flow rate (FMA), coefficient of variation of mean 
monthly flow (FIM), number of tributaries between 
artificial barriers (TAB), natural slope of the channel 
(NSL) and the Iberian Biomonitoring Working Party 
(IBMWP). This network possesses a high percentage of 
CCI (87%), a substantial kappa coefficient (0.66) and a 

good performance, evidenced by a value of 0.85 in the 
area under the ROC curve, which indicate that this model 
discriminates well (Manel et al., 2001; Gabriels et al., 
2007). 

For fish density, the best parsimonious model had 5 
inputs (Table 5), namely; coefficient of variation of mean 
annual flows (FCV), proportion of exotic fish species 
(PEF), minimum monthly flow from April to June before 
sampling (MinMF), sampling year (FIY) and IBMWP. 
The optimal network topology for this case consisted of 
five nodes in the input layer, four neurons in the hidden 
and three nodes in the output (i.e., 5→4→3), and an 

Fig. 3: Influence of the number of input variables and transfer 
functions (hidden layer/output layer) in models’ performance. 
a) presence/absence of L. guiraonis. b) Density of L. guiraonis. 
Cohen’s Kappa was calculated for the entire data set.

Table 4. Predictive results of ANN models (CCI= Percentage 
of correctly classified instances; Cohen’s kappa; AUC= Area 
Under the Curve). ANN structure indicates the number of 
nodes in the three layers (input/hidden/output).

Model ANN-structure CCI Cohen’s 
kappa AUC

Presence/absence
8→6→2 87% 0.66 0.85

12→9→2 90% 0.77 0.93

Density
5→4→3 62% 0.43 0.71

15→11→3 72% 0.57 0.83
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output layer which classifies density into three classes 
(Fig. 5b). This model presented a lower performance 
than the presence/absence model (Table 4); with CCI of 
62%, a moderate kappa coefficient (0.43) and an AUC of 
0.71. These values indicate a moderate efficiency of the 
model (e.g. Tirelli et al., 2009). 

Models with more input variables also had a moderate 
efficiency (Table 5). For example, the density model 
with 15 inputs (15→11→3) presents a CCI of 72%, a 
moderate kappa coefficient (0.57) and a moderate AUC 
(0.83). However, this model is clearly over dimensioned, 
including five times the number of free parameters 
(weights) as the selected model. This is clearly reflected 
in the AIC index, as shown in table 5 and Figure 4. 

The implementation of the partial derivatives 
algorithm revealed that the most influential variables to 
predict the presence/absence of L. guiraonis were: solar 
radiation (SOR), with a relative importance of 27.8%; 
drainage area (DRA), with 24.53%; and the proportion 
of exotic fish species (PEF), with 13.60% (Fig. 5a). 
Partial derivatives of each of these variables were plotted 
against the corresponding input values (e.g. Brosse et al., 
2003). Positive values in the y axis (Fig. 6) indicate a 

positive relationship between the input and the output 
variable; conversely, negative values express an inverse 
relationship (Gevrey et al., 2003; Olaya-Marín et al., 
2012). The PaD analysis (Fig. 6a) led to the following 
observations:

• The highest partial derivatives with respect to 
drainage area (DRA) occur in the range between 3000 to 
5000 km2. This means that the increase of DRA is related 
to an expected increment of L. guiraonis presence, but 
this relation is weaker for DRA values over 5000 km2.

• For PEF, in the range [50% - 100%] the highest 
negative partial derivatives are found. Therefore, values 
of PEF over 50% point towards a relevant reduction in 
the probability of presence for L. guiraonis. 

• The negative partial derivatives in relation to 
solar radiation (SOR) show that the increase in SOR 
contributes towards reducing the probability of presence, 
the largest negative contributions being found in the 
range from 2000 to 4200 WH/m2.

The most important variables in the density model 
were the coefficient of variation in the mean annual flow 
(FCV) with a relative importance of 50.5% (Fig. 5b), and 
the proportion of exotic fish species (PEF) with 24.40%. 

Fig. 4: Akaike Information Criterion (AIC) as a function of the number of neural network parameters, indicating the positive trend 
in model complexity. a) presence/absence of L. guiraonis. b) Density of L. guiraonis.

