Insights into the species diversity of the genus *Sargassum* (Phaeophyceae) in the Mediterranean Sea, with a focus on a previously unnoticed taxon from Algeria

MOUMIA AOUISSI1, LOUIZA NESRINE SELLAM2,3, CHARLES F. BOUDOURESQUE3, AURÉLIE BLANFUNÉ3, FARID DERBAL1, HOCINE FRIHI1, MICHÈLE PERRET-BOUDOURESQUE3, CHAFIKA REBZANI-ZAHAF3, MARC VERLAQUE3 and THIERRY THIBAUT3

1 Laboratoire Bioressources Marines, Université Badji-Mokhtar, BP 12, El-Hadjar, 23000 Annaba, Algeria
2 Laboratoire d’Océanographie Biologique et Environnement Marin (LOBEM), Faculté des Sciences Biologiques (FSB), Université des Sciences et de la Technologie Houari-Boumédiène, BP 32 El-Alia, 16111 Bab Ezzouar, Algiers, Algeria
3 Aix-Marseille University, University of Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), Campus of Luminy, 13288 Marseille, France

Corresponding author: charles.boudouresque@mio.osupytheas.fr
Handling Editor: Konstantinos Tsiamis

Received: 12 June 2017; Accepted: 10 October 2017; Published on line: 26 April 2018

Abstract

Nine species of the genus *Sargassum* (Phaeophyceae; kingdom Stramenopiles) are currently accepted in the Mediterranean Sea: *S. acinarium*, *S. desfontainesi*, *S. flavifolium*, *S. furcatum*, *S. hornschuchii*, *S. muticum*, *S. ramentaceum*, *S. trichocarpum* and *S. vulgare*. *Sargassum desfontainesi* and *S. furcatum* are Atlantico-Mediterranean species. *Sargassum hornschuchii*, *S. ramentaceum* and *S. trichocarpum* are endemic to the Mediterranean. The presence of the Atlantic *S. flavifolium* in the Mediterranean is at least in part based upon a misidentification and therefore requires confirmation. Near Algiers and Annaba (Algeria), a *Sargassum* taxon sharing most characters with *S. flavifolium* was collected. This taxon, referred to as the Algerian *S. flavifolium*, is described and illustrated. Its distribution and ecology in Algeria are presented. This taxon differs from *S. flavifolium* in having costate, small-sized, unbranched leaves and small-sized receptacles, branched in all directions and lacking a branched sterile pedicel at the base. In the absence of genetic data, and a study of the type material of *S. flavifolium*, a description of a new taxon would be premature.

Keywords: Algeria, Mediterranean Sea, Phaeophyceae, *Sargassum flavifolium*, *Sargassum* spp.

Introduction

The genus *Sargassum* C. Agardh is one of the most species-rich genera among the Fucales (Phaeophyceae, kingdom Stramenopiles; for taxonomic treatment see references in Boudouresque, 2015), with 354 taxa (species and infraspecific taxa) currently accepted (Guiry & Guiry, 2017). Most *Sargassum* taxa are tropical and subtropical. In the Mediterranean Sea, nine species of *Sargassum* have been reported (Table 1): *Sargassum acinarium* (Linnaeus) Setchell, *S. desfontainesi* (Turner) C. Agardh, *S. flavifolium* Kützing, *S. furcatum* Kützing, *S. hornschuchii* C. Agardh, *S. muticum* (Yendo) Fensholt, *S. ramentaceum* Zarmouh & Nizamuddin, *S. trichocarpum* J. Agardh and *S. vulgare* C. Agardh (Ribera et al., 1992; Cormaci et al., 2012). *Sargassum salicifolium* (J. Agardh) J. Agardh *sen* su *lato* and infraspecific taxa of *S. vulgare* (see e.g. Špan, 2005), which are of uncertain taxonomic status (Ribera et al., 1992), are not taken into consideration here. *Sargassum hornschuchii*, *S. ramentaceum* and *S. trichocarpum* have only been recorded in the Mediterranean Sea (Guiry & Guiry, 2017) and are putatively endemic to this area.

