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Introduction

As the mathematical culture of every man and every culture is constructed and
organized differently in the various seasons and regions of the globe, in the same
diversified way are being built the directions of mathematical education and
research on the particular circumstances of each country.

Nowadays this organization is dynamically emerging from the interaction
among the internationalized processes and the local processes. On the one hand the
comparative studies, the international medals or the controversial private financial
supports and in the other hand individual acts are conducing to universal
mathematical discoveries and local learning activities to teaching innovations. The
digital bridge of the network creates a new topos for the mathematical culture and
for the mathematical education.

In this area, between globalised standards for the mathematics education and
the historicity of local mathematical communities and educational structures, the
dialogue is open and intense while the teaching practices are now developed within
the influences of the growing and antagonistic market of parallel educational
services and products.

Our journal tries to contribute in the persistence of the variety, in the
coexistance and the exchange of different ideas about mathematics and their
education.

We believe that the improvement of mathematics teaching and learning in the
entire world cannot be realized in a homogenous way. We have to organize and
explore in a different mode the international comparative studies, profiting of the
alternative views, the ecosystemic educational research, the digital and networking
environment as well as the ethnomathematical approach.

The International Journal for Mathematics in Education (HMS i JME) wishes
to contribute in this orientation and are inviting our colleagues of the international
community to send us their contributions.

The sixth volume of the HMS International Journal for Mathematics in
Education includes six research papers, four of them are respectively corresponded
to four plenary speeches realized during the 31% Hellenic Conference of
Mathematics Education on November 2014 titled “Challenges and Perspectives of
Mathematical Research and Education in the Internationalized and Network Era”
and two research papers.

HMS i JME, Volume 6. 2014 (1-2)



2 Introduction

The article of Ferdinando Arzarello titled “From Socrates to Sherlock Holmes:
cultural, cognitive and didactical tools for pursuing the logic of inquiry in the
classroom” concerns the introduction of activities using new technologies and
if/how these relate with proving activities. Every activity in the classroom is
shaped by cultural, epistemological, and cognitive analysis and the results one gets
strongly depend on a combination of them, which vary with circumstances. He
discussed such issues and illustrated them introducing some concrete examples
from teaching experiences.

The article of Jean Dhombres titled “Réflexions mathématico-historiques a
I’age du Net sur les réformes dans 1’enseignement et les réactions a ces réformes”
makes an overview on several mathematics textbooks concerning the evolution of
history of mathematics and its relationship with mathematics education.

The contribution of Karl Gustafson titled “The Future of Mathematics: From
the Pure-Applied Debate to Reality” looks at Mathematics from Past to Present to
Future, using case-studies approach, selecting key examples to illustrate and from
which to learn.

The contribution of Marianna Tzekaki titled “Mathematics Education for a
new era” aims to investigate the following questions: In what society do we
estimate that today's students will live, what will they face in the future and what
disposition will they need to meet the requirements of the new era? Can
mathematics education play a role in the development of this disposition and what
goals need to be set, what content and what teaching approaches to meet these
requirements? Isn’t it critical for researchers, programs’ designers and teachers to
pursue systematic answers to these questions and bring in new advances to the
teaching of Mathematics?

Sonia Kafoussi, in her article “Can preschool children collaborate in
mathematical tasks productively?”, investigates how pairs of preschool children
collaborated productively during their efforts to solve mathematical tasks.

Finally, Michael Voskoglou, in his article “The APOS/ACE Instructional
Treatment for Mathematics: A Fuzzy Approach”, introduces principles of fuzzy
logic on comparing the performance of two student groups concerning the
comprehension of the real numbers in general and of the irrational numbers in
particular.

HMS i JME, Volume 6. 2014 (1-2)
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From Socrates to Sherlock Holmes:
cultural, cognitive and didactical tools
for pursuing the logic of inquiry in the classroom

Ferdinando Arzarello
Dipartimento di Matematica
Universita di Torino-Italia
ferdinando.arzarello@unito.it

Introduction

For the second time in the last sixty years, some historical and cultural
circumstances offer the opportunity to develop a global perspective of re-
form of mathematics education all over the world.

Fifty years ago, the necessity of meeting the challenge of the Sputnik (a
strong historical and political motivation), the crucial role taken by mathe-
matics in science and technology, and the extraordinary cultural enterprise
of Bourbaki and its encounter with a leading personality in psychology, like
Piaget, found in the OCSE-OCDE context the appropriate environment to
launch the New Mathematics reform as the main road to increase mathemat-
ical (and reasoning) skills of the population of leading western countries. In
the reality, the New Mathematics movement spread not only in the OCSE-
OCDE countries (with different influences on national curricula and practi-
cal implementations in school), but also in several African, Asiatic and
South American countries.

In recent years, globalization of economy, universality of technological
development and related needs for manpower skills play the role of strong
historical motivations for a reform that should bring to unified standards for
mathematics in school not only in the 34 OCSE-OCDE countries, but in
several other countries as well (keeping into account the political and cul-
tural leading role of OCSE-OCDE countries).

As a consequence, in the international debate, many scholars, teachers
and policy makers speak now of the 2/st century competencies and consider
important items like: “critical and inventive thinking; communication, col-
laboration and information skills; and civic literacy, global awareness and
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4 Ferdinando Arzarello

cross-cultural skills.” (Ministry of Education, Academy of Singapore
Teachers, 2014; see
http://www.academyofsingaporeteachers.moe.gov.sg/professional-networks).

In many countries people are working on the so called “21st century
competencies framework”, in order to guide the development of the national
curriculum and to design school-based programmes to nurture these compe-
tencies.

Like 55 years ago (Royamont meeting, the launch of the New Mathe-
matics reform), OCSE-OCDE can play again a leading role in this new "re-
form movement", thanks to a very important cultural circumstance: the
promotion of the PISA initiative, already so influential in many countries as
concerns the change of local curricula and standards in order to meet the
challenge of behaving well in that comparative assessment. Indeed PISA is
not a neutral test to assess the 15-years olds students’ competencies; gradu-
ally it becomes a reference for a universal reform of the teaching of mathe-
matics, thanks to a more and more coherent, systematic and explicit framing
of PISA test in a discourse on mathematical competences needed in today
globalized society.

PISA stresses the role of mathematical literacy as a central goal in
mathematics education, because it improves the life chances of most stu-
dents, and justifies why mathematics is essential to describe, explain and
predict the world. According to PISA, “mathematical literacy is an indi-
vidual’s capacity to formulate, employ, and interpret mathematics in a varie-
ty of contexts. It includes reasoning mathematically and using mathematical
concepts, procedures, facts, and tools to describe, explain, and predict phe-
nomena. It assists individuals to recognise the role that mathematics plays in
the world and to make the well-founded judgments and decisions needed by
constructive, engaged and reflective citizens.”

(see: http://www.oecd-ilibrary.org/education/pisa-2012-assessment-and-
analytical-framework 9789264190511-en). In their last publication (PISA
2012 Results:

Creative Problem Solving Students’ skills in tackling real-life prob-
lems, Volume V) they elaborate further this concept and speak of an “inno-
vative concept of “literacy”, which refers to students’ capacity to apply
knowledge and skills in key subjects, and to analyse, reason and communi-
cate effectively as they identify, interpret and solve problems in a variety of
situations;” (p.20).

However, the failure of the New Mathematics reform suggests reflect-
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From Socrates to Sherlock Holmes: cultural, cognitive and didactical tools
for pursuing the logic of inquiry in the classroom 5

ing on the requirements for a new curriculum, suitable to escape the causes
of the complete, or partial, rejection of the New Mathematics reform in so
many countries.

In particular, a reform movement should take into account:

I) the existence of different epistemological and cultural positions concern-
ing mathematics and its relevance in the culture (the New Mathematics re-
form was refused by several outstanding mathematicians in the world for
incompatibility of epistemological and cultural positions);

IT) the possible, cultural distance of the proposed reform from the mathe-
matical culture of the different countries (as an example of the importance
of this issue, we can consider how in Italy the leading position of Dieudonné
on geometry, so relevant in the design of the "new geometry", was in con-
trast not only with the positions of many mathematicians, but also with a
widespread tradition in school of relevance for figural aspects, intuitive vis-
ual geometry, synthetic methods; another example concerns the difficulties
met by the Modern Mathematics movement in the UK, due to the different
cultural orientation of the teaching of mathematics in that country);

IT) the relationships with the culture and the personal contributions brought
by the students in the classroom, so relevant to avoid the students' alienation
from their cultural environment and to allow students to engage in learning
in a productive way.

