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Introduction

The second volume of the HMS International Journal for Mathematics
in Education includes four research papers.

The first invited paper by Peter Appelbaum “Mathematics as sculpture
of utopia: changing how we think of models and modeling in mathematics
education” concerns three kinds of approaches to models used in
mathematics classrooms. As the writer mentions, it is “an invitation to
collaborate on a ‘museum of models’ — a collection of sample uses of
models by teachers and pupils in and out of school”.

The second paper written by Emmanouil Nikoloudakis “A Proposed
Model to Teach Geometry to First-Year Senior High School Students”
combines and enriches the phases of the van Hiele theory with the methods
of Cognitive Apprenticeship proposing a Model of p-m Combinations. This
model was used to the teaching of geometry courses to 15-year old senior
high school (Lyceum) students before they are taught how to write formal
proofs.

The purpose of the third paper by Sonia Kafoussi, Petros Chaviaris &
Rijkje Dekker “Factors that influence the development of students’
regulating activities as they collaborate in mathematics” is to investigate
the issue of how 10-11 year old students regulate their behavior during their
mathematical activity as they reflect on their small-group interaction by
observing and discussing their video-recorded collaboration.

Finally, Michael Voskoglou by his article “Mathematizing the process
of learning a subject matter in the classroom” is trying to build a Markov
model for the description of the process of learning a subject matter by a
group of students in the classroom. The results are illustrated by a classroom
experiment for learning mathematics performed at the School of
Technological Applications of the Graduate Technological Educational
Institute of Patras, in Greece.
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Mathematics as sculpture of utopia:
changing how we think of models and modeling
in mathematics education

Peter Appelbaum

Abstract
Physical materials, diagrams, charts, symbolic representations, and exem-
plary problem types model concepts and relationships in mathematics class-
rooms. There are at least three kinds of approaches to models, character-
ized by metaphors that represent our assumptions, values, fears, desires,
structures of discourse, and so on: the architect, scientist or artist, as expli-
cated by sculptor Josiah McElheny. Teachers and pupils act in each of these
ways at various times, but even when working in the styles of an architect
or scientist, they must also use models in the manner of McElheny’s artists,
as ‘invitations’. Models in McElheny’s ‘artistic’ sense provoke questions
and conversation, confusion and fascination, contemplation; new philoso-
phic inquiries, imaginations, fantasies, and repulsions. His primary exam-
ple is Isamu Noguchi, whose proposals for modernist playgrounds mostly
remained in the realm of fantasy and enchantment, rather than as constructs
in ‘the real world’. This article is itself an invitation to collaborate on a
‘museum of models’ — a collection of sample uses of models by teachers and

pupils in and out of school.

Keywords: mathematics, mathematics teaching, modeling, metaphor, con-
ceptual art
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4 Peter Appelbaum

Representations & Modeling in a Living, Growing Discipline

Physical materials, diagrams, charts, symbolic representations, exem-
plary problems of a ‘type’, etc., dominate mathematics teaching and learn-
ing. Much of our pedagogy rushes to the representations. We want pupils to
become very good at using these to model concepts and relationships. This,
indeed, seems to be at the heart of ‘mathematics as a living, growing disci-
pline’. Pupils who can move from one model to another are usually taken as
‘understanding’ the mathematics. At times it seems that the very act of
working with the representations as models might actually be a specific
characteristic of mathematics. This process of treating the representation as
the subject of analysis, repeated often, might be what we need to carefully
explore and understand if we are to better comprehend the possibilities for
mathematics as a living, growing discipline.

It is with these thoughts in mind that I ask us to consider the processes
of modeling and their implications for our work, as individuals, and as a po-
tential network of international mathematics educators with the power to in-
fluence and transform teaching and learning worldwide. I suggest that we
too often assume we know what we mean by representation and by models,
and that we need to consider that there are multiple ways to conceive of
them and to apply them in our work as researchers, as developers of curricu-

lum materials, as teachers of mathematics, and as mathematicians. There are
[ i S——

at least three approaches to the
act of modeling — independent
of the medium of
representation, as explicated by
the sculptor Josiah McElheny
(2007), and I want to propose
that we use his analysis of

models as an opening for our

Infinitely" by sculptor Josiah McElheny

reflections on models and the

act of modeling concepts.
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Mathematics as sculpture of utopia: changing how we think of models
and modeling in mathematics education 5

McElheny works as a conceptual artist, and I invite us to consider how
we can learn from the kinds of thinking that conceptual artists invoke as we
explore the roles of concepts in mathematics. I have been pursuing the study
of possibilities for mathematics education through such connections with
mathematics-as-art, pupils-as-artists, etc., for some time (Appelbaum 2007a,
2007b, 2008, 2009). This essay is not so grand a fantasy: it is a smaller
question or set of questions that pop up when we look at how some sculp-
tors think about what a model is, what a concept is, and what the purposes
of their work are. Others have made connections between aesthetics and
mathematics as related to teaching and learning (Fujita,et al. 2004, Hickman
& Huckstep 2003, Sinclair & Pimm 2009, Sinclair 2006, Sinclair, Pimm and
Higginson 2006, Sullivan 1956). This essay has more in common with such
searches for the commonalities among the arts and mathematics as modes of
reasoning and communicating.

Three Approaches to Modeling and Using Models

Josiah McElheny says there are three kinds of models. Each type of
model enlists metaphors that, in turn, represent our assumptions, values,
fears, desires, structures of discourse, and so on. They are labeled in ways
that stereotype the labels, but which characterize in certain ways the kinds
of work that is often valued in a particular craft or profession — architect,

scientist, or artist. Moreover, one might Architect: uses a model to

work in a stereotyped way that is convey information to garner
ideological, financial, political,

associated with these crafts or e
or institutional support

professions in any field, and we can
use them as metaphors to interpret the Scientist: uses models to pose

. f ing.
work involved. new systems of understanding

We could imagine, for example, that a Artist: can exist outside these
teacher or pupil might work as an considerations - depicts some-

. . L thing not intended to be built,
architect-mathematician, scientist-

creates an imaginary space.

mathematician, or artist-mathematician

HMS i JME, Volume 2. 2009 (3-16)



6 Peter Appelbaum

at different times during a school day, in order to achieve various goals. One
might employ blocks, pictures or equations as part of an argument to con-
vince others of a conclusion or the reasonableness of a result, metaphori-
cally acting like an architect who employs a blueprint or a scale model of a
building to convince clients to use the architect’s plans. Or, one might in-
vent a way of representing a system or set of relationships, and then proceed
to analyze the representation for what it further implies regarding these rela-
tionships, much as a scientist uses models to better comprehend the relation-
ships among natural phenomena. An architect-mathematician might employ
a construction by straightedge and compass to convince another pupil that
the perpendicular bisectors of the sides of a triangle will intersect in one
unique point; they might create an animation with Geometer’s Sketchpad, or
instead create a series of logical statements that include details about these
parts of a triangle in algebraic symbols. If pupils are graphing parabolic
data, then - if they use the graph to | ™
study parabolic functions (noting
various characteristics of the types
of  relationships that are
demonstrated among the variables
that are depicted by their graph) -
they could be metaphorically la-
beled as scientist-mathematicians;

similarly, drawing a picture of a | “Big Bang” by sculptor Josiah McElhney
accurately represents current theories in

person and their shadow from a :
astrophysics

lamppost as they walk, marking
items that could be measured at discrete distances from the lamppost along
the ground, a scientist-mathematician could then use the picture to generate
a chart or graph, from which they could further describe precisely particular
aspects of the relationships involved, i.e., proportionality between heights of
the light source and the person walking, length of shadow, distance from

HMS i JME, Volume 2. 2009-2010 (3-16)



Mathematics as sculpture of utopia: changing how we think of models
and modeling in mathematics education 7

lamppost, and so on. Much rarer in school mathematics do we find artist-
mathematicians of the type that McElheny describes. For this type of work
with models to occur, we have to think a bit more abstractly about what we
do mathematically when we are ‘thinking mathematically’, and, in fact, I be-
lieve that this is more central to the work of mathematicians than the other
two, at least, more at the heart of what the mathematical experience is all
about. How we use models is not shackled by the assumption that we must
convince others of what we believe, nor is it tied to the application of the
models to solve a problem through modeling of a situation. Or, to express
this differently: (a) mathematical work is not always done within the
framework of what McElheny calls the architect or scientist; and (b) more
importantly, there is a way in which even the work of an architect or scien-
tist follows from the previous work of acting in the way that McElheny calls
an ‘artist’, or eventually leads to this artist-like way of working. The artist-
aspects of such work are ‘prior’ to, ‘anterior’ to, or independent of the work
of the architect or scientist.

Before we describe such work, however, I will share some preliminary
concerns regarding the difficulties in working with the artist-approach to
models as outlined by McElheny. In some ways, the artist-mathematician
seems to be less concerned with the real world and with applications of their
ideas. This is not really the case, but the issue deserves some attention. The
history of mathematics is filled with people who have extolled the virtues of
‘pure mathematics’’, such as G.H Hardy, famed for his unabashed Mathe-
matician’s Apology (1940) --those whose efforts seem to exist independent
of the practicalities and necessities of an architect, or whose work has no in-
tended scientific application. That is not what I want to address here. Even a
pure mathematician employs the habits and skills of an architect when con-
vincing others of their conclusions or proofs, and those of a scientist in
elaborating and evolving models of systems of relationships. Given that
there are many publications and that there exists a great deal of research
about modeling and models in mathematics education, I suspect that my ar-

HMS i JME, Volume 2. 2009 (3-16)



8 Peter Appelbaum

gument in this paper is challenging to some mathematics educators. Most of
us already have a working understanding of models and representations, and
most of us employ a number of assumptions about these in our own work. I
am asking us to reconceptualize some aspects of mathematics that are very
fundamental to what we do. This may take a great deal of effort. In my re-
cent discussions with a number of mathematics educators, I found the con-
versations collapsing back into a discourse that presumes a scientist-
mathematician framework that does not allow for the comparisons that this
paper makes. For example, if a teacher presupposes that most activity in a
classroom should have the purpose of solving a problem or of practicing
methods of solving types of problems, then that teacher is going to think of
models only in the way of a scientist-mathematician, since the main pur-
poses of models in such a classroom are to accurately present a mathema-
tized analogy for the situation occurring in the problem to be solved. This
means that such a teacher will have to reorient themselves in order to take
advantage of the points in this paper. He or she might, for example, begin to
introduce new types of activities in their classroom, during which pupils are
not solving problems or practicing methods of solving problems; such ac-
tivities would involve pupils comparing and contrasting models, with no in-
tention of using the models to solve a problem. Other intentions for the
models would have to be present in the conversations that unfold in this
classroom.

Sculpture of Utopia

McElheny’s ‘artist’” uses models to create imaginary, new worlds,
imaginary spaces of learning outside of time and space. The models become
‘proposals’ — invitations to come and play and explore the ideas. The other
kinds of models drag us down into realms of accuracy, correctness, and so
on:’Is it a ‘good model’?” is too often taken to mean, “Is this model a true
replica of the real world?” Such models are tossed aside as soon as they fail
to love up to the demand that they precisely ‘mirror nature’. McElheny re-
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O

fers to the designs for playgrounds by Isamu Noguchi. One famous model
for a U.N. Playground in New York was for an intended playground that
would actually be built, so that the original model was that of a literal archi-
tect. Unfortunately, the playground was
never realized in real life. But the model
became a well-known work of art included
in museum exhibits. Used in this way, the
model for the playground becomes an
invitation to imagine what playgrounds
could be, to think about our assumptions

about what a playground should or could Isamu Noguchi’s model for the
U.N. playground in New York

be, and to question the decisions that we
generally make about what should take place in a playground space. The art-
ist’s model has very different value. Not tied to true mirroring, its own
pleasures and value are in itself, and in the way it allows us to dwell in the
very act of modeling itself. Conceptual art leads a person interacting with it
to reflect on the process of making the art and the concepts that are invoked
with the art. It is in this sense that I believe McElheny’s ‘artist’ is like our
mathematicians contributing to a living, growing discipline. Noguchi’s
playground is now a playground of the mind, generating all sorts of experi-
ments and questions in a time and space not in the real world, but potentially
influencing that world through the ways we might act in the future, even
more than one playground might have affected the lives of whoever had
played there. It is in this sense that the model becomes a ‘sculpture of uto-
pia’, because a utopia is an ideal conception that does not exist in the world.
A mathematician or artist who establishes this sort of standpoint on his or
her use of models evokes what Brian Rotman (1993) once called a ‘meta-
subject’ — someone who is compelled to consider the relationship to the act
of idea, mathematics, or art creation itself; the work provokes reflection on
the meaning of the work, and the very action of constructing the model,
rather than accurately mirroring reality or serving as a pleasing object of our

HMS i JME, Volume 2. 2009 (3-16)