Sargassum species can form extensive marine forests that are major components of the underwater seascape and coastal ecosystems (Komatsu & Murakami, 1994; Yatsuya et al., 2007; Komatsu et al., 2014; Boudouresque et al., 2016). In some regions, *Sargassum* species are undergoing a very severe decline due to overgrazing by herbivores (a cascading effect of overfishing), invasive species such as the herbivorous teleosts *Siganus* spp., habitat destruction, trawling and net fishing, eutrophication and an increase in water turbidity (Thibaut et al., 2005; Airoldi & Beck, 2007; Tsiamis et al., 2013a; Bianchi et al., 2014; Vergès et al., 2014; Thibaut et al., 2015, 2016; Gatti et al., 2017).

In Algeria, four species have been listed, namely *S. acinarium*, *S. hornschuchii*, *S. trichocarpum* and *S. vulgare* (Perret-Boudouresque & Seridi, 1989; Ribera et al., 1992). Here, we report on a species belonging to *Sargassum*, occurring in Algeria (southwestern Mediterranean Sea), which does not correspond to any of the nine species reported from the Mediterranean Sea. We also highlight the likely underestimation of the *Sargassum* diversity in the Mediterranean Sea.
Table 1. Distribution of currently accepted taxa (according to Guiry & Guiry, 2017) of the genus Sargassum in the Mediterranean Sea and Black Sea (data from Ribera et al., 1992; and updated as by Ben Maiz et al., 1987; Zarmouh & Nizamuddin, 1991; González García & Conde, 1992; Ribera et al., 1996; Curiel et al., 1998; Flores Moya & Conde 1998; Benhissoune et al., 2002; Cormaci et al., 2012; Verlaque et al., 2015; Guiry & Guiry, 2017). +: present; -: not recorded. Sp: continental Spain; BI: Balearic Islands (Spain); Fr: continental France; CS: Corsica (France) and Sardinia (Italy); WI: Western Italy; Si: Sicily (Italy) and adjacent islands; Ad: Adriatic Sea, including Albania; Gr: Greece; BS: Black Sea and Azov Sea; Tu: Turkey (Sea of Marmara and Mediterranean coast); LS: Levant states (Lebanon, Syria and Israel); Eg: Egypt; Li: Libya; Tn: Tunisia; Ag: Algeria; Mo: Morocco (including Spanish territories, e.g. Chafarinas islands).

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Sp</th>
<th>BI</th>
<th>Fr</th>
<th>CS</th>
<th>WI</th>
<th>Si</th>
<th>Ad</th>
<th>Gr</th>
<th>BS</th>
<th>Tu</th>
<th>LS</th>
<th>Eg</th>
<th>Li</th>
<th>Tn</th>
<th>Ag</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sargassum acinarium (Linnaeus)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sargassum desfontainseii (Turner)</td>
<td>C. Agardh</td>
<td>-</td>
</tr>
<tr>
<td>Sargassum flavifolium Kützing</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sargassum furcatum Kützing</td>
<td>-</td>
</tr>
<tr>
<td>Sargassum hornschuchii C. Agardh</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sargassum muticum (Yendo) Fensholt</td>
<td>+</td>
<td>b</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Sargassum ramaceum Zarmouh & Nizamuddin</td>
<td>-</td>
</tr>
<tr>
<td>Sargassum trichocarpum J. Agardh</td>
<td>+</td>
</tr>
<tr>
<td>Sargassum vulgare C. Agardh</td>
<td>+</td>
</tr>
</tbody>
</table>

* Based upon a misidentification; see text. b Only drift material of S. muticum has been found. c In the framework of the study of the marine benthos of El Dabaa (Egypt) (Campos-Villaça et al., 1985; Thélin et al., 1985), an unidentified species of Sargassum was collected; the specimens have subsequently been referred to as S. ramaceum (Marc Verlaque, unpublished data). d Only observed once, in the plume of warm water from a thermal power plant (Verlaque, 1977); this power plant only operates intermittently today, so that the species may be no longer present.

Material and Methods

Specimens belonging to the study species (hereafter the Algerian Sargassum sp.) were recorded along the central and the eastern coasts of Algeria, near Algiers and Annaba, in 2014 and 2015. Near Algiers, dense patches of the studied species were observed in shallow reef habitats, 0-0.5 m depth, within Cystoseira compressa (Esper) Gerloff & Nizamuddin forests at El Marsa (36° 48' 41.3" N, 3° 15' 23.5" E; coordinate system: WGS 84); collected specimens (collector: MA): H8320, H8321 and H8322 (27 June 2015).