A consequence of these reflections is that the communities of research-
ers, teachers and policy-makers must be aware that defining mathematical
literacy raises a lot of issues, both from a scientific and from a cultural point
of view. The word literacy itself is slippery not only linguistically but also
epistemologically and politically: as someone pointed out (Jablonka, 2003,
p. 77), trying to translate it into different languages is always a difficult,
sometimes an impossible task; and also in the literature one finds more than
one definition and many changes during the years. This is clearly shown in
the review paper about this topic written by Mogens Niss and Eva Jablonka
in the Encyclopedy of Mathematical Education. For example, it is there ar-
gued that ML is “a socially and culturally embedded practice, and ...[its]
conceptions ... vary with respect to the culture and values of the stakehold-
ers who promote it’. Moreover in that paper it is summarized a review of
literature made by Jablonka (2003, pp. 75-102), which “identifies five agen-
das on which conceptions of mathematical literacy are based. These are:
developing human capital (exemplified by the conception used in the
OECD-PISA), maintaining cultural identity, pursuing social change, creat-
ing environmental awareness, and evaluating mathematical applications”

HMS i JME, Volume 6. 2014 (3-27)



6 Ferdinando Arzarello

(Niss & Jablonka, ibid.): the differences in approach are directly linked with
the goals that are pursued in mathematics education in individual countries.

Also the PISA definition of ML has changed in time and the current
one is the most known because of its important testing studies; but no one
can say that tomorrow it will not change again (e.g. see the fresh elaboration
pointed out above). And in many national frameworks there are different
formulations, according to their cultural traditions. Moreover, if one consid-
er the concrete items of PISA, this wide definition is somewhat reduced, as
it is natural when one has to constrain it into items to which the students (at
the age of 15 years) are asked to answer in a few minutes. A typical exam-
ple is the notion of mathematical proof, which was practically absent up to
2009! and starts appearing in the last items.

It is clear that today (much more than sixty years ago!) a partial unifica-
tion of standards for mathematics teaching all over the world is necessary,
in order to enable citizens to acquire a common mathematical toolkit to deal
with technology, quantitative and graphical information provided by media,
problem solving and decision making in the workplace and in ordinary life.
Also keeping the worldwide experience of the New Mathematics reform in-
to account, the crucial issues to be dealt with in order to avoid the dangers
of cultural refusal of the reform, and of cultural alienation and of loss of cul-
tural richness if it not refused, are:

- the cultural and epistemological openness of the reform movement;

- the space left to cultural differences in the elaboration of the national
standards and in the related educational aims;

- the space ensured to the dialogue with the students' cultural experience and
personal contribution in the teaching and learning of mathematics;

- the development of teachers' and students' awareness about the multiplicity
of the mathematical experience (from mathematical games to modelling of
social and natural phenomena — the last PISA documents define also a fi-
nancial literacy; from the construction of new algorithms, to the discovery
of new properties).

For all these reasons it is important that teachers have clear such a land-
scape and keep a critical approach in designing their programs and tasks for
the students. A typical touchstone for this issue is the introduction of activi-
ties using new technologies and if/how these relate with proving activities.

1 Organisation for Economic Cooperation and Development, (1999). Measuring Student
Knowledge and Skills: A new Framework for Assessment. Paris: OECD.

HMS i JME, Volume 6. 2014 (3-27)
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Here it is easy losing one’s way and going behind fresh proposals only be-
cause these are or seem new, without submitting them to “the court of rea-
son”, namely forgetting to check their validity with a careful cultural, epis-
temological, and cognitive analysis. In fact, every activity in the classroom
is shaped by these three components and the results one gets strongly de-
pend on a combination of them, which vary with circumstances. For exam-
ple it is easy to find statements, which speak of the death of proof because
of the introduction of computers in mathematical practice, hence pushing
towards its elimination from mathematical activities.

I wish to discuss exactly such issues, but instead of presenting only the-
oretical reflections I prefer to illustrate them introducing some concrete ex-
amples from teaching experiences I coached in my country. In these the
three components have been carefully taken in consideration both in the
process of designing the tasks and during the development of the teaching
activities in the classrooms.

My aim is to contribute in this way to the debate about the theme of the
2014 Hellenic Mathematical Society Congress “Challenges and
Perspectives of Mathematical Research and Education in the
internationalized and Network Era”.

Tools and proving activities in mathematics

As recalled above, in the PISA definition of mathematical literacy we
find the capability of “using [...] tools to describe, explain, and predict phe-
nomena”. In fact many national curricula at all grades suggest involving
students in the use of (concrete or virtual) tools to model phenomena and to
enter into mathematical ideas. This is not a novelty at all: the links between
mathematics, natural sciences and technology, as well as the role of basing
mathematics teaching on intuitive and empirical stances are in the fore-
ground from the early documents of the International Commission on Math-
ematical Instruction (Bartolini Bussi et al., 2010; Ruthven, 2008; see also
Smith, 1913). This represented and still represents a foundational theme for
ICMLI: for example, the role of new technologies in mathematics education
have been the focus of two ICMI Studies within the last 30 years and the In-
ternational Community of Teachers of Mathematical Modeling and Applica-
tions (ICTMA, http://www.ictma.net/) has been an ICMI affiliated study
group since 2003 (see http://www.icmihistory.unito.it/ictma.php#9).

“In mathematics education, the availability of Information and Com-
munication Technologies (ICT) has changed the landscape, including the
belief that digital objects can substitute for the references to the concrete

HMS i JME, Volume 6. 2014 (3-27)



8 Ferdinando Arzarello

world where we live” (Bartolini Bussi et al., 2010, p. 20; see also the web-
site http://nlvm.usu.edu/en/nav/vLibrary.html). However, these changes in
the landscape do not mean that we have to throw away all the past: we
should risk throwing the baby out with the bathwater. In other words, mod-
elling and applications can be pursued within “an approach that does not
neglect, but rather emphasizes, the cultural aspects of mathematics, going
back to the prominent founders of modern mathematics and taking ad-
vantages of the ICT support” (ibid.). This program is widely present in
many researches all over the world (for a summary see: Bartolini et al.,
2010). My claim is that in order to design suitable learning situations in the
classroom, where manipulative materials and instruments can be used to
support learning, it is necessary carefully investigating the cultural, episte-
mological, and cognitive roots of mathematical concepts (Tall, 1989; Boero
& Guala, 2008). This investigation will clarify how manipulative materials,
instruments and ICT, suitably combined together in real and virtual envi-
ronments, can help students to grasp those concepts, basing learning on
what today, grounding on fresh research results (see Hall & Nemirovski,
2012), is called an embodied approach to mathematics learning. This was
also present in the old documents of early ICMI (see: Ruthven, 2008) and in
other coeval researches (e.g. in Enriques, 1906-1914), generally supported
more by pure speculations than by scientific research or empirical evidence.

Using instruments in mathematics classes immediately poses a prob-
lem: how do they link with the rigorous formal aspects of the discipline, in
particular with the teaching of proof? Answering this question in a proper
way is crucial in order to avoid misunderstandings, some of which are dif-
fuse in several research articles: they are at the origin of a sort of comedy of
errors about proof, which I think absolutely necessary to avoid.

In these last twenty years there have been heated discussions in mathe-
matics and mathematics education that have called into question the role of
proof. In the nineties, a number of recent developments in mathematical
practice, most of them reflecting in some way the growing use of comput-
ers, caused some mathematicians and others to call into question the contin-
uing importance of proof or indeed to announce its imminent death (Horgan,
1993). One of the developments that prompted Horgan's announcement was
the use of computers to create or validate enormously long proofs, such as
that of the four-colour theorem by Appel and Haken, or of the solution to
the party problem by Radziszowski and McKay.

HMS i JME, Volume 6. 2014 (3-27)
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These speculatiions had strong consequences on some curricula: in fact thay
caused a serious turn away from proof:
“Over the past thirty years or so proof has been relegated to a less prominent
role in the secondary mathematics curriculum in North America.
This has come about in part because many mathematics educators have been
influenced by certain developments in mathematics and in mathematics edu-
cation to believe that proof is no longer central to mathematical theory and
practice and that its use in the classroom will not promote learning in any
case.
As a result many appear to have sought relief from the effort of teaching
proof by avoiding it altogether.