Table 5. Akaike Information Criterion (AIC) calculated in presence/absence and density models (RMSE= Root mean square error, 
n = sampling size, k = neural network parameters).

Model Phase RMSE n K AIC

Presence/Absence

ANN 
(8→6→2)

Training
Validation
Test

0.327
0.310
0.466

87
29
29

68
38.76
102.08
113.84

ANN 
(12→9→2)

Training
Validation
Test

0.224
0.433
0.354

87
29
29

137
143.8
249.73
243.88

Density

ANN 
(5→4→3)

Training
Validation
Test

0.422
0.452
0.439

87
29
29

39
2.92
54.95
54.17

ANN 
(15→11→3)

Training
Validation
Test

0.375
0.419
0.400

87
29
29

212
338.56
398.75
397.45
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Given the moderate performance of this model, the PaD 
method was unable to support an ecological interpretation 
of the predictive variables. Partial derivatives with 
respect to FCV and PEF were positive and negative at the 
same time, without a precise tendency; therefore, it was 

not possible to provide a robust mathematical conclusion 
about the effects of FCV and PEF on L. guiraonis density 
(Fig. 6b). The same situation occurred after performing 
PaD analysis with the model based on 15 input variables.

Fig. 5: Contribution of each independent variable predicting a) presence/absence (left) and b) density (right), based on the partial 
derivatives method (PaD). Dotted lines represents the level of significance (13 and 20% respectively) according to Brosse et al. (2003).

Fig. 6: Output partial derivatives of the most significant predictive variables, as a function of each environmental variable. Left a) 
Presence of L. guiraonis. Right b) Density of L. guiraonis.
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Discussion 

A modelling approach based on ANN has been 
presented herein to classify the presence/absence of the 
target fish species. It has shown to be efficient, based on 
a set of performance indices, and the variables involved 
constitute predictive variables with ecological relevance; 
moreover, the relationships revealed by the PaD method 
have ecological meaning, as discussed below. These 
features provide evidence to support the proposed model, 
illustrating that it can be used in further studies on the 
relationships between the environmental variables and 
L. guiraonis, and thus improve the understanding of the 
fluvial Mediterranean ecosystems. 

Regarding the density model, it is important to 
highlight that the predictive variables are relevant for 
the target species, even though the best ANN model 
found had a moderate performance. In this aspect, it is 
important to remark that the model accuracy is sensitive 
to the thresholds used for the categorisation into three 
classes; in this study the categorisation was made in 
three classes according to frequency, thus each of the 
classes included between 43 and 51 samples. However, 
if we had a larger database, different ways of grouping 
could be tested, with potentially better results for density. 
Furthermore, we could test other specific modelling 
techniques for count data modelling to deal with many 
zeros (e.g. Lambert, 1992; Liu & Chan, 2010) or ANN 
ensembles (e.g. Muñoz-Mas et al., 2015). Additionally, it 
was not possible to establish a clear relationship between 
the input variables and species density from PaD analysis 
(Fig. 6b); one of the reasons could be an interaction 
between FCV and PEF or another variable (e.g. Gevrey 
et al., 2003), which probably indicates the difficulty in 
identifying a single input perturbation effect on species 
density (Gevrey et al., 2003; Gevrey et al., 2006). For 
this reason, a potential improvement in future analysis 
could be the use of PaD2 (see Gevrey et al., 2003; Gevrey 
et al., 2006, for details) to study the contribution of all 
the possible pair-wise combinations of input variables. 
Another limitation of the density model was the use of 
fish data collected by electrofishing with 1-pass. The 
collection of a relatively large database at a river basin 
scale involves difficulties in various aspects (logistics, 
budget, etc.) and for this study we could not obtain a 
database with multiple-passes; therefore, the algorithms 
to estimate fish abundance could not be applied. The 
fundamental problem in capturing data is that several 
factors affect the electrofishing efficiency (and thus 
the probability of fish capture), such as biological, 
environmental and technical factors (Zalewski & Cowx, 
1990). Therefore, an assessment of the fish abundance 
at each site, based on the removal method (with two or 
three passes) can be more accurate in the assessment 
and modelling of fish abundance at the river basin scale. 
Nevertheless, this potential drawback was overcome 
with the classification of fish density into three classes. 