The depth '0' means the limit between the midlittoral and the infralittoral zones sensu Pérès & Picard (1964).

Near Annaba (eastern Algeria), isolated individuals of the Algerian Sargassum sp. were found thriving in an exposed photophilic community, at Cap de Garde (entrance of the Gulf of Annaba; 36° 58' 4.34" N, 7° 47' 30.06" E); collected specimens (collector: MA): H8323 (29 August 2014). The species was thriving on shallow reefs, from the sea surface down to 0.5 m depth, associated with Cladostephus spongiosus (Hudson) C. Agardh, Cystoseira amentacea (C. Agardh) Bory, Cystoseira compressa, Halopteris scoparia (Linnaeus) Sauvageau (Phaeophyceae), Corallina caespitosa R.H. Walker, J. Brodie & L.M. Irvine, Chondracanthus acicularis (Roth) Fredericq, Jania rubens (Linnaeus) Lamouroux (Florideophyceae, Rhodobionta, kingdom Archaeplastida) and Caulerpa cylindracea Sonder (Ulvophyceae, Viridiplantae, kingdom Archaeplastida).

The material studied has been deposited at the HCOM, the Herbarium of the Mediterranean Institute of Oceanography, Aix-Marseille University. Herbarium abbreviations follow Thiers (2016).

Specimens of the Algerian Sargassum sp. were compared with the collection of Mediterranean Sargassum species deposited in the HCOM and with the following specimens of genuine S. flavifolium deposited in the herbarium of the Muséum National d’Histoire Naturelle, Paris, PC:

- PC0527409, Biarritz, June 1830, coll. Heribaud;
- PC0539255, PC0539256 and PC0458533, Guéthary, 10 July - 30 August 1896, coll. C. Sauvageau;
- PC0527408, Guéthary [France, NE Atlantic Ocean], 17 July 1921, coll. C. Sauvageau;
- PC0527407, Guéthary [France, NE Atlantic Ocean], 25 July 1923, coll. C. Sauvageau;
- PC0458528, Herbier J. Feldmann, Guéthary [France, NE Atlantic Ocean], 3 October 1928;
- PC0458529, Herbier J. Feldmann, between Guéthary and Bidart [France, NE Atlantic Ocean], 15 August 1927;
Results and Discussion

The studied specimens of the Algerian Sargassum sp. (Table 2) measure between 15 and 30 cm in height, have a short main axis, smooth or scarred, 0.5-1.0 cm in length, fixed to the substratum by a small basal disc; primary and secondary branches cylindrical and smooth, up to 30 cm long and 6 cm long respectively; leaves (foliaceous branches) with a very short (< 1 mm) petiole; they are lanceolate, up to 35 mm long and 3-4 mm wide (Fig. 1), unbranched, with a midrib, an acute extremity and numerous marginal acute teeth. At the base of the leaf gas vesicles (aerocysts) and receptacles can be found; gas vesicles spherical, 2-4 mm in diameter, at the end of a slender pedicel 1-3 mm long, rarely surmounted with a short mucron (Figs 2-4); receptacles are fertile down to close to their base, the sterile pedicel being short or absent. The receptacles are branched in all directions, thickest, short, up to 3-6 mm long, with branches cylindrical, muriculate, warty and sometimes bifurcate at the extremity; some receptacles can show either an air vesicle or a small leaf, inserted between fertile parts (Figs 2-4). The studied specimens were monoeccious. Fertile individuals were found from spring to late summer.