The influence of these developments in mathematics has been strongly rein-
forced by the claims of some mathematics educators, inspired in part by the
work of Lakatos, that deductive proof is not central to mathematical discov-
ery, that mathematics is fallible in any case, and that proof is an authoritarian
affront to modern social values and even hinders learning among certain cul-
tural groups.” (G. Hanna, 1996)

For example, in 1989 NCTM Standards proof is explicitly de-
emphasized. They cite the difficulty of teaching and learning to do proofs,
underlining that that:

- the amount of time proof takes up, which is out of proportion to its

benefit;

- the fact that proof is really unnecessary for the majority of students,
including many of those who are college-bound;

- proof’s tendency to convey a picture of a static subject in which the
students simply re-hash geometrical facts which have been known
for 2500 years.

By the time the Standards was published (1989) by the National Coun-
cil of Teachers of Mathematics (NCTM) in the United States, the concept of
proof had almost disappeared from the curriculum (Greeno, 1994) or shrunk
to a meaningless ritual (Wu, 1996).

This de-emphasis on proof in the 1989 version of the Standards created
a tension within the document. The 2000 version of the Standards amelio-
rated this tension: moving away from the standard idea of proof, as a purely
formal object they made explicit fresh functions of proof that should feature
its teaching in the school, and stated goals of treating and teaching mathe-
matics “as reasoning” and “as communication.”

This revised outlook on proof is, no doubt, a response to a great deal of
literature generated in the decade after the publication of the first Standards

HMS i JME, Volume 6. 2014 (3-27)



10 Ferdinando Arzarello

document. This body of work sprang up partly in explicit defence of proof
(e.g. Epp, 1994; Greeno, 1994; Hanna, 2000), and partly to support and fill
in the NCTM’s overall picture of what mathematics education should be. In
light of that research, the NCTM was able to revise and hone its aims. But
even the 2000 Standards are rather vague about just what the value of proof
is.

Assurance of truth is only one of proof’s roles in mathematics, in the
classroom or in professional practice. We should note that presenting justi-
fication as the sole reason to do proof has a few weaknesses, and some ar-
gue that because of these weaknesses, there is no need to teach proof in
schools. For example: as it turns out, most students are not as convinced by
a rigorous proof as they are by a number of examples or “empirical” evi-
dence.

They may be happy to take a teacher’s—or Euclid’s—word for the truth
of the Pythagorean theorem or by their own investigation of examples.
Another weakness is that if students are presented with a picture of proof
which makes it seem as though proof’s value lies in confirming facts, they
may easily be turned off.

Proving things we already know to be true, they are likely to see no
point in the exercise of proving.

The reply to this objection is twofold; there are so to say, ethical argu-
ments. First, of course it doesn’t matter that they’re convinced by empirical
arguments; they shouldn’t be, and part of the point of education is to teach
them not to be. They should value rationality over authority. Second, stu-
dents can be led astray from intuition and perceived patterns. But there are
also more concrete arguments: proofs can become the essential part of
mathematical activities in the classroom, provided they become an integrat-
ed process in the process of discovering mathematical concepts and truths: a
classroom climate can be created so that the students themselves bocome
the mathematical authority. They can argue about problems and solutions,
bringing reasons to bear on the problem, and accepting a proof only when
they themselves are convinced by it. In a word, teachers can create a class-
room climate, according to which students enters into what I call the logic of
inquiry, which will be made explicit below.

When proof is introduced in such a fashion, its value in the classroom is
quite apparent: students learn to rely on arguments and reasoning rather than
authority, they make use of their factual knowledge, and they come to a
deeper understanding of the way mathematical facts are related. Experi-
mental and theoretical features will not be seen any longer as contrasting but

HMS i JME, Volume 6. 2014 (3-27)
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as complementing components of processes that coach students to investi-
gate, conjecture, and prove.

The manifesto of this approach is featured by the following passwords:

- Finding if
- Establishing that
- Ascertaining why
- Settling why not
- Investigating what if
They can guide the following steps in students’ processes:
- if you can prove,
- then you can explain,
- which means you have active metacognitive processes,
- s0 you can solve problems,
- and therefore you understand mathematics.

These steps can be enormously facilitated by the use of tools and par-
ticularly of ICT: in fact old and new technologies — from the old rule and
compass to nowadays i-phones — allow a crucial mediating role for the in-
troduction of mathematical concepts and for triggering and supporting the
steps of the logic of inquiry listed above.

Using instruments introduces an “experimental” dimension into math-
ematics:
“Experimental mathematics is the use of a computer to run computations —
sometimes no more than trial-and-error tests— to look for patterns, to identi-
fy particular numbers and sequences, to gather evidence in support of specif-
ic mathematical assertions that may themselves arise by computational
means, including search. Like contemporary chemists —and before them the
alchemists of old— who mix various substances together in a crucible and
heat them to a high temperature to see what happens, today’s experimental
mathematicians put a hopefully potent mix of numbers, formulas, and algo-
rithms into a computer in the hope that something of interest emerges.”
(Borwein & Devlin, 2008, p. 1)

For an amazing example see also the discussion in the Devlin’s angle:

http://www.maa.org/devlin/.

It is so generated a productive dynamic tension between the empirical
nature of activities with instruments, which encompasses perceptual and
operational components and the deductive nature of mathematics, which en-
tails a rigorous and sophisticated formalization. From the one side, there is a
strong historical and epistemological ground for such an approach: in fact,
from straight-edge and compass to a variety of computational and drawing
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tools, throughout history instruments have been deeply intertwined with the
genesis and development of abstract concepts and ideas in mathematics
(Ruthven, 2008). From the other side, the current great diffusion of ICT in
all aspects of everyday life pushes towards a massive use of such tools in
the school. The learning landscape is deeply and rapidly changing because
of them: sometimes it seems that digital objects can substitute for the refer-
ences to the concrete world where we live, which in fact is a questionable
and delicate issue. I will show the pedagogical possibilities offered by the
tension between these two aspects with some emblematic examples taken
from teaching experiments I coached in Italy.

The first two show how a concrete instrument can help to digging into deep
mathematics ideas.

The second part of the talk will show examples where ICT are used to
face elementary geometry problems in the first years of secondary school:
specifically I will show two different uses of Dynamical Geometry Software
(DGS) in the classroom, depending on the available technology in the
school. In fact, the evolution of technology makes possible different practic-
es, specifically related to the way users can interact with the screen: from
the drag and drop actions with the mouse to the tap, drag, and flick with
one or more fingers on the screen of multi-touch devices and from the one-
to-one interactions of the former to the multiple simultaneous interactions
that the latter makes possible (Park ef al., 2011). These different technologi-
cal features allow designing different tasks, which can change the cognitive
processes of students and deeply modify their mathematical inquiries. The
main result of such changes consists in a different and possibly better ap-
proach to proving activities in the classroom. Roughly speaking, as we have
had a first shift and improving passing from paper and pencil environments
to DGS with drag and drop activities (e.g. Cabri géomeétre, Sketchpad, etc.:
Arzarello et al., 2012), now we have a further shift and improvement with
the transition to multi-touch environments (e.g. Geometric Constructor,
SketchPad Explorer, Sketchometry, etc.: Arzarello ef al., 2014) and to the
variety of simultaneous fingers’ actions they allow. In the talk I will under-
line analogies and differences between the two, discussing the advantages
that each of them make possible.

Digging into the concept of space with instruments
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The geometry of the Greeks was essentially a science of figures; with
Riemann it became a "science of space". Poincaré¢ went even further; he
showed that it is the movement to create the concept of space:

“un étre immobile n'aurait jamais pu acquérir la notion d'espace puisque, ne
pouvant corriger par ses mouvements les effets des changements des objets
extérieurs, il n'aurait eu aucune raison de les distinguer des changements
d'état » [Poincar¢, 1902, p. 78] ... « localiser un objet en un point quelconque
signifie se représenter le mouvement (c'est-a-dire les sensations musculaires
qui les accompagnent et qui n'ont aucun caractére géométrique) qu'il faut
faire pour l'atteindre.” (Poincaré¢, 1905, p. 67).