In our opinion, the potential improvement in modelling 
with more accurate data would not compensate the high 
cost in fieldwork involved in such a sampling method. 

The application of a multilayer perceptron artificial 
neural networks has been demonstrated in several studies 
to have the capability to model complex ecological 
patterns and processes with higher performances than 
traditional statistical approaches (Olden et al., 2008; 
Franklin, 2010). Moreover, with other techniques it is 
difficult to represent dataset patterns and trends. Given the 
nonlinearities in ecological processes and patterns, linear 
modelling is not a promising field to develop predictive 
models. Despite the advantages of ANN, they have 
been categorised as black-box models due to the scant 
information given by the network about the relationship 
of each input variable and the dependent variables. This is 
explained by the fact that these relationships are implicit 
in the architecture of the MLP model. The black-box 
condition is the main disadvantage of MLP in contrast 
to traditional statistical approaches, through which we 
can quantify the influence of each independent variable 
in the modelling process and the level of confidence in 
the prediction. 

Nevertheless, several methods have been developed 
to overcome this issue of MLP; one of these is the partial 
derivative method (PaD), which is used to assess the 
contribution of each input variable in the prediction. 
PaD have been considered the most useful method to 
identify the degree of contribution of input variables in 
ANN models (Park & Chon, 2007), but PaD is calculated 
in relation to one independent variable at a time. Thus, 
when one predictive variable interacts with another, it is 
difficult to explicitly represent the relationship, as was 
observed in PaD analysis of the density model in this 
work. Thus the improvement of the future models with 
the implementation of techniques like PaD2 is a relevant 
line of future research.

The partial derivatives method indicated that the 
predictive variables with the strongest contribution to 
predict presence/absence were drainage area (DRA), 
solar radiation (SOR) and the proportion of exotic fish 
species (PEF). Based on our results, L. guiraonis has a 
positive relation with drainage area in part of its range, 
and the species prefers the stretches located in the middle 
part of the watersheds (Fig 6a). Accordingly, Gortázar et 
al. (2007) found a low presence of L. guiraonis in the 
headwaters of the Cabriel River and a large population 
in the middle. Vezza et al. (2015) as well as Kottelat & 
Freyhof (2007), affirmed that the presence of L. guiraonis 
is more frequent in middle and lower river reaches, and 
related its decline with water abstraction and habitat 
modification; these alterations are present in the lower 
segments of the Júcar, Cabriel and Turia rivers. Martínez-
Capel et al. (2008) discussed that the populations of the 
target species were declining in the Júcar River over 
the years, due to the large proportion of lentic habitats 
(produced by frequent weirs) and the high proportion of 
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fine-textured soils in the channel bed, which affects the 
survival of eggs. The same author revealed that the lack 
of recruitment could be the main cause of L. guiraonis 
declining, which is noticeable in the lower reaches of the 
Júcar and Turia rivers (Estrela et al., 2004). Therefore, 
the weak relation between DRA and fish presence in sites 
with DRA > 5000 km2 can be interpreted as a result of the 
hydromorphological and ecological alterations in those 
sites. In order to explore the interactions with the other 
two fundamental variables, their mean values (±SD) were 
calculated in sites with DRA > 5000 km2; the mean value 
of PEF (44.97 % ± 29.60) was relatively high, suggesting 
negative effects of the exotic fish species, and the 
mean SOR (4544.5 WH/m2 ± 1310.7) higher than 4200 
suggested a negative influence on L. guiraonis presence.