The Algerian Sargassum sp. can be easily distinguished from most of the nine species previously recorded in the Mediterranean Sea (Table 2), e.g. (i) by the presence of leaves (lacking in S. desfontainessii, or un conspicuous to costate in S. ramontaceum), (ii) the presence of a midrib in leaves (absent in S. muticum), (iii) the small size of the leaves (much longer and wider in S. hornschuichii, and up to 10 cm long and filiform in S. ramontaceum), (iv) the unbranched leaves (branched up to 4 times in S. furcatum), (v) the absence of a true branched sterile pedicle at the base of the receptacles (present in S. acinarianum and S. vulgare), and (vi) the small size of the receptacles (much longer in S. trichocardum). The closest species to the Algerian Sargassum sp., on the basis of the morphology, seems to be S. flavifolium, a species originally described from the Bay of Biscay and the West Indies (Antillas) (Kützing, 1849) (Fig. 5); however, in the latter, leaves and gas vesicles are slightly larger (Table 2). Clear-cut differences concern the receptacles (Figs 2-4 vs. Fig. 5); in the Algerian Sargassum sp., these are muriculate (rather than smooth), branched in all directions (rather than complanate and mainly branched in one plane). Small leaves and gas vesicles can be inserted sometimes between the fertile parts (‘zygocarpic receptacle’), a feature not mentioned in the descriptions of S. flavifolium. On the basis of the latter character, the Algerian specimens would be referred to the sectio Zygocarpiceae (J. Agardh) Setchell of the genus Sargassum and subgenus Sargassum (see Mattio & Payri, 2011, for infrageneric delineation of Sargassum taxa). However, a few zygocarpic receptacles were observed in some herbarium specimens of S. flavifolium collected by Camille Sauvageau at Guéthary (Bay of Biscay, France) (Figs 6-8) and housed at PC (PC0539255, PC0539256). A similar zygocarpic receptacle was also drawn by Gruet (1983) from a specimen of S. flavifolium collected in Arcachon Bay (Bay of Biscay, France).

Sargassum flavifolium has long been known from the Bay of Biscay (European Atlantic Ocean) (Kützing, 1861; Sauvageau, 1897; Hamel, 1931-1939; Parraud, 1959; Gruet, 1983; Casares Pascual, 1989; Gómez Gareta et al., 2001; Fernández & Sánchez, 2002; Gorostiaga et al., 2004; Dizerbo & Herpe, 2007; Cires Rodríguez & Cuesta Moliner 2010). It has also been recorded in Andalusia and Extremadura (Atlantic Spain) (Bábara et al., 2012; Gallardo et al., 2016), Atlantic Morocco (Benhissoune et al., 2002) and in the Canary Islands (Borgesen, 1926; Sangil et al., 2015; Gallardo et al., 2016). In the Mediterranean Sea, S. flavifolium was first reported from Corsica (Verlaque & Boudouresque, 1981; Boudouresque & Perret-Boudouresque, 1987). The species has also been mentioned from different Mediterranean regions: Provence, France (Verlaque & Boudouresque, 1981; Thibaut et al., 2016), Italy (Giaccone, 1969; Giaccone et al., 1985), Greece (Tsekos et al., 1982) and Tunisia (Ben Maiz et al., 1987). However, it has never been recorded in Algeria (see e.g. Perret-Boudouresque & Seridi, 1989; Ould-Ahmed et al., 2013). Outside the European and African NE Atlantic Ocean, and possibly (see below) the Mediterranean Sea, S. flavifolium has been reported (as Sargassum flavefolium – sic) from the Saudi Arabian coast of the Persian Gulf (Abdel-Kareem, 2009); in the absence of an accurate description of the collected specimens, this record requires confirmation. The identity of the West Indies specimens mentioned in the protologue requires further investigation.

Mediterranean records of S. flavifolium are questionable. A re-examination of specimen HF.1184 from Corsica (Lavezzi Islands), recorded and described by Verlaque & Boudouresque (1981) and housed at the HCOM herbarium, shows that it actually belongs to S. vulgare. For the other Mediterranean records of S. flavifolium (Giaccone, 1969; Tsekos et al., 1982; Giaccone et al., 1985; Ben Maiz et al., 1987), no description is available. The presence of S. flavifolium in the Mediterranean Sea therefore requires confirmation.

All in all, S. flavifolium would appear to be a north-eastern Atlantic species, known from the Bay of Biscay to the Canary Islands. Along the Algerian coast, a previously unrecorded species of the Sargassum, mor-
Table 2. Morphological and reproductive characters of the Mediterranean species of the genus *Sargassum* (according to Hamel 1931-1939; Gómez Garreta et al., 2001; Cormaci et al., 2012), and of the Algeria *Sargassum* sp. When details come from other authors, this is mentioned in a footnote. Leaves are often named ‘foliaceous branches’ (e.g. by Gómez Garreta et al., 2001; Cormaci et al., 2012).