10 Peter Appelbaum

gaze. For mathematics education, this attention to the act of model creation
is critical, because it enables the teacher and student to talk about the spe-
cific point of mathematical ideas, as well as to reflect on the processes of
idea-development usually lost in the black box of pedagogical theory: it lays
out in the open those aspects of learning and concept development most dif-
ficult to address in ordinary class practices. Both the teacher and the pupil
now have the possibility to examine and discuss what is typically left to
chance, the actual processes of creating, representing, and modifying ideas.
Utopia in fiction, philosophy and art challenges our assumptions about
the way the world works, offering alternatives unhindered by our ideologi-
cal commitments. Mathematics needs to work for us and our pupils in this
way, offering unhindered provocations that enable us to construct new con-
ceptions of relationships and systems. Models in the more traditional sense
of applications of mathematics to the real world do not challenge presump-
tions; they provide algorithms for obtaining solutions to problems. Such
models do not help people focus on the mathematics, but instead on the al-
gorithms that provide recipes for answers. We are left dissatisfied that our
pupils are merely memorizing lists of steps toward a formulaic solution,
rather than genuinely understanding the mathematics. Models in McEI-
heny’s sense provoke questions and conversation, confusion and fascina-
tion, contemplation, new philosophic inquiries, fantasies, repulsions, and
more. Noguchi’s model provokes new questions: What is a playground?
What could be a playground? Why do our playgrounds look as they do, and
not differently? Analogously, a collection of base-ten blocks might provoke
such questions as: Why do we work in base-ten? How does a base-ten way
of organizing numbers of things influence the ways that we think? How
does thinking about numbers in terms of three-dimensional volume lead us
to different questions and conclusions when compared with the types of
questions that emerge when working with 100s-charts or number lines? The
analogy also helps us see that a comparison of algebraic representations,
graphs, and tables for the same functional relationship could also lead to

HMS i JME, Volume 2. 2009-2010 (3-16)



Mathematics as sculpture of utopia: changing how we think of models
and modeling in mathematics education 11

provocative considerations of the relationship between relationships and the
representations for them. Whether we are thinking about base-ten numeral
systems of functional relationships, this new use of models generates oppor-
tunities to interrogate the meanings within the mathematics while simulta-
neously inventing our own algorithms, both of which make it possible to

Fundamental
Ideas

easily approach standard procedural

Observations
knowledge critically and meaningfully —
to appreciate their power as well as their
limitations.

I am essentially arguing for a new

Predictions

positioning of the teacher and the pupil

vis-a-vis the mathematics and the doing

of mathematics. The ‘old-school’ style P
of working with models focuses on how “Old-school” approach to

models, #1

accurately the model uses representa-

tions to create an analogy for ‘reality’. In the ‘new-school’ point-of-view,

ﬂ pupils do not mainly work with models as part

< 70 mmmm%' of a traditional knowledge cycle of model-
development, but instead critique models as if

e o they are works of mathematical art. While the

i _ " ‘new-school’ pupils sometimes work in ‘old-

school” ways, they would more often be found

juxtaposing, appraising, analyzing & creating
models; placing models in historical context;

“Old-school” approach to and using models to provoke emotions, such as
models, #2

joy, nostalgia, outrage, constancy, in an

audience who is listening to a presentation. Each representation — every pic-
ture, diagram, chart, graph, equation, etc., would in such classrooms would
always be taken as a potential model of many concepts & relationships. And
this notion that a particular representation is always potentially many differ-
ent models all at once becomes very important, because these different uses
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12 Peter Appelbaum

of the representation as a model can be discussed, explored, applied, cri-
tiqued, modified, etc. Seemingly unrelated concepts & relationships mod-
eled by a common representation are drawn together into new worlds of
similarity & difference within classroom conversations and pupils’ investi-
gations. This all occurs outside of the time & space of the literal modeling
processes that are within the usual/traditional focus, in other word, within a
utopian place both inside and outside of time and space.

An old-school approach to the study of repeated addition on a calculator,
for example, might lead pupils through a series of efforts to model the

phenomena that appear, using perhaps

a number line, a 100s-chart, a

“New-school” approach to models, #1

collection of tesslation tiles, or a circular representation of modular
arithmetic. Students would use the models as part of being guided to deduce
that the patterns in the units digits of such repeated addition, and the lengths

HMS i JME, Volume 2. 2009-2010 (3-16)



Mathematics as sculpture of utopia: changing how we think of models
and modeling in mathematics education 13

of those patterns, are related in particular ways to the seed starting number
and the constant adding number. The new-school aproach would use the
context of the study of repeated addition on the calculator to facilitate
important discussions regarding the differences among the types of models

for what they reveal and obscure.

U.S. 2005 Income Distribution

120%
100% 1 +

20% ;
G0%
40% A
20%
0% = T T
0% 20% 40% 60% 20% 100% 120%

Percent of Hous eholds

Percent of Total Income

“New-school” approach to models, #2
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14 Peter Appelbaum

Similarly, new-school attention to sketches of an African village’s
architecture, shadows cast by a sculptor’s collections of human trash, or a
graph of recent income distribution in a country would help pupils
understand the kinds of relationships and questions that are able to be
examined and posed with each type of representation as a model of real-
world phenomena as much as or more than help them to obtain answers to
particular mathematical problems.

Proposal

I propose a newly created international collaboration can and should
take on the project of promoting a better understanding of the role of the
‘artist-mathematician’ in the teaching and learning of mathematics, and to
facilitate greater, more effective uses of this approach with mathematics
education internationally in our various countries. One way to do this is to
create a ‘Museum of Models’ on the internet. Such a ‘museum’ would in-
clude a section that exhibits examples of modeling in all three approaches
discussed in this article in different classrooms internationally. Teacher-
produced lesson plans would be accompanied by short video excerpts and
by commentary from other teachers related to the example. The website
would collect examples for as many ages and types of mathematical content
as possible to exhibit in this gallery of ‘exemplary classroom models’. An-
other space within the museum would be for shared dialogue among teach-
ers, researchers, policy-makers and other interested members of the mathe-
matics education community to discuss models and modeling in the world
of mathematics and mathematics education more generally, and specifically
about individuals’ own personal attempts to understand those approaches to
modeling that are most difficult to understand. A third area of the museum
would feature collaborations among mathematics educators, pupils of
mathematics and conceptual artists, in order to help us further the kinds of
research in this area that can build a foundation of theoretical understanding
to later develop such work crossing the boundaries of mathematics educa-
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Mathematics as sculpture of utopia: changing how we think of models
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tion and sculpture — both literally and metaphorically. Existing outside the
time and space of our daily lives, in the ether of the internet, the museum of
models would be a utopia where we together sculpt new worlds of mathe-
matics education. Those interested in pursuing a museum of models should
contact the author at Appelbaum(@arcadia.edu.
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A Proposed Model to Teach Geometry
to First-Year Senior High School Students

by Emmanouil Nikoloudakis

Abstract
We combined the phases of the van Hiele theory with the methods of Cognitive Apprentice-
ship and enriched these combinations adding the three following ideas: (a) a special work-
sheet, named Structured Form Worksheet, which we used when teaching geometry (SFW),
(b) a matrix named Reasoning Control Matrix for the Proving Process (RECOMPP), which
helped students with reasoning production and (c) the concepts of simple and partial proof
to write the formal proof. We called the above mentioned combination Model of p-m Com-
binations. Then, we used this model to teach geometry courses to 15-year old senior high
school (Lyceum) students. In this article we claim that students should be able to write sim-

ple and partial proofs before they are taught how to write formal proofs.

Key-words and phrases: Formal, Simple, Partial Proofs, Phases-Methods Combinations
Model; Structured Form Worksheet; Euclidean Geometry; Reasoning Control Matrix for

the Proving Process.

1. Introduction

Research related to the understanding of geometric concepts by students
has shown that students have difficulties in defining and recognizing geo-
metric shapes and in the use of deductive thinking in geometry (Pyshkalo
1968; Burger, 1982; APU, 1982; Hart, 1981). Despite the importance of
proofs, research has shown that students have great difficulty with the task
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of proof construction (Senk, 1985; Schoenfeld, 1985; Martin and Harel,
1989; Harel and Sowder, 1998). Due to students’ difficulty to write proofs
successfully, numerous projects focus on the teaching of geometrical proof
(Hanna, 2000; Martin & Harel, 1989; Leron, 1985; Recio & Godino, 2001;
Senk, 1985; Usiskin, 1982). The inefficiency to teach the notion of “proof”
1s almost global (Hadas et al., 2000).

In Greece, Euclidean geometry is taught under a theoretical framework,
during the first two years of Lyceum. Junior high-school students usually
count and calculate, based on specific situations, whilst they seldom make
use of abstract procedures. Thus, first-year Lyceum students, who move
from specific procedures to more abstract ones, are not familiar with the role
of axioms, definitions, and theorems. Instead, they have to cope with the
concept of proof in a purely theoretical context. The fact that the students of
Lyceum cannot learn the proof processes correctly seems to influence their
future ability as undergraduates to solve mathematic problems. So, univer-
sity teachers realize that the processes which first-year undergraduate stu-
dents follow, when solving a mathematic problem, are the typical ones they
have learnt in preparatory schools or private lessons (Kalavassis, 1996).

2. Simple proposition
According to Dimakos and Nikoloudakis (2008) a proof is constituted
and is analysed in sim- A A
ple justifications. We
develop this aspect here
briefly, because this
analysis represents a
necessary  component
for this article. Initially
we give two examples

to explain what we B C B C

Figure 1

mean by the words Figure 2
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9 (194

“statement”, “justification” and “partial proof”. Hence, let us consider the
following two propositions:

Proposition (P-1): If AB=AC, prove that the triangle ABC is isosceles (See
Figure 1).

Proposition (P-2): The exterior base angles of an isosceles triangle ABC are
equal (See Figure 2).

Generally, we maintain that every proposition contains a statement and
every proof consists of two parts, a statement (which needs a justification)
and a justification (of this
statement).

Proposition
Especially, we can maintain

that every proposition con-
tains a statement and every
proof (of this proposition)
consists of two parts, a

_> Statement

statement (the statement of

the proposition which needs a

justification) and a justifica- Proof =

tion (of this statement) (see
Figure 3) > Justification
* For proposition P-1 the

Figure 3
statement 1s: the triangle

ABC is isosceles.

It is also noted that for the proof of the statement of proposition P-1 we
have:

i. (i) Statement: the triangle ABC is isosceles

ii. (1) Justification: because AB=AC

So when we say that the triangle ABC is isosceles, because AB=AC, then
we have fully reasoned the statement: the triangle ABC is isosceles for
proposition P-1. Thus we have proved proposition P-1.

* For proposition P-2 the statement is: the exterior base angles of an isosce-
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les triangle ABC are equal.
It is also noted that for the proof of the statement of proposition P-2 we
have:
1. statement “the exterior base angles of an isosceles triangle ABC are
equal”, and
1. justification “because they are supplementary to the equal angles B and
C”.
Nevertheless, we haven’t fully reasoned the statement (i) with the justifica-
tion (ii) because we have not reasoned that the angles B and C are equal. As
a result justification (ii) (because they are supplementary to the equal angles
B and C) is a statement and is consequently a new proposition. Since any
proposition in geometry, except for definitions, postulates and axioms,
needs a proof, the new proposition needs a proof as well.
The statement of the new proposition is: the supplementary angles B and
C are equal and its proof components are:
iii. statement “the supplementary angles B and C are equal”, and
iv. justification “because the angles B and C are equal”.
Also, we have not fully reasoned the statement (ii1) with the justification
(iv). Now we must explain why the angles B and C are equal. Thus, the jus-
tification (iv) is another new proposition with statement: the angles B and C
are equal and its proof components are:
v. statement * the angles B and C are equal”.
vi. justification “because the triangle ABC is isosceles”.

Similarly we must explain why the triangle ABC is isosceles, so we have
the proposition with the statement: the triangle ABC is isosceles and its
proof components are:

vil. statement “the triangle ABC is isosceles”.

viil. justification “it is given”.

The following are observed: justification (ii) of statement (i) in proposi-
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tion P-1 does not need further justification for statement (i) to be valid so
the proof is fully reasoned by (i)-(ii).However, this is not the case in propo-
sition P-2 for justifications (ii), (iv) and (vi) of this proposition. In detail, for
statement (i) to be valid, justification (ii) has to be valid. For justification (ii)
to be valid, justification (iv) has to be valid and so on. So with just (i) and
(i1) the proof of P-2 is not complete.

When the justification of a statement, like in proposition P-1, does not
need further justification for the statement to be valid, then the justification
is referred to as simple justification. In particular:

Definition: A justification is called simple justification when no further
justification is needed in order to prove its truth. Simple justification will
also be called simple proof.

Definition: We shall say that a justification of a statement is a non-
simple justification or a partial proof when its truth depends on yet another
justification.

Proofs (i)-(ii), (iii)-(iv), (v)- JUS?':'I!IF(:,I,_AI'EHON I
(vi) of proposition P-2 are non

- simple justifications but the

NON SIMPLE
JUSTIFICATION

b

last part of the proof of P-2,

that is proof (vii)-(viii), is in-

deed a simple justification. To
conclude, the proof of P-2 con- PROOF
sists of some partial proofs (i)-

(1), (i)-(iv),(v)-(vi) and a PARTIAL
simple justification (vii)-(viii). PROCH

Taking the above in to ac- Figure 4

count we can say that every

proof is consists of two components. These parts are both a statement and a
Justification, or a statement and a justification, which corresponds to a par-
tial proof (see Figure 4). Nevertheless, the partial proof is a proof itself. So,
it can be further analysed fo a simple justification or to a partial proof and
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so on. This way a proof consists of and is analysed in simple justifications
(see Figure 5).