Concerning solar radiation (SOR), the sensitivity 
analysis indicated a negative influence of SOR on the 
presence of the target fish (Fig. 6b). Solar radiation is 
a critical environmental factor governing temperature 
change in fluvial systems (Brown & Krygier, 1970; 
Webb et al., 2008; Isaak et al., 2012). Water temperature 
is a key variable for fish survival because it affects their 
physiology and behaviour (Caissie, 2006b; Hrachowitz 
et al., 2010); this environmental variable directly 
regulates dissolved oxygen concentration in the water, 
affecting spawning time, growing rates, and spatial-
temporal distribution of species (Magnuson et al., 1979; 
Jackson et al., 2001; Baron et al., 2002; Prchalová et al., 
2006). The negative influence of SOR on the target fish 
presence may be associated with high water temperatures 
and a deficit of oxygen during some periods of the year; 
specifically, within the range from 2000 to 4200 WH/
m2 the negative influence on probability could be also 
related with the interaction with PEF (36.71 % ± 19.80) 
as an additional stressor for the native fish species. 
Furthermore, higher temperatures and the increase of 
evaporation can be associated with longer droughts in 
Mediterranean rivers, and water scarcity may lead to the 
reduction of water quality, which may pose severe risks 
to ecosystem integrity (Petrovic et al., 2011).

Currently, there is a deficiency of knowledge about 
the effect of water temperature on L. guiraonis and 
more efforts are needed to investigate this relationship, 
given that climate change studies have indicated that 
Mediterranean rivers will experience an increase in 
the intensity and frequency of droughts (Bonada et 
al., 2007; Mas-Martí et al., 2010; Sabater & Tockner, 
2010; Hermoso & Clavero, 2011), which could severely 
affect the establishment and survival of this species in 
the future. Specifically, the Júcar River is expected to 
suffer a future decline in water quantity (CEDEX, 2011) 
and quality, as a consequence of climate change; the 
wide presence of pesticides in water and fish, suggest 
potential severe effects on fish populations and other 
biota in future scenarios of climate change (Belenguer 
et al., 2014). In different Mediterranean countries with a 
high percentage of endemic fish species, future research 

is needed on the interaction between the most relevant 
environmental factors and multiple stressors, in order 
to help improve the fish populations and the resilience 
of the Mediterranean river ecosystems facing a future 
of water scarcity (Belenguer et al., 2014). The negative 
effects of climate change can be more severe in countries 
with high endemicity and where the knowledge of 
native fish species distributions are limited (Hermoso & 
Clavero, 2011). Therefore, it is very important to foster 
further research on the population status, distribution and 
habitat requirements (i.e. habitat suitability models) of 
the endemic fish species, especially in countries with a 
high fish diversity (see Barbieri et al., 2015; Papadaki et 
al., 2014), in order to prevent species extirpation and to 
facilitate the management of water resources compatible 
with ecological conservation.

The negative relationship between the proportion 
of exotic fish species (PEF) and the presence of L. 
guiraonis (Fig. 6a) is supported by Doadrio (2001), who 
described a general reduction of this species due to the 
introduction of exotic species. The adverse effects of 
exotic species on native fauna are well known, such as 
predation, competition, hybridisation, disease vector and 
habitat alteration (Granado-Lorencio, 2000; Almeida & 
Grossman, 2012). In the Júcar, Cabriel and Turia rivers, 
these invasions have been favoured by the construction 
of dams and weirs, which have created a suitable 
habitat for the establishment of exotic species (Olaya-
Marín et al., 2012), changing from a lotic system to a 
lentic one, where some exotic species find the suitable 
habitat for spawning (e.g. Micropterus salmoides and 
Lepomis gibbosus). Moreover, these hydraulic structures 
have segregated L. guiraonis in isolated segments and 
interrupted upstream migration in the spawning season. 
Generally speaking, many exotic species cannot adapt 
well to the natural Mediterranean hydrological regime, 
characterised by prolonged drought and desiccation in 
summer and a torrential regime in autumn and winter 
(Doadrio & Aldeguer, 2007); hence, they are present in 
the studied area because the flow regulation, impounded 
waters and artificial obstacles have benefited the 
establishment of these species (Corbacho & Sánchez, 
2001; Vila-Gispert et al., 2005). The study and control of 
exotic species deserves special attention because of their 
impact on native fish communities (Clavero et al., 2010).