<table>
<thead>
<tr>
<th>Characters</th>
<th>S. acinarium</th>
<th>S. desfontainesi</th>
<th>S. floridum</th>
<th>S. furcatum</th>
<th>S. hornschuchii</th>
<th>S. muticum</th>
<th>S. ramentaceum</th>
<th>S. trichocarpum</th>
<th>S. vulgaris</th>
<th>Algerian Sargassum sp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basionym (if different from the accepted name)</td>
<td>Fucus acinarious Linnaeus</td>
<td>Fucus desfontainesi Turner</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Sargassum kjellmanianum Yendo f. muticum Yendo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Type locality</td>
<td>‘Italia & Oceano australior’</td>
<td>Canary Islands</td>
<td>Biarritz (Bay of Biscay)</td>
<td>St Thomas, Virgin Islands</td>
<td>‘in mari Adriatico prope Parenzo Istriae’</td>
<td>Izumo, Wakayama Prefecture, Japan</td>
<td>Guilliana-Benghazi, Libya</td>
<td>‘E Gadibus’ (today: Cádiz, Spain)</td>
<td>(Ad litora Oceanit; ex India Oriental)</td>
<td>-</td>
</tr>
<tr>
<td>Size (height) in cm</td>
<td>Up to 100</td>
<td>Up to 100</td>
<td>Up to 50</td>
<td>Up to 35</td>
<td>Up to 50</td>
<td>Up to 200, sometimes more</td>
<td>Up to 91</td>
<td>Up to 50</td>
<td>Up to 70</td>
<td>Up to 30 (Fig. 1)</td>
</tr>
<tr>
<td>Main axis (above the basal disc)</td>
<td>Several centimetres</td>
<td>1.2 cm long, smooth or with scars</td>
<td>Numerous short axes, smooth</td>
<td>2.5 cm long, cylindrical, verrucose</td>
<td>Single axis, up to 2 cm long, 2-3 mm in diameter, smooth</td>
<td>Up to 6.0 cm long, compressed, up to 6 mm in cross section, with smooth apex</td>
<td>Up to 3.5 cm</td>
<td>2.4 cm long</td>
<td>0.5-1.0 cm long, smooth or with scars</td>
<td></td>
</tr>
<tr>
<td>Primary branches</td>
<td>Well developed, cylindrical, rough-muriculate</td>
<td>Well developed, cylindrical, smooth or rarely spinose</td>
<td>5-7 cm long, muriculate</td>
<td>10-50 cm long, flattened or winged near the base</td>
<td>Cylindrical</td>
<td>Cylindrical, up to 6 cm long, 3-4 mm in diameter</td>
<td>Cylindrical, smooth, rarely muriculate</td>
<td>Well developed, cylindrical, 2 mm in diameter, smooth or muriculate in the young parts</td>
<td>Up to 30 cm long, cylindrical and smooth</td>
<td></td>
</tr>
<tr>
<td>Leaves: present or absent</td>
<td>present</td>
<td>absent</td>
<td>present</td>
<td>present</td>
<td>present</td>
<td>present</td>
<td>present</td>
<td>present</td>
<td>present</td>
<td>present</td>
</tr>
<tr>
<td>Leaf midrib: present or absent</td>
<td>present</td>
<td>-</td>
<td>present</td>
<td>present</td>
<td>present</td>
<td>present</td>
<td>absent</td>
<td>Unconspicuous to costate</td>
<td>present</td>
<td>present and very prominent</td>
</tr>
<tr>
<td>Leaf size (length x width)</td>
<td>30-80 mm x 3-8 mm</td>
<td>30-70 mm x 2-6 mm</td>
<td>15-50 mm x 2-5 mm</td>
<td>40-80 mm x 5-15 mm</td>
<td>30 mm x 3-4 mm in basal parts, much smaller in upper parts</td>
<td>Up to 100 mm x 3 mm</td>
<td>30-50 mm x 2-4(10) mm</td>
<td>15-40 mm x 2-4 mm</td>
<td>30-35 mm x 3-4 mm</td>
<td></td>
</tr>
<tr>
<td>Leaf shape</td>
<td>Acute, with serrated margin</td>
<td>Acute, with wavy and toothed margin</td>
<td>Branched up to 4 times, with or without teeth</td>
<td>With or without very small teeth</td>
<td>Lanceolate, without teeth or slightly toothed</td>
<td>Sesile, linear, narrow, lanceolate, strongly serrate-dentate</td>
<td>Wavy or toothed margin</td>
<td>Lanceolate, serrate or slightly wavy margins</td>