Also, we define as simple proposition a proposition whose proof is a
simple proof. In this article it is claimed that students should be able to write

simple and partial proofs before they are taught how to write formal proofs

SIMPLE
Tl JUSTIFICATION

PROGF ) ) SIMPLE
JUSTIFICATION

¥

PARTIAL PROOF ) SIMPLE
| JUSTIFICATION

A

FARTIALPROOF

SIMPLE
JUSTIFICATION

v

#PARTIALPROOF

Figure 5

3. Two well known theories

Dutch educators Pierre van Hiele and Dina van Hiele-Geldof developed
a theory of five levels of geometric thought (Anderson, Reder and Simon,
1996). According to the van Hiele theory there are five hierarchical levels
that students pass through as they progress from merely recognizing a figure
to being able to write a formal geometric proof. Alan Hoffer (1981), named
the first level Recognition, the second level Analysis, the third level Infor-
mal Deduction, the fourth level Deduction and the fifth level Rigor. Along
the levels van Hiele proposed five phases to help the students progress from
one level to the next one. Van Hiele has called these phases Familiarization
or Information, Guided Orientation, Verbalization or Explicitation Free Ori-
entation, and Integration.

Cognitive apprenticeship is the application of the principles of appren-
ticeship to learning cognitive skills. Collins et al. (1989) comment :
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We propose in alternative model of instruction that is accessi-
ble within the framework of the typical American classroom. It
is a model of instruction that goes back to apprenticeship but
incorporates elements of schooling. We call this model cogni-
tive apprenticeship.

(Collins, Brown, and Newman, 1989).

They, also, claim that Cognitive Apprenticeship makes thinking visible.
We believe that this aspect helps a mathematician teach the students to write
successful proofs in geometry.

In our research we attempted to teach the course of Geometry using
ideas from the above theories. In detail we combined the phases proposed
by the Theory of van Hiele with the methods of Cognitive Apprenticeship
and we enriched these combinations with our own ideas so that our instruc-
tion would be more coherent with Vygotsky’s ideas (i.e. zone of proximal
development, etc). We have used the term “Model of Phases-Methods
Combinations” or “Model of p-m combinations” to describe the proposed
model.

3.1. Model of Phases-Methods Combinations

Regarding the analysis of phases, van Hiele (1986, p. 177) mentions the
following: “I have not mentioned a specific form of instruction. The ideas
that have been used here have a place in every method of teaching”. Also,
Collins et al. (1991) believed that there are more than one ways to apply the
methods of Cognitive Apprenticeship and that, ultimately, the teacher is the
one who is responsible for determining the ways in which cognitive appren-
ticeship can be applied in the range of his/her teaching.

We attempt to teach the course of Geometry combining the phases pro-
posed by the theory of van Hiele with the methods of Cognitive Apprentice-
ship taking into consideration the above statements of van Hiele (1986 p.
177), of Collins et al. (1991) and also that:
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e Students find it difficult to understand the course of geometry and its
processes (Van Hieles, 1986; Hoffer, 1981; Usiskin 1982;1987; Burger
and Shaughnessy, 1986; Crowley 1987; Fuys, Geddes, and Tischler
1988; Gutierrez, Jaime, and Fortuny 1991; Mason 1997; Wirszup, 1976)

e Students find it very difficult to successfully write simple geometry
proofs (Weber, 2003). This happens, when they repeat proofs taken from
their coursebook as well (Burger & Shaughnessy 1986; Hoffer 1983;
Wirszup, 1976)

e The van Hiele theory of levels of geometric thought specially refers to
the course of Geometry

e Cognitive Apprenticeship, according to its creators Collins et al. (1989)
and Collins et al. (1991) makes the thought visible

e According to Fuys et al. (1988) the progress from one level to another
depends on the teaching method followed by the instructor, regardless of
the age of the students or their biological maturity

The combination of the phases of instruction of the van Hiele theory with

the methods of Cognitive Apprenticeship was based on the participants’

characteristics, actions, and roles in the teaching process in both theories.

More specifically:

Phase 1 “Information” of van Hiele’s theory was combined with the
method of Modeling of Cognitive Apprenticeship.

Phase 2 “Bound Orientation” of van Hiele’s theory was combined with
the method of Coaching of Cognitive Apprenticeship.

Phase 3 “Explicitation” of van Hiele’s theory was combined with the
method of Articulation of Cognitive Apprenticeship.

Phase 4 “Free Orientation” of van Hiele’s theory was combined with the
method of Exploration of Cognitive Apprenticeship.

Phase 5 “Integration” of van Hiele’s theory was combined with the
method of Reflection of Cognitive Apprenticeship.

All the above phases of van Hiele’s theory were combined with the
method of Scaffolding of Cognitive Apprenticeship.
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3.1.1. SFW and RECOMPP

To implement this combination we coined a special worksheet, named
“Structured Form Worksheet” (SFW). (Dimakos, Nikoloudakis, 2008). The
SFW and an important component of SFW (Dimakos, Nikoloudakis, 2007)
called “Reasoning Control Matrix for the Proving Process” (RECOMPP) are
briefly described below.

3.1.1.1. Structured Form Worksheet (SFW)

The SFW consists of the following three sections :
a) The Reminder Notes.

b) The Process.

c) The Assessment.

The Reminder Notes
In the first section, named “Reminder Notes”, the teacher reminds the

students of some theorems. These are some essential theorems, based on the
students’ prior knowledge, which help students understand the new cogni-
tive object. In this section, what takes place is the combination of the first
phase of van Hiele’s model (Inquiry/Information) with the method of Mod-
eling of the Cognitive Apprenticeship model.

The Process

In the second section, named “Process”, students have to conjecture, to
discover, to argue, to prove, and to express their opinion on how to solve
certain problems, that the teacher has prepared for them beforehand. In this
section the following combinations take place:

e the combination of the 2" phase of van Hiele’s model (Directed Orien-
tation) with the method of Coaching of the Cognitive Apprenticeship
model

e the combination of the 3™ phase of van Hiele’s model (Explication) with
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the method of Articulation of the Cognitive Apprenticeship model

e the combination of the 4™ phase of van Hiele’s model (Free Orientation)
with the method of Exploration of the Cognitive Apprenticeship model.
In this combination students make use of a matrix that we coined,

dubbed “reasoning control matrix for the proving process” (RE-
COMPP).

The Assessment

In the third section, named “Assessment”, students have to tell each
other what they have done in the prior section, they have to describe the way
they have thought, why they have thought this way, what they have learned
etc. In this section, students have to describe over the phone what they have
learned to another schoolmate, who was absent from class. Moreover, stu-
dents have to construct a problem based on the knowledge that they have
gained. This section constitutes of the fifth phase of van Hiele’s model (In-
tegration) with the method of Reflection of the Cognitive Apprenticeship
model.

3.1.1.2. RECOMPP

According to Dimakos and Nikoloudakis (2007) RECOMPP is a reus-
able matrix pattern that helps students produce reasoning production. Its
layout and its filling technique are predefined. In more detail, it consists of
six discrete sections and its layout consists of rows, columns, and cells that
may contain figures, hypotheses or conclusions, proofs, and partial proofs
(see Figure 6). Furthermore, when filling RECOMPP, a student follows two
basic rules: that of horizontal transit, and that of transfer. These rules will be
described in more detail later in this article. RECOMPP can be used in
every chapter of geometry content because it is a reusable pattern of reason-
ing production. The advantage RECOMPP offers, when employed by nov-
ice lyceum geometry students attempting to prove a proposition, is that it
can help them produce and control their reasoning in a more effective way
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so as to successfully write the given proof (Dimakos, et. al, 2007).

As shown in figure 6, RECOMPP consists of six discrete sections. What
follows is a detailed description of each section:

-Section 1, is where the formulation of the problem is given. Here, in a
textbox, the student can read the full description of the problem, before
he/she moves on to the proving procedure.

-Section 2, is where the hypotheses, and the conclusions of the problem
must be written. Here, the student is given a table (consisting of two rows
and two columns), where he/she must write down, in two separate lines, the
hypotheses, and the conclusions of the problem, respectively. Of course,
students must have very carefully read the description of the problem, that
can be found in Section 1, very carefully, before they are able to find,
discriminate, and record the hypotheses.

-Section 3, is where the sketch of the problem must be prepared by the
student. Here, based on the description of the problem they have read in
Section 1, and according to the hypotheses, and the conclusions that they
have written down in Section 2, student progress to draw the sketch of the
problem in a blank field. Students will use this, as a visual aid, to write the
proof.

-Section 4, is where the teacher may offer scaffolding to student. Here,
in order to offer students contextual, and on the spot help, the teacher can
provide them with a list of hints.

-Section 5, 1s where the student is motivated to reason, collect, and write
those statements and relationships between the elements of the sketch,
prepared beforehand, which will lead him/her to the successful writing of
the proof. Here, the student is given a table (consisting of just two columns
and several rows). In this table, in the first column, the student must write a
statement e.g “Statement A”, that needs to be proved, labeled “To prove
that...”. ...”. In the second column, the student must write a statement e.g
“Statement B”, that is necessary in order to prove “Statement A”, labeled “It
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Section (1) Proposition (Written formulation of the problem )

Section (2) Analysis
Hypotheses
Conclusion

Section (3) Section (4) Hints
Scalffonding a list of hints

Draw a sketch based on the problem

g

Section(5) n Section (6}
it is required

to prove that... to prove that... | Proof

S _BWN o —————
Figure 6

is required to prove that”. The student must set some goals, in order to
move horizontally and proceed from the left column to the right one. Thus,
the left column represents the earliest stage of the student’s reasoning and
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the right column represents the latest stage of the student’s reasoning. Sec-
tion 5 of RECOMPP must be filled according to the following three rules:
(See Figure 7)

(a) the rule of horizontal movement from left to right, i.e the student first
fills the left column, labeled “to prove that”, and then continues to fill the
right one, labeled “it is required to prove that”. The most significant contri-
bution of this rule of horizontal movement from left to right is that it is de-
manded from the student to produce reasoning. This process is repeated in
every row of the RECOMPP.

(b) the rule of how to fill the first cell of the left column, labeled “to
prove that”. According to this rule, the student must always fill the first cell
of the left column with the conclusion from Section 2. This is especially im-

portant for the stu- Colurmn-1 Column-2

dent, Dbecause, it
shows him/her,
where to start the

To prove that It is required 7o prove that

proving procedure

from.
(c) the rule of
reassignment of

produced reasoning.

According to this
rule, the content of

the right column in

each row (produced

reasoning), is reas-
signed to the left >
column of the row

below. Figure 7
-Section 6, 1is
where the proof must be written by the student. Here the student must write
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the proof in a textfield.

3.1.2. The periods of instruction in model of m-p Combinations

According to this model the instruction takes place in five periods (see
Figure 8).

In the 1st period, students relate the visual geometric shapes and their
appearance with their names for every cognitive subject, e.g. of all kinds of
parallelograms and their appearance with their names. Moreover, the teacher
demonstrates shapes that are gradually increasing in complexity. The stu-
dents are acquainted with more complex shapes and their components.

In the 2nd period, students are taught the attributes and the relative theo-
rems of the cognitive subject (parallelograms), without their proofs. Stu-
dents confirm the validity of theorems in an experimental way, using com-
puters. It must be noted that dynamic representations that result from dy-
namic geometry software (DGS) environments (particularly Geometer’s
Sketchpad and Cabri II+) play a semantic role as they aim to develop spatial
sense and geometric reasoning (Kalavassis, Meimaris, 1996; Mariotti,
2003).

In the 3rd period, students classify the shapes (all kinds of parallelo-
grams) and expand the properties of the shapes. For example, the properties
of parallelogram are inherited to rectangle and rhombus and from them to
the square.

In the 4th period, students deal with simple geometric propositions and
use RE.CO.M.P.P to write the proof.

In the 5th period, students learn the proofs of all theorems (of parallelo-
grams).

In every period (see Figure 9) students use the special worksheet
mentioned before, named “Structured Form Worksheet” (SFW) which the
teacher has prepared beforehand to teach a cognitive object (see appendix).
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COGNITIVE OBJECTS TEACHING PROCESS
RECOGNIZE EBASN
DRAW FIGURES
15t PERIOD SEE INTO SHAPES
(HOLISTICALLY)
LEARN
2ND PERIOD RESEARCH 3 EXPLORE PROPERTIES OF
SHAPES
COUNT
OBSERVE
GUESS
EXPAND RANGE
3RDPERIOD |—3 COMPARE |—) CLASSIFY OF SHAPES’
PROPERTIES
PARALELLOGRAM
RECTANGLE
SQUARE |
4TH PERIOD % RECOMPP JUSTIFY
|
SIMPLE PARTIAL
PROPOSITION PROOF
5™ PERIOD THEOREMS PROVE
Figure - 8
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4. Method

4.1. Participants and Procedure

The participants in the research were students, who were studying at the
first class of High School. The method of random sampling was used to
constitute the sample of the research. Overall, 250 students participated in
the research. They came from five public and one private school. The ma-
jority of students originated from families of low socio-economical status.
These students had never been taught the course of geometry in a theoretical
context before. Therefore they were considered to be novice in theoretical
geometry. Most of the students had some experience in the use of com-
puters. Students participated in the research as whole classes, based on the
distribution of classes already made by the school principals. 138 students
formed the experimental group and 112 students formed the control group.