For Poincaré, it is the presence of the body, especially our body, and of
movements, our movements, to generate the notion of space. For Poincaré,
as for Riemann and unlike Kant, there is no a priori geometric theory of the
world. Instead, this is built from the material world, even though our « sen-
sations musculaires ... n'ont pas de nature géométrique ».

Today, advances in mathematics and logic, on the one hand, and in neu-
roscience and cognitive science, on the other hand, allow us to deal with the
problem of the relationship between the geometry and the material world
with more accuracy and to understand why certain choices are meaningful.

As a result, the ideas of Poincaré, but also of others, such as F. En-
riques, H. Weyl, J. Piaget have a scientific basis more actual than ever. This
issue is proved by several studies: for example, from researches conducted
in recent years by the group Géométrie et Cognition at the Ecole Normale
Supérieure in Paris, coordinated by G. Longo, J.L. Petitot and B. Teissier.
They illustrate the possibility and nature of approaching geometry (and
mathematics in general) according to a genetic stance. For example, studies
of A. Berthoz, a distinguished physiologist at the College de France, who
actively contributes to the group, highlight that when one catches a ball,
she/he realizes the multi-sensory integration of her/his different reference
systems (Berthoz, 1997, p.90), which can "simulate" the space of percep-
tion. What we call the position, velocity and acceleration of the ball is rep-
resented in the various systems of representation of the retina to the arm
muscles. This is where comes from our "geometric intelligence" as human
beings. It is built as a network of encodings and/or of analogic representa-
tions, which are obtained through the practices of our actions in the world. It
is the invariance of these representations and encodings to generate the in-
variance of our conscious representations, such as those of language
(Gallese and Lakoff, 2005), and finally the space of the most invariant rep-
resentations: those of mathematics.
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It is important to consider these studies in order to designe suitable
learning trajectories for geometry. In fact, its epistemological foundation re-
veals its deep cognitive roots (D. Tall, 1989): this is what H. Weyl called
sufficient conditions for the emergence of a theory, namely those conditions
which require exactly this theory and make it possible. For this reason, the
geometry must be addressed in the same context according to which we act
in the world: indeed, the objectivity of geometric conceptualization derives
from its own constituent processes.

It is therefore necessary to develop a teaching method based both on the
epistemological basis of the discipline, as well as on the cognitive aspects of
its learning.

In fact, we can distinguish two modes of learning (Antinucci, 2001): the
symbolic-reconstructive and the sensory-motor way.

In a nutshell, the symbolic reconstructive way:

e is based primarily on the interpretation and exchange of symbols (language,
mathematics, logic);

e reconstructes in the mind the objects and their meaning through mental rep-
resentations from the symbols themselves;

e s the most sophisticated and evolved way, through which we learn;

o its work takes place entirely in the mind and exchanges with the outside
world are mediated by linguistic symbols;

e is conscious and very tiring.

e The sensory-motor way instead:

e takes place in a continuous exchange of perceptual inputs and motor out-
puts with the outside;

e often occurs at an unconscious level, so it is a very less tiring work.

The knowledge that comes from the symbolic reconstruction is always
and only verbally expressible and does not occur spontaneously. What
comes from the perceptual-motor way tends to be internalized and contextu-
alized in a spontaneous manner. Thus, the human beings take it, whenever it
is possible.

The sensory-motor approach must be considered when designing teach-
ing situations: in fact the students, when exposed to such situations, can
spontaneously develope ideas, making sense of them, basing exactly on this
approach. This means that we need to introduce students to the cognitive
and cultural roots of concepts (Tall, 1989; Guala & Boero, 2008) in an ap-
propriate manner. It is the responsibility of the teacher to push this personal
feelings, spontaneously produced by the students, towards the scientific
meaning of concepts, supporting them towards the symbolic reconstructive
path. To get this aim, appropriate tools and materials can be used.
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It is interesting noticing that traditional mathematics instruction tends to
be transmissive and based almost exclusively on a symbolic reconstructive
method. On the contrary, the didactic use of various technological tools (not
just the computer), internet, etc.. tends to produce a perceptual and motor
learning, opposite to what happens using just books.

The slogan of this teaching method that inspires my presentation is the
following quotation from Simon Papert (1980): "We learn best by doing, we
learn even better, provided we connect our doing to a discussion and a re-
flection on what we did".

The "psychological genesis" of geometric concepts (and mathematical
ones in general) is a problem that can not be avoided in the school. A care-
ful selection of experiences, from which we can start our interventions, is
essential. They must be consistent with the concepts to teach both from a
cognitive and a cultural point of view. Any educational project for geometry
therefore requires a substantial critical analysis of its fundamental concepts.
I will show what I mean with an example, which is fundamental for geome-
try: the notion of a straight line. In Euclid's Elements (Def. 4) we find the
following definition:

EVO€Ta ypoppn €otwv, 1itig €€ loov 101G €9 Eavti)g onpeiolg keltan

[A straight line is “a line that lies evenly with the points on itself”,
translation of Heath, 1956].

Texts in modern elementary geometry (e.g. Hilbert, 1899), as we know,
do not give any explicit definition of straight line, since its meaning is con-
veyed implicitly by the axioms: they distill its intuitive sense in a formal
system (which is typical of a symbolic reconstruction). Often this seems
meaningless to students. Also the modern approach to geometry using linear
algebra gives similar results (Dorier, 1997).

What experiences can really make sense and be understandable for our
students?

Euclid seems to refer to the concept of symmetry. Experiences related
to this idea can consist in folding the paper: whatever way you fold a sheet
of paper, you always get a (part of) a straight line. You can either use a
"visual" approach, following the idea of Enriques that projective geometry
is linked to visual sensations. Another approach is to ask how to draw (a
part of) a straight line: a ruler is fine, but the question arises whether the rul-
er is "right" or “wrong”. Here, you can use a "mechanical" control (follow-
ing Lobachevsky): we make two identical copies of the ruler and put each of
them exactly on the top of another in all possible pairs: if all the three pairs
fit, it is sure that we have a right ruler.
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Basically, if one makes a critical analysis of the concept of straightright

line, she or he finds the following cognitive and cultural roots:
a) symmetry;
b) walking straight on;
¢) the shortest line.

We note that all three aspects are useful when one feels immersed in an
unknown space and tries to understand how she/he can produce a straight
line. In fact, the three aspects can produce a perceptual motor learning.

The idea is not new: Enriques (1906, § 11) points out that, in order to
introduce the curvature of a surface "Gauss put forward a suggestive argu-
ment, which was subsequently taken over by Helmholtz and Clifford, and
usually goes under the name of the first of these two philosophers. Imagine
the existence of small animals on a surface, which are free to move by
crawling on it. We equip these imaginary beings of spatial intuition, which
can help them to direct their movements in the surface forming their own
space. Two similar animals, one of which moves in a plane, the other over
an area slightly curved, could also be driven by one and the same geometric
intuition, namely imagining their own space like a plan".

Translated in another way, if | imagine to be a small animal, how can |
imagine to produce a straight line? Walking stright on (idea b). What does
that mean? I could actually be on a curved surface, and have no perception
of it. Then I have to move my feet ideally drawing a line where my feet are
arranged symmetrically with respect to this (idea a), and I have not to curve
(idea b), nor making my way longer (idea c). Using the language of D. Tall
(1989), it is the cognitive root of the concept of geodesic. However the root
is not only cognitive.

There are several tools that have been historically used to generate
straight lines: ropes stretched by the “Arpenodaptes™ (= ropes stretchers) of
ancient Egypt; the articulated mechanisms of Watt and of Peaucellier; fold-
ing sheets of paper. These are not only sensory-motor activities: the inter-
twining with the symbolic and reconstructive component is experienced and
constantly stimulated by them. And this activity entails not only a cognitive
behaviour, consistent with our biological being; it entails also cultural as-
pects of us as social beings. Indeed, the practices mentioned above have a
cultural significance that the historical-critical analysis reveals (Radford,
2003; Guala & Boero, 2008).

In researches pursued in these last years in Italy my research team has
designed teaching experiments for an approach to geometry in secondary
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school based on these pedagogical and epistemological principles. I will
present two of them.