<td>Lanceolate, acute, with toothed margins and a short petiole</td>
<td></td>
</tr>
<tr>
<td>Gas vesicles (aerocysts)</td>
<td>Spherical, 4-6 mm in diameter, pedicel 3-5 mm long, without mucron</td>
<td>Spherical-oblong, 2-6 mm in diameter, with a mucron</td>
<td>Spherical, 4-6 mm in diameter, pedicel 1-2 mm long, sometimes with a mucron</td>
<td>Spherical, 3-4 mm in diameter, short pedicel, sometimes with a short mucron</td>
<td>Spherical, 3 mm in diameter, short pedicel, sometimes with a short mucron</td>
<td>Spherical, without mucron, up to 6 mm in diameter, pedicel compressed and spinose, up to 7 mm long</td>
<td>Spherical, without mucron, 4-5 mm in diameter, pedicel 3-5 mm long, with mucron</td>
<td>Spherical, 3-5 mm in diameter, with a short pedicel and without mucron</td>
<td>Spherical, 2-4 mm in diameter, a slender pedicel 1-3 mm long, sometimes with a short mucron</td>
<td></td>
</tr>
<tr>
<td>Receptacles with or without (i.e. sessile) a sterile pedicel</td>
<td>with a pedicel</td>
<td>with a pedicel</td>
<td>without pedicel</td>
<td>with a branched pedicel</td>
<td>with a short pedicel</td>
<td>with a branched pedicel</td>
<td>without pedicel (or a very short pedicel)</td>
<td>with a cylindrical, branched pedicel</td>
<td>without (or with a very short) sterile pedicel</td>
<td>continued</td>
</tr>
<tr>
<td>Characters</td>
<td>S. acinarium</td>
<td>S. desfontainesii</td>
<td>S. florfolium</td>
<td>S. furcatum</td>
<td>S. hornschuchii</td>
<td>S. muticum</td>
<td>S. ramentaceum</td>
<td>S. trichocarpum</td>
<td>S. vulgare</td>
<td>Algerian Sargassum sp.</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>----------------</td>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Shape of the receptacles</td>
<td>Fertile branch up to 50 mm, receptacles cylindrical, 10-20 mm long, un-branched or branched once</td>
<td>Fertile branch up to 27 mm, branched, bearing up to 12 receptacles</td>
<td>Receptacles alternately branched in one plan, 3-8 mm long, non muriculate</td>
<td>Fertile branch up to 50 mm, receptacles flattened or triangular in section, with toothed margin</td>
<td>Receptacles not-branched (sometimes dichotomous), cylindrical, 10-12 mm long, 1-2 mm in diameter</td>
<td>Receptacles simple or branched, cylindrical, verrucose, submoniliform, up to 6 mm long, 1-2 mm in diameter</td>
<td>Receptacles cylindrical, branched, 10-20 mm long and 1 mm in diameter</td>
<td>Receptacles branched, 3-10 mm long, fusiform</td>
<td>Receptacles branched in all directions, thickest, some branches developing small leaves and gas vesicles, cylindrical, muriculate, 3-6 mm long</td>
<td></td>
</tr>
<tr>
<td>Male vs female receptacles</td>
<td>Data missing</td>
<td>Receptacles with both male and female conceptacles more irregular than only male receptacles</td>
<td>Plants monoecious</td>
<td>Plants monoecious</td>
<td>Plants monoecious</td>
<td>Plants dioecious (rarely monoecious)</td>
<td>Plants monoecious</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conceptacles</td>
<td>Data missing</td>
<td>Female conceptacles larger than male ones</td>
<td>Conceptacles unisexual</td>
<td>Conceptacles unisexual, more rarely hermaphroditic</td>
<td>Unisexual male and female conceptacles present within a given receptacle</td>
<td>Unisexual</td>
<td>Conceptacles unisexual</td>
<td>Conceptacles unisexual</td>
<td>Conceptacles unisexual or hermaphrodites</td>
<td></td>
</tr>
</tbody>
</table>