4.2.  The instruction

Unit 5 from the textbook, referring to parallelograms, was taught. The
instruction took place in five periods that lasted two-months period. In the
1* period, students related the visual geometric shape of all kinds of paral-
lelograms and its appearance to their names. In the 2™ period, students were
taught the attributes and the relative theorems of parallelograms, without
their proofs. Students confirmed the validity of theorems in an experimen-
tal way, using computers. In the 3" period, students classified the shapes of
all kinds of parallelograms. In the 4™ period, students argued simple geo-
metric propositions and used RE.CO.M.P.P to write a proof. In the 5™ pe-
riod, students learned the proofs of all theorems of parallelograms.

4.3. Instruments

4.3.1. SFW

The students were taught the unit 5 from the textbook that refers to par-
allelograms. As we mentioned above the students used the Reasoning Con-
trol Matrix for the Proving Process. The RE.CO.M.P.P was employed for
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the proof of propositions that were assigned to the students, since a theoreti-

cal document was required.

4.3.2. Proof-writing evaluation exercises

Two pairs of exercises, that were similar to those of the textbook used in

class, were given successively during the pre-test and the post-test. (Totally,

4 exercises per test). The first exercise from each pair corresponded to a

simple proof and the second one corresponded to a complex proof, which

was an extension or a slight modification of the first exercise. We asked

students to prove another one result, whose proof was based on the result of

the first exercise.

The following exercises comprised the pre-test:

Exercise 1: In an isosceles triangle ABC, with
AB = AC, the points M, N lie on the line seg-
ments AB, and AC respectively, so that M is the
mid-point of AB, and N is the mid-point of AC.
We equally extend the base BC of the triangle by
the line segments BD, CE, so that BD=CE. Prove
that DM=EN (See Figure 10).

Exercise 2: In an isosceles triangle ABC, with AB
= AC, the points M, N lie on the line segments
AB, and AC respectively, so that M is the mid-
point of AB, and N is the mid-point of AC. We
extend the base BC of the triangle through B and
C, respectively, to points D and E, so that BD =

A
/\
D E
B c

Figure 10
A
PaN
D B c E
Figure 11

CE. Segments DM, and EN intersect at point I. Prove d

that segment Al is a bisector of angle A (See Figure 11). /ﬁ
Exercise 3: Prove that the common external tangents BC ) //j

and B'C’, of two externally tangential circles K and O

are equal (See Figure 12).

~_

Ficure 12
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Exercise 4: Given that BC and B'C” are common

external tangents of two externally tangential circles < \ \\ \/CN>

K and O, prove that B'C = BC" (See Figure 13). S
The following exercises comprised the post-test:

Exercise I: In parallelogram ABCD, the points M, Figure 13

<
N lie on the line segments AB and CD, respectively,
so that M is the midpoint of AB, and N is the mid-
point of CD. Prove that ANCM is a parallelogram -

(See Figure 14).
Exercise 2: In parallelogram ABCD, the points M, N

Figure 14

lie on the line segments AB and CD, respectively, so
that M is the midpoint of AB, and N is the midpoint °
of CD. Prove that the diagonal AC is trisected by the
segments MD and NB (See Figure 15).

Exercise 3: In square ABCD, the point E lies on the segment

Figure 15

AB. From point A we draw a perpendicular to DE, which in-

Figure 16
tersects BC at point Z. Prove that DE = AZ (See Figure 16).
Exercise 4: In square ABCD, two vertically intersected line
segments intersect sides AB, BC, CD, and DA of the given
square at points E, Z, E" and Z’, respectively. Prove that EE"* ° Fiéure 17

=77’ (See Figure 17).
Each exercise in the pre-test and the post-test was graded in a scale between
0-and 5 grades as follows:

Grade Analytical explanation of student’s actions

0- The student had not written anything or had not made any valid
simple propositions

1- The student had written the given input and the objects of the
exercise and had also drawn the shape in the corresponding sec-
tions of RECOMPP

2- The student had written at least a simple proposition along with
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its justification

3- The student had written some thoughts in the “reasoning devel-
opment” section of RECOMPP

4 - The student had written at least a partial proof

5- The student had written a complete proof

4.4 Results

Initially, an independent-samples t-test among the experimental and the
control group was conducted. The statistical test was conducted to check the
existence of statistically significant differences in the performance between
the pre-test and the post-test. No statistically significant difference was
found in the performance in proof-writing among control group and experi-
mental group, between pretest and post-test (t =-1,896 df = 248, p > 0,05).

Also, a paired-samples t-test among students in the control group was
conducted between pre-test and post-test. This statistical test was conducted
to check the existence of statistically significant improvement in the proof-
writing performance of these students. No statistically significant difference
was found in the proof-writing performance among students of control
group between pre-test and post-test. (t=0,711 df =111, p> 0,05).

Finally, a paired-samples t-test among students in the experimental
group was conducted, between pre-test and post-test. This statistical test was
conducted to check the existence of statistically significant improvement in
the proof-writing performance of these students. It was found that there is a
statistically significant difference in the proof-writing performance among
students of the control group between pre-test and post-test

(t=-48,271 df = 137, p < 0,05).

Discussion
The findings suggest that students of the experimental group, who had
employed the Structured Form Worksheet that contains RE.CO.M.P.P and
had initially dealt with simple geometric propositions had significantly im-
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proved their ability in writing formal geometry proofs, compared to the stu-
dents of the control group who had been taught in a traditional method. The
exercises given to the students were common exercises, that is, exercises
taken from the textbook. These exercises were given in pairs. The second
exercise represented an extension of the first one. Thus, the proof of the
second exercise was an extension of the proof of the first exercise. We in-
tentionally left the students uninformed of this property between the two ex-
ercises. We did so, because we wanted to examine either, whether a student,
who had already solved the first exercise had the ability to solve the second
exercise too, or whether a student had the ability to solve only the first exer-
cise and not the second one. We found that most of the students in the con-
trol group could not solve the second exercise, while most of the students in
the experimental group managed to solve both exercises. The above findings
allow us to claim that students should be able to write simple and partial
proofs before they are taught how to write formal proofs.
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Appendix

Structured Form Worksheet

Instructor

Studel’lts ’ full names . eeeesecsscssccsieccicencines

Lesson topic: ~ The diagonals of a rectangle

(k)

1. The Reminders Notes.

1.1. The perpendicular bisector (k) of a line segment AB is
a line that is perpendicular to AB and passes through

the midpoint M of segment AB.

1.2. The perpendicular bisector of a line segment is the lo-
cus of all points that are equidistant from its endpoints,
1.e. GA = GB for every point F of the perpendicular bi-

sector.
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1.3. If a straight line (h) is perpen-

dicular to one of two parallel
lines (d), then it is also per- ()

pendicular to the other line (e).
If A= 90° then B=90°

1.4. Problem: Two cities A
and B are equidistant from
points D and C of the na- . .
tional road n respectively. ' :
Where should a station S
be built so that the points
A, B, C and D are equidis-

tant from S? (n)
2. Process

(The students work in the computer. The students with the help of command meas-

urement fill a table)

2.1. What shape is the ABCD

2.2. Measure the length of every segment SA, SB, SC, SE. Drug the
point S, repeat the measurement and fill the following table.
A B

) D C
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EA EB EC

ED

2.3. Draw “all points” that are equidistant from A and B, and then draw
all points that are equidistant from A and D (The students draw the fol-

low shape)

meter's Sketchpad - [PROBLEM]

[,

F = NG -

File Edit Display Construct Transform Measure Graph Window Help

L

N ¢ @ E e 1126y
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2.4. Can you guess where point S lies?

&) The Geometer's Sketchpad - [PROBLEM]

f8) File Edit Disploy Construct Transform Measure Graph Window Help

o L

N ¢ @ E ) 1125y

2.5. Write down your observation (The students discover where the point S

lies)

2.6. Prove that points A, S, C are on the same line and then prove that B,
S, D are on the same line too. (The students employed the
RE.CO.M.P.P)

2.7. Prove that AC = BD. (The students employed the RE.CO.M.P.P )

2.8. Formulate the relation. Then write it in words:

(The students discuss the theorem and then write it down)

3. Assessment
(The students replay the following questions)
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3.1. What have you learnt? Draw the figure and write the:

THEOREM

3.2. Describe over the phone to
another schoolmate, who was absent from class, what you learned.
3.3. Write a problem based on the theorem you learnt

Emmanouil Nikoloudakis

Lecturer (P.D. 407/80)
Faculty of Primary Education, University of Athens

e-mail: enikoloud@primedu.uoa.gr
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Mathematics
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Abstract
This paper is focused on the investigation of factors that influence students’
self-regulation as they try to develop regulating activities when they
collaborate in pairs in mathematics. We investigated the issue of how 10-11
yvear old students regulated their behavior during their mathematical
activity as they reflected on their small-group interaction by observing and
discussing their video-recorded collaboration. We studied the collaboration
and the metadiscursive reflection of different cases of pairs. The results
showed that the students’ development of their self-regulation is a complex
process, as it is influenced by their beliefs about the role of the others, their
beliefs about the role of collaboration in mathematical learning, the
occurrence and the treatment of errors and disagreements as well as the

difference of students’ cognitive levels.

Keywords: collaborative learning, mathematics, metadiscursive reflection;

primary education; regulating activities

HMS i JME, Volume 2. 2009-2010 (46-74)



Factors that Influence the Development of Students’ Regulating Activities
as they Collaborate in Mathematics 47

INTRODUCTION

Recently, the role of students’ self-regulation as they are engaged in
mathematical activities has begun to gain a lot of interest (cf. Marcou &
Lerman, 2006), although self-regulation has a long history in educational
psychology (Fox & Riconscente, 2008). Self-regulation has been connected
with metacognition, but nowadays researchers are trying to define these
constructs more precisely (Dinsmore et al., 2008). Metacognition is described
as cognition about cognition, that is, it concerns the awareness of an
individual about his/her knowledge and the regulation of his/her cognitive
activities in learning processes (Veenman et al., 2006). On the other hand,
self-regulation concerns a “systematic process of human behavior that
involves setting personal goals and steering behavior towards the
achievement of established goals” (Zeidner et al., 2000, p.749, cf. Dekker et
al., 2006) and it does not necessarily require that individuals are aware of the
processes involved, as it involves motivational and socio-emotional
processes. Zimmerman (1995) has mentioned that the interpretation of
students’ self-regulation has to be treated as a complex interactive process
influenced by students’ self beliefs-system and “SRL (Self-Regulated
Learning) involves more than metacognitive knowledge and skills, it involves
a sense of personal influence, such as emotional processes as well as
behavioural and social-environmental sources of influence” (p. 218).

Researches in mathematics education concerning self-regulation have
mainly been developed in social contexts where the students have the
opportunity to engage collaboratively in mathematical tasks (collaborative
learning, students’ social interaction in the class) and discourse, as these
socio-cultural settings facilitate the developing of these activities. They have
shown that students regulate their own collaborative learning in the
classroom setting according to their commitments, conceptualizations and
strategies and there is some evidence that students can regulate their own
collaborative learning activities (cf. Dekker, Elshout & Wood, 2006).
However, more research is needed in order to clarify the conditions that
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allow the development of self-regulation in collaborative learning in a
classroom setting.

The purpose of this research is to investigate factors that influence students’
regulating activities when they try to collaborate in pairs. More specifically, we
investigated the issue of how 10-11 year old students regulated their behavior
during their mathematical activity as they reflected on their small-group
interaction by observing and discussing their video-recorded collaboration.
Critical moments of students’ collaboration in mathematics are discussed and
the opportunities that students’ meta-discursive reflection offered to their self-
regulation are presented. The study is focused on different pairs of students
representing different self-belief systems.

THEORETICAL BACKGROUND

As the mathematical activity is considered as a process that takes place
in a macro- and a micro-community with concrete socio-cultural
characteristics, students’ awareness of their actions in mathematics has to be
related not only with the reflection on cognitive aspects of their activity but
with social and cultural aspects of it, too. Nowadays, the reduction of the
student to a “cognitive subject” seems to be replaced by the
acknowledgement of the student as a “social subject” that is influenced by
his/her history and culture (Lerman, 1998; De Abreu, 2000; Valero, 2004).