The first concerns the introduction of the notion of geodesic as a basic
concept of geometry introducing it from a variety of perspectives (cognitive,
epistemological and pedagogical) and within different rich geometric envi-
ronments: sphere, cone, cylinder, plan and finally (a little less simple) pseu-
do-sphere and using an instrument, the so called South-seeking chariot (fig.
1), coming from the Chinese culture (Santander, 1992), which embodies
important theorems of geometry (essentially the Gauss-Bonnet theorem)
through the use of a differential gear, a mechanical device crucial for allow-
ing cars to steer without going outside the roadway and today massively
present in each SUV. I will show how it can be used in the last years of sec-
ondary school to help students to think about the geometry of the universe
and the notion of curvature of a surface.

Figure 1. The South-seeking chariot (8% 4=, Zhi nan ji)

The second concerns an approach to the notion of the area of a surface
as a "swept area": the project is developed from the ideas of Kepler about
the nature of planets rotation around the sun (first and second law) and ar-
rives even to calculate the area of irregular surfaces. Another key instrument
will be used, the planimeter (fig. 2), to approach the notion of area in the
school: it embodies the Guass divergence theorem in dimension 2, and
shows the possibility of using old technology intertwined with ICT to make
students enter again into important mathematical ideas (Arzarello & Man-
zone, 2013).
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Figure 2. The Amsler planimeter

In all these cases, the use of appropriate materials and tools can help
students making the transition from intuitive concepts to their more formal
aspects.

Instruments such as those presented here, which force us to question
what it means to "go straight" in a context different from the ordinary Eu-
clidean plane, or to deal with the notion of area in a manner different from
the usual one, can push students to consider some classically “immutable”
truths from different and unusual points of view. This approach can engen-
dre a critical attitude in students and encourage them to bring all truths in
front of the “reason’s tribunal”, so following a well known suggestion by E.
Kant (2008).

From drag and drop with the mouse to finger manipulations
on multi touch devices: how ICT practices can foster mathemati-
cal inquires

In the second part of the talk I will sketch how the dynamic tension em-
pirical-deductive regulates the actions of students who are asked to solve
geometrical problems using Dynamic Geometry Software (DGS) to make
explorations, formulate conjectures, and prove them.

I will do that presenting some short video clips from the classroom life,
where the use of new technologies in proving activities makes the dynamic
tension palpable. A careful analysis of students’ procedures while using
DGS will allow me to introduce and discuss some theoretical frameworks
that explain how that tension can be used to design suitable didactical situa-
tions. Within these, students can learn and internalize specific practices,
which become psychological tools (Vygotsky, 1978, p. 52 ff; Kozulin,
1998) for supporting their transition from the empirical to the theoretical
side of mathematics. Such processes are strongly marked by the complex in-
teractions between inductive, abductive and deductive modalities in their
productions.
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Specifically, I will illustrate how the evolution of technology made
available different practices, specifically related to the way users can inter-
act with the screen: from the drag and drop actions with the mouse to the
tap, drag, and flick with one or more fingers on the screen of multi-touch
devices and from the one-to-one interactions of the former to the multiple
simultaneous interactions that the latter makes possible (Park et al., 2011).
These different technological features allow designing different tasks, which
can change the cognitive processes of students and deeply modify their
mathematical inquiries. The main result of such changes consists in a differ-
ent and possibly better approach to proving activities in the classroom.
Roughly speaking, as we have had a first shift and improving passing from
paper and pencil environments to DGS with drag and drop activities (e.g.
Cabri géometre, Sketchpad, etc.), now we have a further shift and improve-
ment with the transition to multi-touch environments (e.g. Geometric Con-
structor, SketchPad Explorer, etc.) and to the variety of simultaneous fin-
gers’ actions they allow (Arzarello et al., 2014a). In the talk I will underline
analogies and differences between the two, discussing the advantages that
each of them make possible.

As it is well known, DGS makes available many geometric construc-
tions using the buttons of the toolbar; but what makes DGS so interesting
compared to the classic world of paper and pencil figures, is not only the
construction facility but also the direct manipulation of its figures, con-
ceived in terms of the embedded logic system of Euclidean geometry (La-
borde & Straesser, 1990; Straesser 2001), namely the relational aspects be-
tween the built figures. DGS figures possess an intrinsic logic, as a result of
their construction, placing the elements of a figure in a hierarchy of relation-
ships that corresponds to the procedure of its construction according to the
chosen tools and in a corresponding hierarchy of properties.

This relationship is made evident in the “dragging” mode: it preserves
the intrinsic logic of the DGS figures, that is the logic of their construction.
The DGS figure is the complex of these elements, incorporating various re-
lationships, which can be differently referred to the definitions and theorems
of geometry. The presence of the dragging mode introduces in the DGS en-
vironment a specific criterion of validation for the solution of the construc-
tion problems: a solution is valid if and only if the figure on the screen is
stable under the dragging test. Thus, solving construction problems in DGS
means not only accepting all the facilities of the software but also accepting
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a logic system within which to make sense of them.

The DGS’s intrinsic relation to Euclidean geometry makes it possible to
interpret the control ‘by dragging’ as corresponding to theoretical control
‘by proof and definition’ within the system of Euclidean Geometry. In other
words, there is a correspondence between the world of DGS constructions
and the theoretical world of Euclidean Geometry.

The analysis of dragging modalities allows entering into cognitive pro-
cesses of students while solving geometric open problems (Arzarello et al.,
1998; Antonini, & Mariotti, 2009; Baccaglini-Frank, 2010; Arzarello & Sa-
bena, 2011). In the talk I will illustrate how suitably designed tasks can help
students to face and possibly to overcome the obstacles between their em-
pirical mathematical tasks and the discipline’s theoretical nature. When in-
tegrated in the teaching of proofs, DGS triggers a network of interactive ac-
tivities among different components that can be categorised at two different
epistemological levels:

(1) The convincing linguistic logical arguments that explain WHY ac-
cording to the specific theory of reference;

(2) The artefact-dependent convincing arguments that explain WHY ac-
cording to the mathematical experimentation facilitated by an artefact.

Approaching proof in school consists in promoting a network of inter-
active activities in order to connect these different components.

I will illustrate this point discussing how the analysis of dragging mo-
dalities can give reason of the transition from empirical to theoretical
strands in students action and productions, while solving geometrical prob-
lems within DGS environments. I will show that in this case the notion of
abduction is a major analysis tool for the researcher. Abduction is a way of
reasoning pointed out by Peirce, who observed that abductive reasoning is
essential for every human inquiry, because it is intertwined both with per-
ception and with the general process of invention: abduction becomes part
of the process of inquiry along with induction and deduction. For example,
abductive processes can support interactions between (1) and (2) compo-
nents above, namely the transition to proof within experimental mathemat-
ics, a transition with novel and specific features compared to the transition
to proof within more traditional approaches. Hence the distance between ar-
guments and formal proofs (Balacheff, 1999; Pedemonte, 2007) produced
by students can diminish because of the use of technologies according to a
precise pedagogical design.

One of the deepest results of the cognitive and epistemic analysis of
students behaviours while solving problems within a DGS environment is
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that it shows the structure of their processes of inquiry and the dynamics of
the transition from the empirical to the theoretic strand of their arguments.
This has important consequences for the task design (for this issue see ICMI
Study 22 forthcoming volume): I will sketch some examples from Arzarello
et al. (1998, 2002) and Baccaglini-Frank & Mariotti (2010).

The evolution of technology, and particularly the actions allowed by
multi-touch devices, allow deepening further the aspects (1) and (2) above
and their mutual links. It is so possible designing fresh tasks, which support
the transition from the empirical to the theoretical side of geometrical prop-
erties investigated within DGS.

In the second part of my talk I will exemplify them, basing from teach-
ing experiments with multitouch devices made in Italy and Brasil, using
DGS software like Geometric Constructor (designed by Yasuyuki Iijima at
Aichi University of Education?), SketchPad Explorer3 and Sketchometry#
(Arzarello et al., 2013, 2014a, 2014b). The new technology, allows having
more than one subject simultaneously operating on the screen of a tablet us-
ing as many fingers as they wishes: this facility, not possible within the
mouse click-and-drag modality of DGS, makes it possible to design tasks
where geometrical properties are introduced in a problematic way according
to a game theoretical transposition. 1 will illustrate it with an example: the
property “two circles in a plane intersect if and only if the sum of their radi-
uses lengths is lesser or equal to the distance of their centres” becomes the
following (full-information) two-players game on a tablet (Fig. 3), which
students must solve.