* Kützing (1849) mentioned ‘Ad Antillas; in sinu Biscayense ad Biaritz’; afterwards, he only mentioned ‘Ad Biaritz in sinu Biscayensis’ (Kützing, 1861), probably correcting his earlier error. b Smooth: from Kützing (1843). c Smooth: from Gerbal (1986). d Measured on the herbarium specimen H.6683, from Martigues-Pontecu (Provence, France), HCOM. e Measured on herbarium specimens H.6636-H.6640 from Santorini Island, Greece, HCOM. f Observed on the specimen PC0459635 from Naples (Italy), PC.

Figs 1-4: Pressed specimen H8320 of the Algerian *Sargassum* sp., collected by L.N. Sellam at El Marsa, Algiers, 27 June 2015. Fig. 1. Habit; bar = 1 cm. Fig. 2. Upper part of a fertile branch (arrow heads = receptacles); bar = 1 cm. Fig. 3. Detail of the arrangement of gas vesicles (aerocysts) and receptacles on a branch; bar = 5 mm. Fig. 4. Detail of a composite receptacle with fertile branches and gas vesicles (arrow head = terminal mucron); bar = 5 mm.
phologically close to *S. flavifolium* but presenting some unequivocal differences, is widely distributed and not uncommon.

With a few exceptions (e.g. Garreta *et al.* 2001; Špan, 2005), the species diversity of the genus *Sargassum* in the Mediterranean Sea has been poorly studied, since the pioneering work of Hamel (1931-1939). In the southern and eastern Mediterranean Sea, there are only checklists that name taxa without proper taxonomic identification (i.e. description or illustrations) (e.g. Diannelidis *et al.*, 1977; Taşkök & Öztürk, 2013; Tsiamis *et al.*, 2013a, 2013b, 2014). In their Mediterranean Flora of Phaeophyceae, Cormaci *et al.* (2012) only reproduce previous descriptions and illustrations from Kützing (1849, 1861) and Hamel (1931-1939).

In fact, in the Mediterranean Sea, a warm-temperate sea, the species diversity of the genus *Sargassum*, a genus with warm affinities, might be expected to be far greater than as currently assessed.

Within the genus *Sargassum*, nearly 350 taxa are currently accepted worldwide (Guiry & Guiry, 2017). Yet most taxonomic characters are elusive, often overlapping.
among species, so that species delineation is a difficult, uncertain, and even scientifically hazardous task (Mattio & Payri, 2011). Genetic tools are therefore particularly welcome. On the basis of genetic studies, a reappraisal of the Sargassum taxonomy is now available in e.g. western and central Pacific islands, Korea, the Oman Sea, Australia and South Africa (Zhao et al., 2007; Mattio et al., 2008, 2009, 2010; Mattio & Payri, 2011; Noormohammadi et al., 2011; Cho et al., 2012; Dixon et al., 2012, 2014; Dixon & Huisman, 2015; Mattio et al., 2015). Unfortunately, this is not yet the case for the Mediterranean.

What is the status of the studied Sargassum species from Algeria? (i) a species hitherto ignored or confused with another Mediterranean taxon; (ii) an Atlantic species extending its range area and entering the Mediterranean Sea through the Strait of Gibraltar, in the context of the current global warming; (iii) a recently introduced species? The Mediterranean Sea is the marine area that harbours the highest number of introduced species. The Mediterranean Sea is probably introduced (Ribera & Boudouresque, 1995; Galil, 2000; criteria can be used to consider whether or not a species is probably introduced (Ribera & Boudouresque, 1995; Boudouresque & Verlaque, 2002; Galil, 2008; Boudouresque et al., 2011; Zenetos et al., 2012, 2017). A set of criteria can be used to consider whether or not a species is probably introduced (Ribera & Boudouresque, 1995; Boudouresque, 1999); these criteria are not met by the Algerian Sargassum sp. populations.