Dekker & Elshout-Mohr (1998) have described an effective process
model for interaction and mathematical level raising, of students working in
small groups. Moreover, it has been mentioned that if the students often
follow this model, they attain more mathematical level raising (Dekker &
Elshout-Mohr, 2004; Pijls et al., 2007). The main activities described in the
model are key and regulating activities. The key activities are crucial for
level raising. The regulating activities provoke the key activities and in that
way they regulate the process of level raising. We can represent them in the
following way (Table 1):
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Regulating activities like: Provoke key activities like:
A asks B to show his work B shows his own work

A asks B to explain his work | B explains his own work

A criticizes B’s work B justifies his own work

B reconstructs his own work

Table 1. Regulating activities

All the above activities can help children to become aware of their work
and enhance their self-regulation. However, a participant of an interaction in
the mathematics classroom “monitors his or her action in accordance with
what he assumes to be the other participants background, understandings,
expectations... At the same time the other participants make sense of the
action by adopting what they believe to be the actor’s background,
understandings, and intentions.” (Voigt, 1995, p. 169). As a consequence,
every member of a mathematics class tacitly participates in his/her own way
in interacting with others according to his/her personality (interests,
expectations, intentions, and beliefs).

Moreover, as Sfard (2001) has mentioned students’ initiation to
mathematical discourse depends on the “meta-discursive rules that regulate
the communicative effort” (p.28). These rules are considered as the implicit
regulators of interpersonal and intra-personal communication, as they
determine the choices of the participants when they act and they embed their
values and beliefs. She has emphasized the role of the interlocutors’
intentions in a mathematical discussion using the term “meta-discursive
intentions” in order to describe the “interlocutors’ concerns about the way
the interaction is being managed and the issues of the relationship between
interlocutors” (p. 39).

In mathematics education, many researches investigating social
interaction in classroom have been focused on cooperative learning contexts
concerning small groups of students. These researches have revealed a lot of
factors that influence students’ mathematical learning like group
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composition, students’ beliefs about their cooperation in mathematics,
students’ achievement in mathematics, the quality of mathematical activities
(e.g. Good et al., 1992; Edwards, 2002; Kieran, 2001; Webb, 1989).

In our research we assumed that students can give their own
explanations about their behavior as they try to collaborate in small groups
in a mathematics classroom. In most researches the teacher has played a
significant role in establishing the social and socio-mathematical norms of
students’ collaboration (McClain & Cobb, 2001; Dekker & Elshout-Mohr,
2004). On the other hand, the teacher can not really know what the children,
as they work in pairs, may discuss. Furthermore, if the students do not
collaborate systematically during their mathematical activities, can they
develop their regulating activities and take responsibility for the quality of
their shared activities? How do the children think on their own about their
collaborative learning?

Towards this effort we used the term “metadiscursive reflection” in
order to describe this kind of students’ reflection that is related with the
consciousness of relationships among cognitive, social and emotional
components of their mathematical discourse. Metadiscursive reflection
concerns students’ reflection on their own and their interlocutors’ beliefs
and intentions about their social interaction and it is revealed through their
explanations and justifications about their behavior. Our questions in this
research are:

a) What factors influence the occurrence of each regulating activity as
students try to collaborate in mathematics?

b) What are the critical situations of students’ metadiscursive reflection
that allowed the development of these regulating activities for both
partners?

METHOD
The research program took place in a fifth grade of a typical public
school of Athens in Greece, in 2003-2004 and it lasted six months. The
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participants were 18 students (9 boys and 9 girls) that worked in pairs, 4
times per week during math class teaching. The mathematical topic, in
which the students were engaged during the research program, concerned
the concept of fractions (equivalence, comparison and the four operations).
The activities about fractions have been given by the researchers in order to
be meaningful for the students according to the related literature
(Kieren,1992; Streefland,1991) and the students’ initial knowledge of
fractions. The research program was developed in three phases.

Initially, we studied the students’ profiles in order to organize them in
pairs. All the students were interviewed by the researcher about their beliefs
of their own participation and the others’ participation during the classroom
mathematical activity as well as about the nature and the goals of
mathematical activity (e.g. When do you feel really pleased in mathematics?
How do you feel when you make an error in mathematics? Do your
classmates help you in mathematics?). Every interview lasted about one
hour. Moreover, we investigated the students’ informal knowledge on
fractions using a questionnaire with mathematical problems on this topic.
Finally, the teacher of the class was asked to assess her students in
mathematics based on her personal evaluation by using the criterion of the
student’s need for help in order to solve a mathematical problem (He/she
managed in mathematics — He/she managed in mathematics but sometimes
with help — He/she managed in mathematics only with help) as well as to
provide the students’ grades in mathematics of the previous school year.

We based our research on a patchwork case-studies method (Jensen &
Rodgers, 2001), studying our cases horizontally. According to this method a
set of multiple cases of the same research entity (in our research we define
as entity a pair of students) allows a deeper and more holistic view of the
research subject.

The criteria for the organization of the students in pairs are presented in
the following table:
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Criteria for the organization of pairs Symbols

Negative beliefs about collaboration in mathematics N

Positive beliefs about collaboration in mathematics

He/she managed in mathematics

P
1
He/she managed in mathematics but sometimes with help 2
3

He/she managed in mathematics only with help

Table 2. Criteria for pairs

On table 2 the notion ‘“negative beliefs” was used to describe the
students’ responses like: “I would like to solve alone the problems in
mathematics” or “I would like the teacher to help me in order to solve the
problems”.

The different cases of pairs that arised from this class are presented in
table 3. As there were similar pairs of students in some cases, in our
research we studied one pair of each case. The choice of the pairs was

accidental.
Case | Pairs’ profile | Number of
pairs
1 N1-P2 3
2 NI1-N2 1
3 N2 -N2 1
4 P1-N3 1
5 P2 - P2 3

Table 3. Pairs’ profiles

In the second phase of the program, the students’ collaboration was
videotaped once a week for every pair in the class by the researcher(R) and
then the members of the group participated in a session with him. These
meetings with each group took place in the school library, immediately after
the lesson in their regular classroom and they lasted about 30 minutes every
time. Each group realized six meetings with the researcher. During this
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session, the students observed and discussed issues concerning their video-
recorded collaboration. The researcher had a role of coordinator during the
students’ discussions. He clarified the context of these discussions by
reminding them the special issues that they had to discuss, like the
assessment of their collaboration, the significant moments of their work or
their desires for the improvement of their interaction. These discussions
were tape-recorded. On this meta-discursive level, the tape-recorded
students’ discussions about their own videotaped collaboration were
analyzed according to: (1) the way that the students assessed their
collaboration (self-assessment), (2) the moments of their interaction that
they considered as critical and (3) the targets and their behavior in their next
collaboration (self-regulation). We will base on the protocols of 11 years old
students’ dialogues (as they observed their videotaped collaboration) as
evidence for the development of the regulating activities.

In the third phase, the members of each pair were interviewed again
about their beliefs of their own and the others’ participation in mathematics
as well as the nature and the goals of mathematical activity.

RESULTS

We should note that, according to the data from the initial interviews
that were conducted in this class, the students that expressed the wish to
collaborate with their classmates, were usually average or low achievers,
and the students that expressed the wish to work alone, were usually high
achievers (according to the criteria described in the method). Furthermore,
the students’ justifications about their preferences revealed the following
beliefs that prevented the development of collaboration in mathematics: a)
mathematical knowledge is acquired with personal effort, b) different ideas
in mathematics cause confusion and create difficulties in understanding, c)
classmates’ errors in mathematics negatively influence pupil’s thinking and
prevent their learning and d) the exposition of a pupil’s thinking to his/her
classmates does not protect his/her self-image (Chaviaris et al., 2007). We
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must mention that the students had not worked in groups in mathematics in
previous years and their teacher was following a traditional approach in this
subject (cf. Cobb et al., 1992).

In describing our results we will try to separate the three regulating
activities in order to clarify the factors that influence the occurrence of each
one as well as the students’ comments about them. Towards this effort, we
will present illustrative episodes from the collaboration and the
metadiscursive reflection of different pairs.

The first regulating activity “A asks B to show his/her work to her/his

partner”
In order to reveal the factors that influenced the occurrence of students’

regulating activity “A asks B to show his/her work to her/his partner” using
questions like: What are you doing?, we present and analyze two illustrative
episodes of different pairs of students as they made their first efforts to
collaborate in mathematics and as they reflected on their collaboration.

Episode 1:

Paul(P) and Nikos(N) had expressed negative beliefs about collaboration
in mathematics (N1-N2) and Paul seemed to manage better in mathematics
than Nikos. During their second mathematical activity, they had to solve the
following problem:

Put the fractions 1/3, 2/6, 1 1/2, 3/2 and 5/6 on the following number
line.

Figure 1.

Their dialogue as they tried to collaborate was the following:
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1,2,3,4,5, here.

as they Collaborate in Mathematics 55
utterances writings
1 | N: 1/3 will be here? (He is indicating the interval 0-1)
2* | P: 1,2,3. (He is dividing the interval 0-1 by his finger)
2° | Then, it is here. (He is indicating the first third of the
interval 0-1).
3 | P: The 2/6 are equal with the 1/3, then it is at the same | [3] He is dividing the
point. interval 0-1 in three
4 | N: Where? parts and he is
5 | P: Here, with 1/3. writing 1/3 and 2/6
6 | P: The 1% ... in the middle after the point 1. on the first point.
7 | P: And 3/2 will be in the same point because they are [7] He is writing 1 %
equal. without dividing in
8 | N: Let me look. (He is looking at Paul’s worksheet) parts.
9 | P: Now, 5/6... [11] He is dividing
10 | N: 5/6 will be somewhere about here? (He is the interval 0-1 in six
indicating the interval 1-2) parts and he is
11 | P: They don’t pass over the point 1. So will be... writing 5/6 on the

fifth point.

In the above dialogue, Nikos was not sure about the position of the

fractions on the number line and he was trying to challenge Paul in order to

show him his work (cf. ut. 1, 4, 8, 10). Paul showed his work without any

question if Nikos could understand his thoughts. When they observed their

video-taped collaboration, the following discussion took place:

[1] R: We’ll watch the video with your second collaboration in mathematics and

after we’ll discuss about it.

[2] R: How was your second collaboration in relation with the first one?

[3] N: We collaborated more. In the first collaboration each one of us solved the

problem alone.

[4] P: Yes. It was more collaborative than private.
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[5] R: How did you collaborate?
[6] N: We talked to each other and...
[7] P: I think that I spoke more because he had some difficulty and I explained to
him.
[8] N: Yes. I asked him because I hadn’t understood the number line.
[9] R: What did each of you do in this collaboration?
[10] P: I solved the problem in order to be on time and after I showed the solution
to him.
[11] N: Paul knows more mathematics than me and he knew that I would ask him,
so he finished quickly and after he showed me.
[12] R: Nikos, how did you feel about Paul’s behavior?
[13] N: Good. If I ask for help, it’s good. If someone helps me without my request,
I become angry.
[14] R: Did you understand the number line after Paul’s help?
[15] N: Not enough.
[16] R: Did you do something for this?
[17] N: What could I have done?
[18] P: You did not ask me. I could explain to you more.
[19] R: Ok. What would you like to change about your collaboration in
mathematics?
[20] P: To discuss the problem more from the beginning.
[21]N: Yes. It is better to ask each other some explanations when we don’t
understand the problem.

[22] R: Nice. We will meet again in a few days.

During the discussion Nikos justified his behavior (that is to ask Paul to
show him his work) according to his beliefs about his interlocutor’s
mathematical abilities (cf. phrase 11). Moreover, he seemed to accept that
Paul’s role was to solve the problem alone and then to show him the
solution. On the other hand, Paul has also accepted that role (cf. phrases 7,
10, 18). These perceptions about their roles during the solution of a

HMS i JME, Volume 2. 2009-2010 (46-74)



Factors that Influence the Development of Students’ Regulating Activities
as they Collaborate in Mathematics 57

mathematical problem influenced the occurrence of the first regulating
activity from the part of Nikos at the beginning of their interaction.

Episode 2:

Stavroula (S) and Alexia (A) had expressed different beliefs about the
role of collaboration (N1-P2). Stavroula considered the collaboration to be
an obstacle in the understanding of mathematics, because she believed that
“if someone doesn’t work on his own, he cannot understand mathematics”.
On the contrary, Alexia believed that collaboration could help her to control
her thoughts before she announced them in the classroom and so that she
could “avoid mistakes”.

At the beginning of the program, the children had to solve the following

problem:
In Alexandra’s Avenue, public works are being made by 3 different firms of
constructors. The works are being made at three different points. The first
firm of constructors makes works at a point corresponding to the 1/3 of the
avenue, if we count from its beginning. In the ¥ of the avenue there are
works of the second firm of constructors and in the 5/6 of the avenue there
are works of the third firm of constructors. Note in the following schema
where the works are being made. Use red color for the first point, green for
the second one and blue for the third one.

beginning end

Figure 2.

Utterances writings

1 A: (She is reading the problem)

S: So...

S: 1/3 of the avenue...Which is 1/3?
A: Calm yourself.

wm AW N

A: Do you want to discuss it?
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S: We have to count with a ruler.
A: Just a moment, % is the half and we have to share it
in the middle, like yesterday. 1/3?

8" S: This line is common for all the constructors. [8b]She notes with
8" 1,2,3...Here is for the first firm. the ruler 1 point on
8° | Now, about the second firm with green color, %... the line (distance 1
9 S: Did you finish with the first one? cm).