2 http://souran.aichi-edu.ac.jp/profile/en.7RRZ6p 1 fkRx0afMM47vMnA==.html
3 https://itunes.apple.com/en/app/sketchpad-explorer/id452811793?mt=8
4 http:/ /www.sketchometry.org/
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Rules of the game:

— * 2players Zand Y
/ * player Z controls the radius of cir-
| , Fo cumference E through the endpoints
\ of the segment AB; player Y controls

the radius of circumference F through
the endpoints of segment CD

e Y’s goal is to ‘catch’ Z; Z’s goal is to run
away.

Figure 3. A game within multitouch environments

We transform so mathematics investigations into game theoretical in-
vestigations: this design has at least two advantages. First, students are more
engaged in the activity: the game theoretical formulation is more appealing
than a task like ‘explore and prove’, even if in DGS environments: interac-
tions between the players are more ‘natural’. Second, and more important,
the game theoretical transposition of geometrical problems introduces stu-
dents into what I call the Interrogative Model of Inquiry. It is based on the
logical researches of J.Hintikka (1998), who conceptualized inquiry in the
sense of investigation, or search for truth, namely inquiry in the sense of a
process of questioning, according to the well-known Socratic approach (for
a modern example in the classroom see:

http://www.corndancer.com/tunes/tunes_print/soccirc.pdf).

Students, while solving the game-theoretical situations, ask pertinent
questions to themselves or to their game-mates in order to elaborate suitable
strategies, which allow them to “win the game”. Such strategies consent
them to discover, validate and possibly proof geometrical theorems. Stu-
dents are so introduced into what I call the logic of inquiry cycle, which I
will describe in the talk. Suitable task designs with tablets allow its effective
instrumentation (Verillon-Rabardel, 1995; Rabardel, 2002; Trouche, 2005):
as the dragging test is one of the most remarkable educational products of
DGS with click and drag practices, the activation of the Interrogative Model
of Inquiry is another very useful product made possible by DGS within mul-
ti-touch devices.

Discussion
In the paper I have discussed four teaching experiments, whose design
is developed according to a careful cultural, epistemological, and cognitive
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analysis. I have showed how the main issue consists in elaborating tasks,
which can satisfy all these three types of analysis. Fulfilling all of them
shows a methodological proviso, which teaching situations should satisfy in
order to design adequate didactical tasks. The discussion of the four con-
crete examples introduces a possible way to face the challenges that the “In-
ternationalized and Network Era” poses to mathematics teachers.

In fact, observing such a proviso has two main didactical consequences
with respect of the use of tools in the classroom:

(1) the (possible) introduction of instruments depends on the devel-

oped analysis and not vice versa;

(i1) the nature of the mediation is carefully designed as a consequence

of the analysis.

More precisely,

- the introduced instrument must be
a) consonant with the content to be taught, since its choice has been
done in accordance with epistemological analysis of such a content;
b) consonant with the learning processes that it triggers and supports in
the students, according to the developed cognitive analysis.
- the teaching situation is adequate to be developed in that classroom with
that mediating instrument according to a certain didactical design, because
of
c) the developed cultural analysis, which makes explicit the intertwin-
ing among the two components a) and b).

We have shown this way of designing a task in four different situations.
In two of them the tool is a concrete instrument and manipulating it the stu-
dents can discover its incorporated mathematical knowledge. In the other
two the tool is a virtual environment, with which the students interact in a
different way so discovering mathematical properties.

In all four cases the students are introduced into the logic of inquiry,
which constitutes the strong cultural feature of their mathematical investiga-
tion, namely accomplishing such tasks as: Finding if, Establishing that, As-
certaining why, Settling why not, Investigating what if.

All these experiences involve both sensory-motor and highly symbolic
activities: the mediation of the artefact allows intertwining the two so that
the one can constantly be built on the other. It is worthwhile observing that
such activities entail not only a cognitive behaviour, consistent with our bio-
logical being, but also cultural aspects of us as social beings. Indeed, the
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practices mentioned above show a deep intertwining between our cultural
and cognitive components.

References

Antinucci, F. (2001). La scuola si é rotta. Bari: Laterza.

Antonini, S., Mariotti, M.A. (2009), Abduction and the explanation of anomalies:
the case of proof by contradiction. In Proceedings of the 6th ERME Confer-
ence, Lyon, France, 2009.

Arzarello, F., Micheletti, C., Olivero, F., Paola, D. & Robutti, O. (1998). A model
for analysing the transition to formal proof in geometry, Proc. of PME-XXII,
Stellenbosch, vol. 2, 24-31.

Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of
dragging practices in Cabri environments, Zentralblatt fur Didaktik der
Mathematik/International Reviews on Mathematical Education, 34 (3), 66-
72.

Arzarello, F., & Paola, D. (2007). Semiotic games: The role of the teacher. In J. H.
Woo, H. C. Lew, K. S. Park, & D. Y. Seo (Eds.), Proceedings of the 31st
PME Conference (Vol. 2, pp. 17-24). Seoul, South Korea.

Arzarello, F., & Sabena, C. (2011). Semiotic and theoretic control in argumentation
and proof activities. Educational Studies in Mathematics, Vol. 77(2), pp.189-
206. New York: Springer.

Arzarello, F., & Manzone, D. (2013). The planimeter as a real and virtual instru-
ment that mediates the introduction of area, Proceedings of ICTMT, Bari,
July 9-12, 2013. 65-70.

(http://www.dm.uniba.it/ictmt1 1/download/ICTMT11_Proceedings.pdf)

Arzarello, F., Bartolini Bussi, M.G., Leung, A., Mariotti, M.A., & Stevenson, I.
(2012). Experimental Approaches to Theoretical Thinking:Artefacts and
Proofs. . In: Hanna, G., de Villiers, G. (Ed.s), Proof and Proving in Mathe-
matics Education, New ICMI Studies Series, Vol. 15, Berlin-New York:
Springer. 97-146.

Arzarello, F., Bairral, M., Dané, C.,Yasuyuki I. (2013). Ways of manipulation
touchscreen in one geometrical dynamic software. Proceedings of ICTMT,
Bari, July 9-12, 2013. 59-64.
(http://www.dm.uniba.it/ictmt11/download/ICTMT11_Proceedings.pdf)

Arzarello, F., Bairral, M., Dané, C. (2014a). Moving from dragging to touchscreen:
geometrical learning with geometric dynamic software, Teaching Mathemat-
ics and Its Applications, 33, pp. 39-51.

Arzarello, F., Bairral, M., Soldano, C. (2014b). Learning with touchscreen devices:
the manipulation to approach and the game approach as strategies to im-
prove geometric thinking. Subplenary Conference. Proceedings of LXVI
CIEAEM, Lyon, July 21-25, 2014.

HMS i JME, Volume 6. 2014 (3-27)



From Socrates to Sherlock Holmes: cultural, cognitive and didactical tools
for pursuing the logic of inquiry in the classroom 25

Baccaglini-Frank, A. (2010). Conjecturing in Dynamic Geometry: A Model for
Conjecture-generation through Maintaining Dragging. PhD Thesis, Universi-
ty of New Hampshire, Durham, NH.

Baccaglini-Frank, A., & Mariotti, M.A. (2010). Generating Conjectures through
Dragging in a DGS: the MD-conjecturing Model. International Journal of
Computers for Mathematical Learning.15(3), 225-253.

Balacheff, N. (1988). Une Etude des processus de preuve en mathématique chez
des ¢éléves de Collége, Thése d'Etat, Univ. J. Fourier, Grenoble.

Balacheff, N. (1999). Is argumentation an obstacle? Invitation to a debate. News-
letter on proof. Retrived on April 13th 2011 from:

http://www lettredelapreuve.it/OldPreuve/Newsletter/990506.html.

Bartolini Bussi M. G. (2010). Historical Artefacts, Semiotic Mediation and Teach-
ing Proof. In G. Hanna, H. N. Jahnke, H. Pulte (eds.), Explanation and proof
in mathematics: philosophical and educational perspectives. 151-168, Berlin:
Springer.