Before describing a new species, we must examine the type material of S. flavifolium and of the other Mediterranean taxa belonging to the genus Sargassum, which although inadequately known, are at present regarded as synonyms. We also need to check the relationships between the Algerian Sargassum sp., the Atlantic species and the other species of the sectio Zygocarpicae, including putative synonyms, using both genetic markers and morphological characters (see e.g. Tseng & Baoren, 1988; Ajsasa et al., 1995; Fuji et al., 2014)

As far as the geographical distribution of the nine Mediterranean Sargassum species is concerned, a variety of different origins exist. Sargassum flavifolium seems to be restricted to a range from the Bay of Biscay to the Canary Islands, while the protologue also material includes from the Antilles; it is the species of Sargassum reported furthest northwards in Europe (Gruet, 1983); Mediterranean localities (Table 1) could result from misidentifications (see above). Sargassum acinarium is known from the western (Caribbean) and eastern (tropical West Africa and Canary Islands) Atlantic Ocean, and from the Mediterranean (Ribera et al., 1992; Littler & Littler, 2000; Gómez Garreta et al., 2001; John et al., 2004). This range of distribution is consistent with the dissemination of drift specimens of Sargassum by transoceanic currents, such as the Gulf Stream. Sargassum desfontainesii is present on both sides of the North Atlantic Ocean, including the Canary Islands and the Azores, and is present only a short distance into the western Mediterranean (Alboran Sea, close to the Strait of Gibraltar) (Taylor, 1976; Price et al., 1978; González García & Conde, 1992). Sargassum furcatum has a very similar pattern of distribution (Taylor, 1960; Flores-Moya & Conde, 1998; Bennhassene et al., 2002; Cruz-Reyes et al., 2003; Freitas Ferreira, 2011; Wynne, 2011). Sargassum hornschuchii, S. ramentaceum and S. trichocarpum are assumed to be endemic to the Mediterranean (Hamel, 1931-1939; Ben Maiz et al., 1987; Perret-Boudouresque & Seridi, 1989; Zarmouh & Nizamuddin, 1991; Ribera et al., 1992; Gómez Garreta et al., 2001). Sargassum muticum is native to Japan and has been introduced, via oyster aquaculture, to north-western America, western Europe and the Mediterranean Sea (Critchley et al., 1983; Knoepfler-Peguy et al., 1985; Ribera & Boudouresque, 1995; Verlaque et al., 2007). Finally, S. vulgare seems to be a cosmopolitan species, reported on both sides of the Atlantic Ocean, in the Mediterranean Sea, the Indian Ocean, Polynesia, Japan, Taiwan and other Pacific Ocean areas (Taylor, 1960; Price et al., 1978; Ribera et al., 1992; Silva et al., 1996; Gómez Garreta et al., 2001; Tsuda & Walsh, 2013; Phang et al., 2016; Guiry & Guiry, 2017). True cosmopolitan species are often species originating from a given area of the world ocean, which have subsequently been transported by man and introduced into all the other areas of their current world range (see e.g. Carlton, 1996). Nevertheless, most of the so-called cosmopolitan species are actually complexes including several cryptic species (see e.g. Belton et al., 2014; Dijoux et al., 2014; Zanolla et al., 2014), and S. vulgare could be such a case.

Conclusions

Nine species of Sargassum are currently accepted in the Mediterranean Sea. This is probably an underestimation, as this genus, highly diversified in both warm and tropical seas, has been poorly studied in the Mediterranean, especially in the eastern and southern Mediterranean. Here, we have reported an undescribed species from Algeria that differs from the currently accepted taxa. Until further studies can be undertaken, including molecular analyses and thorough exploration of herbarium materials that contain early and poorly understood taxa (often regarded as synonyms), it seemed premature to formally describe it as a new species. Nevertheless, we thought it important not to delay drawing the attention of researchers to this plant, potentially present in other Mediterranean areas too. In addition, we have highlighted the possible underestimation of the diversity of the genus Sargassum in the Mediterranean, pending the achievement of the long-term objective of disentangling the taxonomy of the genus in the Mediterranean as a whole.

Acknowledgements

The authors thank John M. Huisman, Athanasios Athanasiadis and an anonymous reviewer, together with the editors, Argyro Zenetos and Konstantinos Tsimas, for their insightful suggestions. They also wish to thank Michael Paul, a native English speaker, for revising the English text. The project leading to this publication has
References

Dijoux, L., Viard, F., Payri, C., 2014. The more we search, the more we find: discovery of a new lineage and a new species complex in the genus Asparagopsis. Plos One, 9 (7), 1-13 (e103826).

Kützing, F.T., 1861. Tabulæ physiologicae oder Abbildungen der Tange. XI Band. F. Förstermann, Nordhausen, 32 pp + 100 plates.