10 | A: 1am confused, what did you do? [11b] She notes
11* | S: Do you want me to help you? with the ruler 3
11° | 1 cm for the first, and three more cm for the second ... | more points on the

12 | Now we will see the third one... Ok, 5 more cm for the | line (distance 1
third. cm).

Alexia asked her partner to collaborate with her (cf. ut. 5, 10). However,
the priority of Stavroula was to solve the problem by her own way. Her
reaction “Do you want me to help you?” (cf. 11%) showed that her intention
was not to find an acceptable solution by collaborating with her partner.

During their discussion as they reflected on their collaboration they
made the following comments:

[1] S: When you find the solution and it is right, you don’t have to discuss it with
your partner, because she may have a different opinion and she will confuse
you.

[2] A: It is better to discuss it, because if it is wrong, you will think: why didn’t I
ask?

[3] R: So, what happened today?

[4] S: I told her to put centimeters, but Alexia told me to divide the whole in
pieces. We made it wrong.

[5] R: The solution on the board with whom solution did it match?

[6] S: With Alexia’s.

[7] S: Ok, it is good to collaborate, but if you don’t find the solution alone, you
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don’t understand...You can not do something that the other says, if you don’t
think alone.

[8] R: How can you be helped to understand the solution of Alexia?

[91S: ...

[10] A: You had to ask me.

[11] S: We have to discuss more our thinking.

As the students reflected on their actions, Alexia justified her behavior
(that is, to ask Stavroula to discuss with her about the problem) as she
believed that in this way they could prevent mathematical errors (cf. phrase
2). On the other hand, Stavroula explained her behavior according to her
beliefs about the negative consequences of collaboration in mathematics (cf.
phrase 1).

Discussing on the above episodes we could mention that the occurrence
of the first regulating activity (A asks B to show his/her work to her/his
partner ) was found to be influenced by two factors: a) the established roles
that the partners perceived at the beginning of their interaction (who was the
helper and who needed help) according to their beliefs about their own and
their partner’s ability in mathematics (who considered him/herself as a good
student in mathematics and who considered the opposite) and b) the
students’ beliefs about the role of collaboration in mathematics.

The first factor was connected with students’ beliefs about their own and
their partners’ learning ability in mathematics which influenced their
behavior during their effort to cooperate. It was easier for the student that
had lower self-estimation to perform this regulating activity (c.f the case of
Nikos in episode 1). Paul’s and Nikos’ perceptions about their concrete
roles in their interaction in the mathematics classroom provoked
relationships of power among them and defined the way of their
communication. In the regulating activity 4 asks B to show his/her work the
student A seemed to be the one who needed help and the student B the other
who was the helper.
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The second factor that seemed to influence the occurrence of the first
regulating activity was connected with the students’ beliefs about the role of
collaboration in mathematics. Alexia who wanted to collaborate performed
this regulating activity more usually in contrast of her partner who had
negative beliefs (c.f episode 2). In the case of school mathematics the
willingness to collaborate is important, because of the social dominant belief
that learning of mathematics is an individual process and that the social
interaction does not play any significant role in it (Chaviaris, 2006). As it
was been revealed in students’ metadiscursive reflection the conflict of
beliefs about the role of collaboration in mathematics defined the way that
the student regulated their interaction.

Furthermore, we should note that although the students in the above
episodes posed new targets for their next collaboration, they sometimes
presented the same behavior during it. That is, they experienced a lot of
difficulty in order to regulate themselves and to change their actions. The
critical situation that helped the development of the first regulating activity
for both students for the different pairs occurred when they experienced the
effectiveness of their partner’s suggestion, if the solution of the “good”
student was incorrect. These moments were discussed during their
metadiscursive reflection, like in the dialogue presented above between
Stavroula and Alexia. These topics for reflection helped mainly the “good”
students to appreciate the efforts of their partner to contribute to the
dialogue.

The second regulating activity “A asks B to explain his/her work to his/her

partner”
The process of explanation is considered as a significant process for the

development of student’s mathematical reasoning and has substantial
contribution in the development of students’ collaboration (e.g. Cobb &
Bauersfeld, 1995). In the following we present and analyze two episodes
concerning the conditions of the occurrence of the students’ request for
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explanation as they tried to collaborate in mathematics.

Episode 3:

Paul and Nikos (N1-N2) tried to collaborate as they were engaged in the
following activity. The details of the students’ profile has been presented in
the episode 1.

B r In which group would you
like to be if you wanted to eat
more cake?
[T 1] [TTTTT] T Why?
[T linimn How much cake will each

child eat in every group?

A

Figure 3.

Utterances

N: (He is reading the problem)

2 | N: We will eat the same piece but bigger quantity of these.

P: Look here. (He is showing the 2™ group). Each child will eat 2 pieces of
these. 1/6 plus 1/6...2/6, that is, the same with 1/3.

N: Yes.

P: In the third group each child will eat 1,2,3... 3/9 of the cake, that is, the
same too.

N: With which it is the same?

P: Both.

P: We will write that all the groups will eat the same.

N: Yes.

(9]

O 0 9 O

Although the students tried to communicate their solutions, they didn’t
manage to give explanations about their thoughts (cf ut. 2, 5-7). When they
observed the video of their collaboration, they gave the following
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justifications about their actions:

[1] P: I did not understand what Nikos said.

[2] N: I said that they will eat more pieces but the same.

[3] P: You didn’t say that.

[4] N: But that is what [ would like to say.

[5] R: So, Paul what did you do?

[6] P: I showed him the right.

[7] R: Did Nikos have wrong?

[8] P: Now, as he explained it, no.

[9] R: So?

[10] P: I had to ask him again...Nikos has to say what he means so I will not think
that he will say something wrong.

[11] N: When you don’t understand you have to ask me.

In the above metadiscursive reflection, the interlocutors seemed to
become aware that there were misunderstandings during their effort to
communicate their mathematical ideas (cf. phrases 1-4). It was this fact that
it provoked their reaction to pose questions concerning the second
regulating activity, like to ask and to give explanations about their
mathematical proposals (cf. phrases §,10,11).

Episode 4:

The following episode concerns two students with negative beliefs about
collaboration and with no differences in their mathematical ability (N2-N2).
At the beginning of the program, both students, Apostolos(A) and Elsa(E),
expressed their desire to collaborate only with their teacher in mathematics.
Elsa justified her view as follows: “I have to try alone and only the teacher
can help me when I have difficulties ”. She declared that she didn’t want to
help her classmates in mathematics because: “If I do not know it right, I will
say it to the other students in a wrong way”. On the other hand, Apostolos
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justified his own view as follows: “I have the impression that my classmates
will think that I do not do well in mathematics and I don’t like this”.
Although, both students expressed negative beliefs about collaboration in
mathematics, their intentions differed. Apostolos wanted to protect his self-
image and Elsa had low self-confidence in mathematics. Moreover, these
views were connected with the targets that the two students posed for their
mathematical activity. Apostolos declared that he felt happy in mathematics
when he could solve a problem that his classmates “don’t manage”. In
contrary Elsa said: “I feel happy when I answer correctly to my teacher’s
questions”. In relation to the students’ abilities in mathematics, their teacher
commented that both students very often needed help to complete a
mathematical activity. In one of their collaborations, they had to solve the
following problem:

During an excursion, Helen used 2/4 of her film and Nikos used 2/6 of
his film. The films were same. The children discussed about who took more
photos. A. Who used more film and how much more? B. How much film was
left over for every child?

utterances writings

E: We have to find how much more.

A: How can we find it?

E: We will subtract 2/4 from 2/6 and we will find it.

A: It 1s 2/2, but it looks weird.

E: I thought something, the denominators are not the same.
A: We can simplify them. 2/4 can be Y2 and 2/6 can be 1/3.
E: If we subtract them it is 1/1. [7]They wrote:
A: So, did we find how much more? 1/3-1/2=1/1

O 0 39 O U K W N~

E: I don’t know, maybe.

During their discussion as they reflected on their collaboration they
made the following comments:
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[1] E: Apostolos made an error in the subtraction, he subtracted 2/4 from 2/6 and
he said it was 2/2.

[2] A: But you accepted it, you didn’t ask how I made it.

[3] E: I said that the denominators were not the same.

[4] A: Yes, but then we made the same subtraction again with a simplification and
you accepted it.

[5] E: Yes, it seemed right to me.

[6] A: The first time we found 2/2.

[7] E: And finally we found 1/1 again.

[8] A: It looked weird to me from the beginning.

[9] E: I was not sure at the end either. We didn’t think why it could not be 1/1.

Through their metadiscursive reflection, Apostolos and Elsa tried to
explain their thinking (cf. ut. 2-3, 5-6). Both students tried to shift the
responsibility of the error to their partner. However, they discussed on the
quality of their explanations for the solution of a mathematical problem (cf.
phrases 2, 4), that is if the given mathematical explanation made sense for
both partners.

In general, we could mention that the second regulating activity did not
easily occur during the collaboration of the groups. The first occurrence of it
as a goal in the work of the pairs was observed when the partners did not
understand the proposed solutions and they explicitly mentioned this during
their metadiscursive reflection (c.f. episode 3). That is, the existence and the
acceptance of the difficulties that a member of the pair experienced to
understand his/her partner’s solution provoked the necessity of an
explanation in order to proceed their communication smoothly.
Furthermore, the development of the second regulating activity for both
partners was connected with the awareness that the existence of
explanations during their discussion in mathematics helped them to find a
correct solution (cf. episode 4).

However, we have to stress that in the case of the pair of the students
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where there was a big difference in cognitive level between the partners
(case P1-N3), the effort for the occurrence of an explanation, as a regulating
activity, was cancelled during their collaboration in mathematics. In that
pair, the effort of the “good” student to explain his thought to his partner
was continuously ineffective, as there was not a “domain of mathematical
communication” between them.

The third regulating activity “A criticizes B’s work”

The action to ask your partner to criticize your own proposal and in the
same time to be receptive to his assessment consists a high level of
communicational behavior. This activity is important in collaborative
settings in mathematics classroom according to the process model for
interaction (cf. table 1). In the following, we present and analyze concrete
episodes of students’ collaboration in mathematics in order to study the
conditions under which this regulating activity was occurred.

Episode 5:
Paul and Nikos tried to solve the following problem:

I am bigger than I am bigger than
5/8 3/4 5/8

]

—/I)/I am bigger than ’ [Iam bigger than \l\
3/5 2/3 L 3/5

[ 2° — |

Figure 4.

~ 3/4

Facilitate the fractions to find their value. Use the strategy of changing
them into fractions with the same denominator.
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Utterances writings
1 N: (He is reading the problem)
2 P: It suggests changing them into fractions with the same
denominator.
3 N: % will be done 6/8, then it is bigger than 5/8.
4 P: Yes, I agree.
5 N: How will we make the second pair?
6 P: I don’t find something that makes them with the same
denominator.
7* | N: I found it!
7° If we subtract 2 from 3/5, it will be 1/3. So these fractions will [7°]
have the same denominator and 2/3 is bigger than 3/5. %: i:%
7° ...It isn’t right?
8 P: We can not find fractions with the same denominator by
subtraction. We usually use division or multiplication.
9 N: I know it, but we have to do it in this way because we can
make the same denominator.
10* | P: 1/3 is not equal to 3/5.
10° | If we multiply it by 2, 2/3 will be 4/6.
11 | P: If we divide it by 2... It doesn’t work. .... By 3, it doesn’t
make the denominator 5.
12 | N: We can not by 3 or 2, so what will we do?
13 | P: Oh! I found it. [l,rSSL
14 | N: Let me see! %=%
15 | P: 15,3 times 5... 15. If we multiply it by 3 ...and this one by 5 5 3.
....it will be here 15 and here 15. %\i%
16 | N: Ah! Yes, the first one is bigger. ?

The following dialogue took place, as they reflected on their collaboration:

[1] R: This is your fourth collaboration. What targets had you put last time?
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[2] P: To discuss the solution of the problem and to ask if we don’t understand.

[3] N: Yes, to collaborate.

[4] R: Good, so how do you feel about this collaboration?

[5] P: Very good, we continuously discussed.

[6] N: Very good.

[7] R: Let’s watch the second part of your collaboration. Do you want to observe
something here?

[8] N: At the beginning it was not so good, we confused.

[9] P: I disagreed with Nikos’ solution.

[10] R: What kind of disagreement did you have?

[11] N: I thought that if we subtracted 2 from 3/5 it would be right, because we
would have the same denominator. Paul disagreed and he told me that it
wasn’t right.

[12] P: Yes, I explained to him that it wasn’t right and then I thought how we had
to do it.

[13] R: Nikos, were you convinced that your idea was wrong?

[14] N: Yes.

[15] R: How?

[16] N: Paul was right, you can not subtract because you don’t take equivalent
fractions in this way, then he explained to me how he found the correct and I
agreed..

[17] N: If Nikos had a correct idea, we would discuss it.