Bartolini Bussi, M.G., Taimina, D., Isoda, M. (2010). ‘Mathematical models as
early technology tools in classrooms at the dawn of ICMI: Felix Klein and
perspectives from different parts of the world’. ZDM - The International
Journal on Mathematics Education. 42 (1), 19-31.

Berthoz, A. (1997). Le sens du mouvement. Paris: Odile Jacob.

Boero, P. (2007). Theorems in schools: From history, epistemology and cognition
to classroom practice. Rotterdam, The Netherlands: Sense Publ.

Boero, P. & Guala, E. (2008). Development of Mathematical Knowledge and Be-
liefs of Teachers: The Role of Cultural Analysis of the Content to Be
Taught, in: Sullivan, P. & Wood, T. (Eds.), Knowledge and Beliefs in
Mathematics Teaching and Teaching Development, Rotterdam-Taipei :
Sense Publ., 223-246.

Borwein, J.M. & Devlin, K. (2009). The Computer As Crucible: An Introduction
To Experimental Mathematics, Massachusetts: A K Peters.

Care, C. (2004). Illustrating the History of the Planimeter (Doctoral dissertation).
Retrieved from http://www2.warwick.ac.uk/fac/sci/dcs/research/em/projects/

de Villiers, M. (2010). Experimentation and Proof in Mathematics. In G. Hanna, H.
N. Jahnke & H. Pulte (Eds.), Explanation and Proof in Mathematics: Philo-
sophical and Educational Perspectives. New York: Springer. 205-221.

Epp, S. (1994). The Role of Proof in Problem Solving. In Mathematical Thinking
and Problem Solving. Alan H. Schoenfeld, Ed. Hillsdale, NJ: Lawrence Erl-
baum Associates, Inc., Publishers, 257-269.

Dorier, J.L. (1997). L’Enseignement de 1’ Algeébre Linéaire en Question, Grenoble:
Editions La Pensée Sauvage

Enriques, F. (1906-1914). Problems of Science. The Open Court (translation from
the Italian book, published in 1906).

HMS i JME, Volume 6. 2014 (3-27)



26 Ferdinando Arzarello

Gallese, V., & Lakoff, G. (2005).The brain’s concepts: the role of the sensory-
motor system in conceptual knowledge. Cognitive Neuropsychology, 21, 1—
25.

Greeno, J.: 1994, ‘Comments on Susanna Epp’s chapter’, in A. Schoenfeld (ed.),
Mathematical Thinking and Problem Solving, Lawrence Erlbaum Associ-
ates, Hillsdale, NJ, pp.270-278.

Hall, R., Nemirovsky, R. (2012), ‘Introduction to the Special Issue: Modalities of
Body Engagement in Mathematical Activity and Learning’, Journal of the
Learning Sciences, 21 (2).

Hanna. G. (2000). Proof, explanation and exploration: an overview, Educational
Studies in Mathematics 44, 5-23.

Heath, T. L. (1956), The Thirteen Books of Euclid's Elements (3 Volumes), New
York, 1956.

Hilbert, D. (1899). Grundlagen der Geometrie. 1. Aufl. Leipzig/ 12. Aufl. Stuttgart:
Teubner.

Hintikka, J. (1998). The principles of mathematics revisited. Cambridge (UK):
Cambridge University Press.

Horgan, J. (1993). The death of proof, Scientific American, October 1993, 93-103.

Jablonka E (2003). Mathematical Literacy. In: Bishop A, Clements MA, Keitel C,
Kilpatrick J, Leung FSK (eds) Second International Handbook of Mathemat-
ics Education. Dordrecht: Kluwer Academic Publishers.

Jones, K., Gutierrez, A., Mariotti, M.A. (Guest Ed.s) (2000). Proof in Dynamic
Geometry Environments, Educational Studies in Mathematics, 40, special is-
sues 1 and 2.

Kant, E. (2008). Kritik der reinen Vernunft, Voltmedia, Paderborn.

Kozulin, A. (1998). Psychological Tools A Sociocultural Approach to Education.
Cambridge, MA: Harvard University Press.

Laborde, J.M. & Strésser, R.(1990). Cabri-géométre: a microworld of geometry for
guided discovery learning. Zentralblatt fiir Didaktik der Mathematik, 90/5,
171-177.

Longo, G. (2012).Theorems as constructive visions. In: Hanna, G., de Villiers, G.
(Ed.s), Proof and Proving in Mathematics Education, New ICMI Studies Se-
ries, Vol. 15, Berlin-New York: Springer. 51-68.

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. New
York: Basic Books.

Park, D., Lee, Ji-H. & Kim, S. (2011) Investigating the affective quality of interac-
tivity by motion feedback in mobile touchscreen user interfaces. Int. J. Hu-
man-Computer Stud., 69, 839—853.

Pedemonte, B. (2007). How can the relationship between argumentation and proof
be analysed? Educational Studies in Mathematics, 66(1), 23-41.

Poincaré, H. (1902). La Science et 'Hypothése. Paris: Flammarion.

Poincaré, H. (1905). La valeur de la Science. Paris: Flammarion.

HMS i JME, Volume 6. 2014 (3-27)



From Socrates to Sherlock Holmes: cultural, cognitive and didactical tools
for pursuing the logic of inquiry in the classroom 27

Rabardel, P. (2002). People and technology — a cognitive approach to contempo-
rary instruments. English translation of Les hommes et les technologies : une
approche cognitive des instruments contemporains, Paris : Amand Colin.

Radford, L. (2003). Gestures, Speech, and the Sprouting of Sign: A Semiotic-
Cultural Approach to Students’ Types of Generalization, Mathematical
Thinking And Learning, 5(1), 37-70.

Ruthven, K. (2008). ‘Mathematical Technologies as a Vehicle for Intuition and
Experiment: A foundational Theme of the International Commission on
Mathematical Instruction, and a Continuing Proccupation’, International
Journal for the History of Mathematical Education. 3 (2), 91-102.

Santander, M. (1992). The Chinese South-Seeking chariot: A simple mechanical
device for visualizing curvature and parallel transport, American Journal of
Physics, 60 (9), 782-787.

Smith, D. E. (1913). ‘Intuition and experiment in mathematical teaching in the sec-
ondary schools’. Proceedings of the Fifth International Congress of Mathe-
maticians, vol. II, 611-632.

Straesser, R. (2001). Cabri-géométre: does dynamic geometry software (DGS)
change geometry and its teaching and Learning?, International Journal of
Computers for Mathematical Learning 6. 319-333.

Tall, D. (1989). Concept Images, Generic Organizers, Computers & Curriculum
Change. For the Learning of Mathematics, 9 (3), 37-42.

Trouche, L. (2005).Instrumental genesis, individual and social aspects. In D. Guin,
K. Ruthven, & L. Trouche (Eds.), The didactical challenge of symbolic cal-
culators: Turning a computational device into a mathematical instrument
(pp. 197-230). New York: Springer.

Vérillon, P. & Rabardel, P. (1995). Cognition and Artifacts: a contribution to the
study of thought in relation to instrumented activity. European Journal of
Psychology of Education, 10(1), 77-101.

Vygotskij, L. S. (1978). Mind in Society. The Development of Higher Psychologi-
cal Processes, Harvard: Harvard University Press.

Wu, Hung-Hsi (1996). The role of Euclidean Geometry in High School. Journal of
Mathematical Behavior. 221-237.