Below the large Alarcón Dam (Júcar River), our 
database confirmed the relevant percentage of exotic fish 
with a mean value of 73.8 %. In the three river basins, L. 
guiraonis coinhabits with the following exotic species: 
pumpkinseed (Lepomis gibbosus), largemouth bass 
(Micropterus salmoides), northern pike (Esox lucius), 
pikeperch (Sander lucioperca), pyrenean gudgeon 
(Gobio lozanoi), bleak (Alburnus alburnus), common 
carp (Cyprinus carpio), iberian straight mouth nase 
(Pseudochondrostoma polylepis), gudgeon (Gobio 
gobio) and rainbow trout (Oncorhynchus mykiss). 
Regarding the interactions of PEF with the other most 
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relevant variables, when PEF was higher than 50 % we 
found values of SOR unfavourable for the target fish 
(4411.4 WH/m2 ± 1499.3) and DRA reached large values 
where the influence on fish presence was also negative 
(4623.8 km2 ± 3187.0).

The predictive variables of the density model (FCV, 
PEF, MinMF, FIY and IBMWP) have a relevant influence 
on Mediterranean fish species from an ecological point of 
view (Granado-Lorencio, 2000; Doadrio, 2001; Bernardo 
et al., 2003; Olaya-Marín et al., 2012). Previous studies 
have demonstrated that the coefficient of variation of 
the mean annual flow (FCV) is a fundamental variable 
in the hydrologic characterisation of the flow regime in 
Mediterranean rivers (Belmar et al., 2011; Belmar et al., 
2012) and it is a critical variable to interpret and predict 
the richness of native fish species in the Júcar River Basin 
(Olaya-Marín et al., 2012; Olaya-Marín et al., 2013). The 
FCV is important for fish distribution in Mediterranean 
rivers because the lifecycle of native fish is well adapted to 
fluctuating discharges as a function of natural seasonality 
(Doadrio & Aldeguer, 2007). Moreover, stream flow is 
one of the main drivers of the fish population dynamics, 
as demonstrated in Mediterranean rivers and elsewhere 
(Alonso-González et al., 2004; Lobón-Cerviá & 
Mortensen, 2005).

As explained above, exotic species are a severe 
hazard for native freshwater fish in Mediterranean areas 
(Doadrio, 2001; Smith & Darwall, 2006; Hermoso & 
Clavero, 2011), thus the selection of PEF was coherent 
with previous ideas. The minimum monthly flow from 
April to June (MinMF) is important to L. guiraonis 
because this species migrates to spawn in these months 
(Kottelat & Freyhof, 2007). The IBMWP was found 
as a fundamental variable to predict fish distribution in 
Mediterranean rivers against other water-quality indices 
(Carballo et al., 2009; Olaya-Marín et al., 2012). The 
selection of sampling year (FIY) in this model was 
also interesting. In Mediterranean rivers, this variable 
could be interpreted as the random influence of the 
climate variability on the river flow, thus affecting the 
FCV; additionally, this variable might be related to the 
trend of increasing populations of exotic fish species. 
Some studies have analysed the expansion of such 
exotic species and, on average, the main river basins in 
the Iberian Peninsula have more invasive than native 
species (Clavero & García-Berthou, 2006). Although the 
PaD did not allow us to observe any temporal trend, we 
considered the increase of PEF throughout the years as a 
reasonable hypothesis. The variation of the mean PEF in 
the main stem of the Júcar River was coherent with such a 
hypotheses, with 40.2, 38.3, 57.6, 64.6 and 72.9 % (from 
2005 to 2009; N = 42 data), but the trend was relatively 
stable in the Turia River, with 35.0, 25.3, 32.0, 30.4, 
38.2, 32.6 and 31.1 % (from 2004 to 2010, N = 83 data). 
Therefore, a larger database with a better distribution 
regarding sampling years would be necessary to further 
investigate this aspect.

Apart from the specific limitations, the presence/
absence model provides important information about the 
relation of L. guiraonis with biotic and habitat variables. 
This knowledge complements other models performed 
at the fish community level (Olaya-Marín et al., 2012), 
and could be used to support future studies and practical 
decisions about the management and conservation 
of this species in the Júcar River Basin District. The 
density model did not permit the establishment of a clear 
relationship between the predictive variables and density 
of L. guiraonis. This should be considered in future 
studies seeking to advance understanding of ecological 
interactions in Mediterranean stream ecosystems and the 
critical factors for the conservation of the endemic fish 
population.
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