Paul and Nikos had a disagreement about the way of finding fractions
with the same denominator (cf. ut. 7-12). This disagreement provoked the
occurrence of the third regulating activity, as Nikos asked from Paul to
criticize his proposal (cf. ut. 7¢) and Paul presented his arguments in order
to support his strategy (cf. ut. 8,10a). During their metadiscursive reflection
both students had the opportunity to describe how they treated their
disagreement (cf. phrases 8-17).
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Episode 6:

Towards the end of the program, Elsa and Apostolos (N2-N2) had to engage
in the following mathematical problem:

2 children fairly share 5/6 of a pizza. How much pizza will each child get?

4 children fairly share 2/3 of a pizza. How much pizza will each child get?

utterances writings

1 E: (She is reading the problem)

2* | A: 2 children, 5/6.

2° | We can multiply 2 by 5/6.

E: Yes.

A: Shall we do it?

E: Just a moment, it don’t write each one 5/6, but they
share 5/6.

6" | A: Oh! Yes.

6" | There are 5 pieces. We share them in two, everyone will

get 2 whole pieces and it rests one. Right?

7 E: Yes.

A: We will not divide this one in half?
9 E: Yes. [10]They try to
10 | A: Can we make a drawing? draw in a cyclic
11 | E: Yes. disk 5/6.

12 | A:1can not make 6 pieces.
13 | E: I have difficulties too.

14 | A: Can we do operations?

15 | E: Yes.

16 | A:5/6 will be 10/12, because it holds with 2. [17] They wrote:
17 | E: We will divide it. 5/12
18 | A: Good, 5/12 each one. 10/12

19 | E: The next one, 4 children share fairly 2/3 of a pizza. 5/12
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20 | A: Now, how can we divide 2/3 in 4?
21 | E: With an equivalent, 2/3 can become 4/6.

As we can observe in the above episode, both students continuously
expressed comments and assessments about their own and their partner’s
proposals. Apostolos and Elsa successively criticized the expressed
proposals and they had an equivalent participation in their collaboration.
This was a major advance during their collaboration, because Apostolos and
Elsa had both negative beliefs about collaboration in mathematics at the
beginning of the program.

Discussing about the conditions that influenced the occurrence of the
third regulating activity (A criticizes B’s work) we could notice that its
spontaneous occurrence was connected with the existence of one student’s
disagreement during the interaction with his partner (cf. episode 5).
However, the critical situation that allowed the occurrence of this regulating
activity for both partners was the evaluation of all the different proposals
that each partner offered, as they mutually tried to construct a common
solution to a mathematical problem (cf. episode 6).

CONCLUSIONS

From the presented results, the students’ development of their self-
regulation, as they tried to collaborate in pairs in mathematics, using as a
theoretical context for our analysis the process model of interaction, is
complicated. It is influenced mainly by their beliefs about the role of the
others, their beliefs about the role of collaboration in mathematical learning,
the occurrence and the treatment of errors and disagreements as well as the
difference of students’ cognitive level. In our research, we found that the
occurrence of each regulating activity was influenced by different factors.
More specifically, the students’ activity to ask their partner in order to show
his/her own work is related to their belief about their own and their partner’s
learning ability and to their belief about collaboration; the students’ activity
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to ask their partner to explain his/her mathematical solution is related to the
existence of misunderstandings; the students’ activity to ask their partner to
criticizing a solution is related to the disagreement about an explanation.

However, in collaborative settings, these regulating activities have to be
developed by both students in order to exist an effective collaboration and
this effort needs suitable learning environments. According to our opinion,
every mathematical activity can give opportunities to students in order to
reflect about their interaction. The students’ observations and discussions on
their videotaped collaboration allowed them to become aware of multiple
aspects of their mathematical activity and to improve their collaboration
through the appearance of regulating activities. They had the opportunity to
focus on different issues that are connected with the realization of a
mathematical activity, like the treatment of an error or the treatment of
different solutions. This means that students’ self-regulation could be
studied through students’ metadiscursive reflection as this kind of reflection
allows the understanding of factors that influence it. Table 4 summarizes the
conclusions of this study.

Regulating Factors Metadiscursive reflection
activities on:
A asks B to show | - Beliefs about their own and their | the effectiveness of their
his/her work partner’s learning ability partner’s suggestion

- Beliefs about collaboration

A asks B to - Misunderstanding of a problem | the quality of their
explain his/her solution mathematical

work explanations

A criticizes B’s | - Disagreement about a the evaluation of the
work mathematical solution. proposals offered by

each partner

Table 4. Development of regulating activities
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The results of this research show the necessity of the development of
students’ metadiscursive reflection in the mathematics classroom setting.
Towards this effort mathematical educators should help teachers to design
suitable didactical situations that enhance self-regulated learning. The
construction of tools that include metadiscursive self-questions that the
students could use as they collaborate in order to solve a mathematical
problem is open for future research.

According to our results the organization of mathematics classroom in
pairs of students according to their cognitive level is not enough for
students’ mathematical level raising. Teachers should be aware of their
students’ self-belief systems in order to appreciate their effort to collaborate
in pairs. Maybe many difficulties that children still experience in
mathematics, in spite of the progress in didactics of mathematics, are related
to an incomplete picture that we have about the interaction between students
as human beings and not as mere cognitive subjects.
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Abstract
In the present paper we build a Markov model for the description of the
process of learning a subject matter by a group of students in the classroom.
In this way we succeed to calculate the probabilities for a student to be at
any of the major steps of the learning process in each of its phases in the
classroom, as well as the probability to pass successfully through all the
steps of the learning process in the classroom. Our results are illustrated by
a classroom experiment for learning mathematics performed recently at the
School of Technological Applications of the Graduate Technological
Educational Institute of Patras, in Greece.

Keywords: Learning, mathematical modeling, stochastic models, Markov
chains.

Introduction

The concept of learning is fundamental to the study of the human
cognitive action. But while everyone knows in general what learning is, the
understanding of the nature of this concept has proved to be complicated.
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This basically happens because it is very difficult for someone to understand
the way in which the human mind works and therefore to describe the
mechanisms of the acquisition of knowledge by the individual.

There are many theories and models developed by psychologists and
education researchers for the description of the mechanisms of learning.
Nowadays it is widely accepted that any instance of learning involves the
use of already existing knowledge. Voss (1987) developed an argument that
learning consists of successive problem — solving (P-S) activities, in which
the already existing knowledge plays the role of the input information, with
the solution occurring when the input is appropriately interpreted. The
whole process involves the following steps: Representation of the stimulus
input, which is relied upon the individual’s ability to use contents of his
(her) memory to find information, which will facilitate a solution
development; interpretation of the input data, through which the new
knowledge is obtained; generalization of the new knowledge to a variety of
situations, and categorization of the generalized knowledge, so that the
individual becomes able to relate the new information to his (her)
knowledge structures known as schemata, or scripts, or frames.

Studies on P-S show many cases where input information is well
interpreted, but no solution is obtained. Therefore the interpretation of the
input information must be considered as a necessary only and not as a
sufficient condition during the process of learning,

In the area of P-S, which is strictly connected with learning, while early
work was focussed on describing the P-S process, more recent
investigations have turned the attention on identifying attributes of the
problem solver that contribute to P-S success. Carlson and Bloom (2005)
drawing from the large amount of literature related to P-S developed a broad
taxonomy of such kind of attributes. Then reanalyzing these data they
reached to what they called a “Multidimensional P-S Framework™ having
four phases: Orientation, Planning, Executing and Checking. These are the
main actions of the problem solver during the P-S process.
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Schoenfeld, who offered a framework for analyzing the P-S process
(Schoenfeld, 1980, 1985) has been working in the next 20 years to build a
theoretical approach that explains the behaviour of the problem solver. He
reached to the conclusion that solving a problem, as well as other human
activities like cooking, teaching a lesson and even a brain surgery (!), are all
examples of a goal-directed behaviour (Schoenfeld, 2007).

Over the last four decades mathematics education has addressed
philosophical and epistemological perspectives with respect to mathematics
learning. It has become common to think of mathematics in fallibilistic
terms (e.g. Ernest, 1991; Freudental, 1978; Skemp, 1976), to consider
learning as a constructive process (e.g. Davis, Maher & Noddings, 1990,
Glasersfeld, 1987), to situate knowledge and learning relative to
communities of practice (Lave & Wenger, 1991) and to debate the
commensurability of constructivist and sociocultural learning theories
(Lerman, 1996; Steffe & Thompson, 2000). Theoretical considerations like
the nature of mathematical knowledge, what it means to know mathematics
and to come to know it, how knowing in mathematics is related to knowing
in social settings more widely, have been deeply considered and seriously
debated (e.g. Bauersfeld, 1995; Cobb, 1996; Confrey, 1995; Kieran,
Forman, & Sfard, 2001). The mathematics education discipline has become
mature in such theoretical considerations.

The process of learning a subject matter in the classroom

Our target in the present paper is to build a mathematical model for the
description of the process of learning and the model of Voss, described
above, is used as a starting framework for this purpose.

Mathematics can usually describe in an explicit and plausible way the
structure of a natural object, but things become more complicated when we
face situations where the human presence and decisions are involved. In
particular, learning is a very complex process that takes place not only in the
class, but also between classes, or after a school day is over, or even in
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unexpected moments (e.g. during sleep). Therefore it is inevitable to put
some restrictions in first place and to make some simplifications, in order to
obtain a mathematical description of the learning process. This is a standard
technique applied frequently during the mathematical modeling process of a
real world problem in order to transfer from it to the “assumed real
system”, which enables the formulation of the problem in a form ready for
mathematical treatment (Voskoglou, 2007; section 1).

Our basic restrictions in this case are that we consider the process of
learning a subject matter during the teaching process in the classroom only
(and not the process of learning by the individual in general), at the
particular moment where the teacher introduces the new topic for the first
time. Under these restrictions one must keep in mind that, as it frequently
happens, a learner may not be able to pass successfully through all the steps
of the learning process in the time available into the classroom. Therefore it
is convenient in this case, for purely technical reasons, to include one more
state in the sketch of the process (model of Voss) described in the previous
section, the state of failure to reach categorization. We must clarify that the
step of categorization could be reached out of the class, or in a next class,
but for the particular chronological moment of our study this is counted as a
failure.

Under these assumptions we are going to construct a ‘flow-diagram’
representing the whole process. For this, let us denote by S;, i=1,2,....,5, the
states of representation, interpretation, generalization, categorization, and
failure to reach categorization respectively. The starting state is always S;.
From S, the learner proceeds to S,. Facing difficulties there he (she) may
return to S; to search for more information that will facilitate the
interpretation procedure. Then he (she) must go back to S, to continue the
process. From S, the learner is expected to proceed to Ss_ unless if he (she) is
unable to interpret the input data during the learning process in the
classroom. In this case he (she) proceeds directly to Ss, and the process
finishes there for him (her). From S; the learner, if he (she) has difficulties
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during the generalization procedure, may return to S, for a better
understanding of the subject. Then he (she) comes back to S;, wherefrom he
(she) proceeds either to S4 or to Ss and the process finishes there in both
cases..

According to the above description the flow-diagram of the process of
learning a subject matter in the classroom by a group of students is that
shown in Figure 1.

Figure 1: Flow-diagram of the learning process in the classroom

The stochastic (Markov) model

Roughly speaking a Markov chain is a stochastic process that moves in
a sequence of phases through a set of states and has “no memory”. This
means that the probability of entering a certain state in a certain phase,
although it is not necessarily independent of previous phases, depends at
most on the state occupied in the previous phase. This is known as the
Markov property.

When its set of states is a finite set, then we speak about a finite Markov

chain. For special facts on such type of chains we refer freely to Kemeny
and Snell, (1976).
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Here we are going to build a Markov chain model for the mathematical
description of the process of learning a subject matter in the classroom
under the restrictions raised before. For this, assuming that the above
process has the Markov property, we introduce a finite Markov chain having
as states the five steps of the learning process described in the previous
section. This assumption is a simplification made to the real problem
through our transfer to the “assumed real system”, which is not far away
from the reality (see last paragraph of the section).

Denote by pj; the transition probability from state S; to S;, for
1,)=1,2,3,4,5, then the matrix A=[ p;] is said to be the transition matrix of
the chain.

According to the flow-diagram of the learning process shown in Figure

1 we find
S S, Ss Ss Ss
S| 0 1 0 0 0
Sy Py 0 pyy 0 py
A= 810 py, 0 py pss
S, 0 0 0 1 0
A 0 0 0 1|

where we obviously have that py1+pastpas=psatpsatpss=1
Further let us denote by @o,91,92,..... .. the successive phases of the
above chain , and also denote by
Pi:[p1(i)pz(i)p3(i)p4(i)p5(i)]
the row - matrix giving the probabilities pj(i) for the chain to be in each of
the states S;, j=1,2,3,4,5 in the phase ¢i, i=0,1,2,.... , where we obviously
have that

Zslpj(i) =1
=

The above row-matrix is called the probability vector of the chain at
phase @i. From the transition matrix A and the flow diagram of Figure 1 we
obtain the “tree of correspondence” among the several phases of the chain
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and its states shown in Figure 2.

¢o- Si
@1 o
P2t Sl/z\ f
P3: 1 2 - \ S.S

si S3 QLS
@4: 2 :

g it

@s: 2 4 S
@ge sscansssenssss scescccnsasassssssscssssscaasrmasso

Figure 2: Tree of correspondence among states and phases of the
Markov chain

From the above tree becomes evident that Pp=[10000],P;,=[0100
0], and
P>=[p21 0 p23 0 pas]. Further it is well known that

P =PiA, 1=0,1,2,.....
Therefore we find that
P3 = P,A =[0 partp2ps2 0 p2spss p23psstpas ] (1),
Ps=P3;A=....... , and so on.

Observe now that, when the chain reaches either state S,, or Ss, it is
impossible to leave them, because the learning process finishes there. In
other words S and Ss are absorbing states of the chain. Further, from Figure
1 it becomes evident that from every state it is possible to go to an absorbing
state (not necessarily in one step). Thus we have an absorbing Markov
chain. Applying standard techniques from theory of absorbing chains we
bring the transition matrix A to its canonical (or standard) form A* by
listing the absorbing states first and then we make a partition of A* as
follows:
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S4 Ss S] Sz SS

S, 1 o | 0 0 0
S| 0 1 | 0 0 O
A* = - - b=
S0 0 | O 1 0
S0 0 pys | Py 0 py
S, | P3a Pss | 0 py 0 |
Symbolically we can write
I | 0
A=|- -],
R | 0

where Q is the transition matrix of the non absorbing states and R the
transition matrix from the non absorbing to the absorbing states.
Next we consider the fundamental matrix N of the chain, which is given by

adj(I; — Q)
D ([ 37 Q)
where I3 denotes the 3X3 unitary matrix, adj(I3-Q) denotes the adjoin matrix
of I5-Q, and D(I3-Q) denotes the determinant of I5-Q. A straightforward

calculation gives that

N=(1-Q)'=

b

1= py, Py 1 D
= Do 1 P
PuPs Pyn 1—py

1

N:
1= pyyps, — Pa

We consider further the 3X2 matrix
| P23 P34 Pys T P23 Dss
B:NRZI—p23p32 o PP Pas T P23 Dss
(I=py)Psy PP+ Pis(1—py)
Symbolically we can write B=[b;;], with i=1,2,3 and j=4,5. It is well

known then that b;; gives the probability that, starting at state S;, the process
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is absorbed at state S;. Thus the probability for a learner to pass successfully
through all the states of the learning process in the classroom is given by

b= P3P Q).
1= pypy = oy

The calculation of b4 enables the teacher to check the efficiency of his
(her) lectures. It also could be used either as a measure of comparison of the
efficiencies of the lectures of different teachers, or as a measure of the
learning abilities of different groups of students.

We must finally notice that there is always the possibility of existing
memory of previous states in the movements from state S, back to S; and
from S; to S,. However, as it is emphasized by certain authors (e.g.
Kemeny, Schleifer, Snell & Thompson, 1964; Chapter IV, paragraph 12, p.
193), for possessing the Markov property the probability of an outcome is

not necessarily independent of the outcomes of previous states, but depends
at most upon the outcome of the previous one. This makes our assumption
(simplification) that the learning process in the classroom has the Markov
property to be near to the reality.

A classroom experiment for learning mathematics

The following experiment for learning mathematics took place recently
at the Graduate Technological Educational Institute of Patras (Greece),
when 1 was teaching to a group of 30 students of the School of
Technological Applications (i.e. to future engineers) being in their first
semester of studies the use of the derivative for the maximization and
minimization of a function. During my two-hour lectures I used the method
of rediscovery (Voskoglou, 1997). Thus, after a short introduction to the
subject, I left my students to work alone on their papers. I was inspecting
their works, and from time to time I was giving them some instructions, or
hints. After the basic theoretical conclusions I gave them some exercises to
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solve first, and at the final step some problems including applications to
constructions and economics (see appendix).

During the experiment I found that four students didn’t understand the
new topic at all. In fact, these students had not acquired the proper
mathematical background from school (as it frequently happens with some
students of the T.E.I.’s) and they didn’t attend my previous lectures on a
regular basis. As a result, they didn’t consolidate notions like the local min-
max values of a function, the decreasing and increasing function and even
the derivative (!) of a function and therefore were completely unable to
follow my instructions in order to approach the basic ideas of the new topic.
This became evident to me by checking their efforts on the paper and by
asking them relevant questions. Notice that, due to the limited time available
to cover my first semester course in mathematics, I have seldom the
opportunity to apply the method of rediscovery in my lectures (only in cases
of particular interest). On the contrary, sometimes I am using even the
monologue, assuming that students know the basics from school. This is
actually one of the basic problems of teaching mathematics at the T.E.L.’s
(Voskoglou, 2009)..

Coming back to the experiment, I also found that 10 students had
difficulties before understanding the basic ideas; they looked back to their
notes of my previous lectures and/or asked for help. This is of course a
natural behaviour of someone who is trying to understand a new topic, but it
means that these students faced the need to reconsider and to analyze better
the already existing knowledge in order to reach their target.

Further 1 found that five students, although it seemed that they
understood the basic theoretical ideas, were unable to apply them for the
solution of the given exercises and problems. The remaining 21 students
solved the exercises, but eight of them faced difficulties before they came
through. At the last step 10 students solved the problems and 11 didn’t solve
them (or solved a small part of them). The solution of the exercises was an
indication for me that the corresponding students became able to generalize
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the new knowledge to a variety of situations, while the solution of the
problems meant that the corresponding students were able to relate the new
information to their existing structures of knowledge (categorization). The
above assumptions could of course be contested as being too simplistic, but
I do believe that they give a satisfactory first approximation of students’
behaviour during the learning process. A further qualitative analysis is
probably necessary to obtain more detailed conclusions and a supporting
simulation model could help towards this direction.

Interpreting the above data with respect to the flow-diagram of Figure 1
I was led to the following conclusions, which are represented in Figure 3.

Figure 3: Representation of the experiment’s data

e Initially the 30 students proceeded from S; to S;, but 14 of them
faced difficulties to interpret the input data. Therefore they returned
to S; to search for more information that will facilitate the
interpretation procedure, wherefrom they came back to S,. Finally
four of them reached directly the absorbing state Ss, because they
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didn’t manage to interpret the new knowledge.

e The remaining 26 students proceeded to S;, but eight of them faced
difficulties to generalize the new knowledge to a wvariety of
situations, ad they returned to S, for a better understanding of the
new information. Then they came back to Ss.

e At the last step 10 students, who solved the exercises and the
problems, completed successfully the learning process in the
classroom and therefore they reached the absorbing state S;. The
other 16 students, i.e. five students who didn’t manage to solve the
exercises and the problems, and 11 who solved the exercises, but not
the problems, reached the absorbing state Ss.

Therefore, since we had a total of 52 ‘arrivals’ to S,, 14 ‘departures’

from S, to Sy, 34 ‘departures’ from S, to S;, and four ‘departures’ from S,

14 34 4
to Ss, it follows that p»;=—, p3s=— , and p,s=—. In the same way one
5 p21 5 p23 5 p2s 5 Y

8 10 16
finds that p;,=—, p3s=— , and p3s=—.
Py Py DTy
Replacing the values of the p;’s in equalities (1) and (2) of the previous
22 10 20

section we get that Ps=[0 2 0 2 5—2] and b= % . Interpreting these
data with respect to our model we find that the probabilities for a student to
be in phase @3 of the process of learning in the classroom (i.e. 3 phases after
its start) at the steps of representation, interpretation, generalization,
categorization, or failure to reach categorization are approximately 0,
42,31%, 0, 19,23% and 38,46% respectively, while the probability to pass
successfully through all the steps of the process is approximately 33,33%.
Notice that this is an experiment only, performed in order to illustrate the
applicability of our model in practice. In order to obtain safer statistical
conclusions, one must perform analogous experiments several times, with
different student populations, different teachers and different teaching,
conditions. This is proposed as a subject of further applied research.
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Remarks and further examples

Most real world problems concerning applications of finite Markov
chains can be solved by distinguishing between two types of such chains,
the absorbing (e.g. our model in the present paper) and the ergodic ones
(Voskoglou, 2006; section 3).

We recall that a Markov chain is said to be an ergodic chain, if it is
possible to go between any two states, not necessarily in one step. In this
case the corresponding theory enables us to make, apart from the short run
forecasts, i.e. calculation of the probabilities for the chain to be in each of its
states at a certain phase of the process (as we have done in the classroom
experiment of the previous section), and long run forecasts (when the chain
reaches its equilibrium situation, as the number of its successive phases
tends to infinity) for the evolution of various phenomena. For example, in
Voskoglou (1996) an ergodic chain is introduced for the study of the
analogical problem-solving process in the classroom, while in Voskoglou
and Perdikaris (1991) the problem-solving process (in general) is described
through the introduction of an absorbing Markov chain to the main steps of
the process (Schoenfeld, 1980; expert performance model)

Further, in Voskoglou (1994) an absorbing Markov chain is introduced
to the major steps through which one would proceed in order to effect the
study of a real system (modelling process). The stochastic model obtained
gives an important theoretical framework for the study of the modelling
process. An alternative form of the above model is introduced in Voskoglou
(2007) for the description of the mathematical modelling process in the
classroom, when the teacher gives such kind of problems for solution to
students. In this case it is assumed that after the completion of the solution
process of each problem a new problem is given from the teacher to the
class and therefore the process starts from the beginning again. Thus the
resulting Markov chain is an ergodic one.

In Voskoglou (2000) an absorbing Markov chain is introduced to the
main steps of the decision making process performed in order to choose the

HMS i JME, Volume 2. 2009-2010 (75-93)



88 Michael Gr. Voskoglou

best among the existing solutions of a given problem, and examples are
presented to illustrate the applicability of the model to “real” decision
making situations.

We could mention many other known applications of Markov chains for
the solution of real world problems in almost every sector of the human
activity, but this is rather out of the scope of the present paper.

Some mathematicians, who studied this paper, suggested the
introduction to the model of an initial vector (input) of the form [ay;, ag,, a3,
04, 205 to proceed with matrix A. If we suppose that the initial vector is the
people [30, 0, 0, 0, 0], then one should introduce the parameter t of time to
re-enter people in this stage. At any case the parameter of time has already
tacitly inserted to the model, since we considered the successive phases of
the chain. In fact, the chain moves from each face to the next one through
time.

They also suggested that the problem examined in the paper could be
faced as a flow network from S; to Ss. In this case one has to define the
initial number of people (30) and assign in each line between two stages the
probability of success as line cost. This looks as a very good idea for further
future research.

Another interesting approach of the problem is the use of fuzzy logic, to
represent the steps of the process of learning as fuzzy sets in the universal
set of linguistic labels of a=negligible, b=low, c=intermediate, d=high, and
e=complete success respectively of the learner in each step (Voskoglou,
2008). Analogous efforts to use the fuzzy sets logic in the area of student
modelling and student diagnosis in particular and in education in general
have been attempted by other researchers as well, e.g. Perikaris (1996),
Espin and Oliveras (1997), Ma and Zhou (2000), Spagnolo and Gras (2004)
etc.

Final conclusions
The theory of Markov chains is a successful combination of Linear
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Algebra and Probability, which enables one to make short and long run
forecasts for the evolution of various phenomena of the real world.

In the present paper we built, through the introduction of a finite,
absorbing Markov chain to the major steps of the process of learning, a
stochastic model for the description of the process of learning a subject
matter by a group of students in the classroom. Thus, by applying standard
results of the corresponding mathematical theory, we succeeded to calculate
the probabilities for a student to be at any of the major steps of the learning
process in each of its phases in the classroom, as well as the probability to
pass successfully through all the steps of the learning process in the
classroom.

These outcomes can help the teacher to check the efficiency of his (her)
lectures and the learning abilities of different student groups, or of the same
group on different subjects. In this way he (she) could be suitably orientated
to change, or adapt better his (her) teaching plans and methods.

Our results are illustrated by a classroom experiment for learning
mathematics, performed at the School of Technological Applications of the
Graduate Technological Educational Institute of Patras, in Greece.

APPENDIX: List of the exercises and problems given for solution in the
classroom experiment

A) EXERCISES

Find the min-max values of the following functions:

a) f(x)=x"-4x+3, b) g(x)=x>+2x*+x+7, ¢) f(x)=x"¢™, x>0, acIR.

B) PROBLEMS

1) The profit from the sale of a good is given by K(q)=5q*+30, where q is
the quantity of the good, while the price of its sale is P(q)=7q+10. Which
must be the daily production of the good in order to achieve the minimal
production cost?

2) Among all the cylindrical buildings having a total surface of 180r m?
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which one has the maximal volume?

3) The cost of the fuel for the motion of a train is analogous to the square of
its speed and it is equal to 250 euros per hour for a constant speed of 25 km
per hour. The rest of the expenses for the motion of the train are 100 euros
per hour regardless to its speed. Find the speed of the train for which we
have the minimal cost per km for its motion.

4) The wall of a building has to be supported by a beam, which must pass
over a parallel wall (touching it), whose height is 10 m. The distance of the
parallel wall from the building is 8 m. Find the minimal length of the beam,

which can be used for this purpose.
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