HMS i JME, Volume 6. 2014 (3-27)



Hellenic Mathematical Society
International Journal for Mathematics in Education

Réflexions mathématico-historiques a I’age du
Net sur les réformes dans I’enseignement
et les réactions a ces réformes

Jean Dhombres
Centre Alexandre Koyré,
CNRS/EHESS, Paris

Parce que cela ne nous concernerait pas directement a priori, il ne
faudrait pas oublier que 1’éducation est devenue un marché mondial en cette
deuxiéme décennie du XXI® siécle. Et en particulier celle qui forme en
mathématiques et pour tous les niveaux dont celui de la recherche qui n’a
jamais €té aussi riche et multiforme. Il se manifeste un nouvel engouement
pour les mathématiques, aprés des années de déclin, et il est vraisemblable
quon le doive a D’action médiatique efficace de quelques jeunes
mathématiciens titulaires notamment de médailles Fields promoteurs de
mathématiques étonnamment évolutives et diverses, mais aussi au renom
quelquefois douteux mais riche d’aventures de mathématiciens dans des
banques d’affaires'. Aussi 1’éducation mathématique est-elle un enjeu dans
la concurrence manifeste qu’est la globalisation, entre les Etats et au-dela
peut-étre, entre des groupes financiers précisément dits “mutinationaux”, et
forcément entre des genres de formation, jusqu’a la formation a la
recherche. Dans le cadre ainsi trés largement défini, méme si personne
aujourd’hui apres les abominations des “mathématiques nazies” n’ose plus
trop glorifier telle ou telle mathématique nationale, il faut prendre
conscience que I’affirmation, non discutée, d’une “mathématique
internationale” comporte des risques. Je voudrais justement les discuter,
d’autant que le Net peut paraitre soutenir I’idée qu’existerait une

! Cette atmosphére est assez bien décrite dans un film récent réalisé par Olivier Peyon,
Comment j’ai détesté les math, disponible en dvd.
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mathématique internationale uniforme, c’est-a-dire lisse et sans
changements, donc une seule école qui dise la norme a tous les niveaux, les
figeant méme dans 1’immobilité. Il sufiit de mentionner la formation russe,
issue du monde soviétique, pour se convaincre qu’autre chose est en jeu. Ici
je voudrais en discuter en utilisant des moyens d’histoire. Pourquoi? Je crois
que ce sont les risques d’uniformité des “mathématiques modernes” des
années 1960 qui ont entrainé des réactions dont on se remet mal. Mon
propos ici n’est pas de proposer des remedes, mais il est que pour mesurer
ces effets de réaction, I’histoire me parait particuliérement utile, ne serait-ce
que pour comprendre 1’état méme que nous vivons aujourd’hui.

Je me souviens en effet de revendications de différences, et ainsi a
I’extréme, d’avoir entendu un “terroriste” frangais affirmer que la raison de
son échec scolaire tenait a ce que les mathématiques qu’on lui avait
enseignées n’étaient pas les “bonnes”. Il disait préférer celles de I’age d’or
du monde de I’Islam. Et qu’importe qu’il ne les connaissait pas plus ! La
revendication était une différence, et le ressenti d’adaptation nécessaire aux
mentalités et aux valeurs d’une société. On a aussi entendu, il n’y a pas si
longtemps et avant méme la crise des subprimes, des étudiants et des
enseignants en économie fustiger des mathématiques “ a la francaise” . Car
elles viendraient par leur embarras théorique cacher une défense du
libéralisme sans frein. Sous la neutralité apparente d’un aspect structurel,
donc irréel selon ces critiques, puisque ne prenant en compte que les
“aspects quantitatifs”. Cette derniére critique retrouve une démarche
antimathématique toujours a 1I’ceuvre et dans toutes les sociétés, en tout cas
déja portée par Aristote contre Platon. Ce qui témoigne, aujourd’hui, d’une
méconnaissance profonde des mathématiques pratiquées et enseignées, et en
particulier des probabilités qui n’en posent pas moins des questions
fondamentales quant a notre conception du monde. Mais n’y a-t-il pas des
dérives singulieres dans I’emploi médiatique des outils statistiques, dont les
enseignants ont du mal a prévenir les mauvais effets ? La contradiction
épistémologique est que d’autres, sinon les mémes, jettent le mépris sur les
mathématiques financieres en ce qu’elles apprécient trop bien les
comportements réels des investisseurs professionnels, au point de savoir
créer la méme panique que les bourses a 1’ancienne qui étaient dénuées
d’ordinateurs et d’experts mathématiciens.
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Ce contexte bizarre quoique tout actuel que je voulais rappeler me
permet d’introduire une intéressante lettre publiée dans The Guardian du 5
mai 2014 demandant la suspension des notations “nationales” tous les trois
ans du Program of International Student Assessment (PISA), donc
concernant directement 1’enseignement des mathématiques.

En matiére de politique de 1'¢éducation, PISA, avec son cycle d'évaluation de
trois ans, a provoqué un déplacement de 'attention vers des solutions a court
terme, congues pour aider rapidement un pays a grimper dans le classement,
en dépit de recherches qui montrent que les changements durables dans la
pratique éducative prennent des décennies pour se concrétiser, et non
quelques années. Par exemple, nous savons que le statut des enseignants et le
prestige de la profession enseignante, ont une forte influence sur la qualité de
I'enseignement, mais ce statut et ce prestige varient fortement selon les
cultures et ne sont pas facilement influencés par une politique a court terme.
[...] Le nouveau régime PISA, avec son cycle continu de test global, nuit a
nos enfants, appauvrit nos salles de classe car il implique inévitablement des
batteries de plus en plus longues de tests a choix multiples, plus de legons
vendues en ligne diiment écrites et scénarisées, et moins d'autonomie pour les
enseignants. De cette facon, PISA a encore augmenté dans les écoles le
niveau de stress déja élevé, ce qui met en danger le bien-étre des ¢éléves et des

enseignants’.

Cette lettre réunit les aspects assez disparates que je viens de
mentionner : ’international et les cultures nationales, le court et le long
terme dans 1’éducation mathématique, les enjeux financiers de la
concurrence des systetme éducatifs, la restriction supposée des

% In education policy, PISA, with its three year assessment cycle, has caused a shift of
attention to short-term fixes designed to help a country quickly climb the rankings, despite
research showing that enduring changes in education practice take decades, not a few years,
to come to fruition. For example, we know that the status of teachers and the prestige of
teaching as a profession have a strong influence on the quality of instruction, but that status
varies strongly across cultures and is not easily influenced by short-term policy.[...] The
new PISA regime, with its continuous cycle of global testing harms our children and
impoverishes our classrooms, as it inevitably involves more and longer batteries of
multiple-choice testing, more scripted “vendor”’-made lessons, and less autonomy for
teachers. In this way PISA has further increased the already high stress in schools, which
endangers the wellbeing of students and teachers.

HMS 1 JME, Volume 6. 2014 (28-78)




Réflexions mathématico-historiques a 1I’age du
Net sur les réformes dans 1’enseignement et les réactions a ces réformes 31

mathématiques au seul quantitatif mesurable ignorant bien des aspects de
I’humain, et la domination de I’information non controlée des réseaux. Cette
citation s’inscrit aussi dans les réactions ‘“naturelles” des médias dans
chaque pays, promptes a comptabiliser les médailles Fields nationales au
mépris d’une conception internationale affichée de la recherche, oubliant de
préciser a quoi tiennent des “écoles nationales”, voire des “styles”, au plus
haut niveau de la recherche mathématique, comme a celui des
enseignements. Les Olympiades, a un autre niveau, procedent de méme.

Sur toutes ces questions, je voudrais prendre le temps de la réflexion. Et
je remercie vivement la Société hellenique de mathématiques de son
invitation, car elle me donne cette occasion que je n’aurais pas cherché
seul, a la fois en tant que mathématicien spécialisé en analyse fonctionnelle,
en tant qu’historien des sciences mathématiques, et en tant qu’enseignant de
mathématiques, méme si ce fut seulement a I’Université. Je crois que cette
triple familiarité, et je ne veux pas parler d’expertise, permet de mieux
appréhender 1’idée méme des changements que généralement nous ne
percevons pas comme répartis aussi bien dans la science que dans sa
diffusion par D’enseignement scolaire, et qui proviennent aussi de
I’imprégnation aux mathématiques dans la vie sociale dont témoigne le Net.
Les changements ne sont pas de méme nature, et justement je voudrais, par
I’histoire, manifester des temps de réformes et des temps de réactions.

Les changements dans I’enseignement des mathématiques peuvent
étre aussi révolutionnaires que dans les mathématiques elles-mémes
Si la didactique des mathématiques naquit en France dans les années
1960, grace a Guy Brousseau® en bénéficiant notamment des réflexions du
Genevois Jean Piaget®, le but était d’envisager précisément les conditions de
la mise en place de ce qui était présenté comme une révolution. La nature

3 Nicolas Balachef, Martin Cooper, Rosamund Sutherland, (éd.), Théorie des situations di-
dactiques, 1970-1990. Hommage a Guy Brousseau, La pensée sauvage, Grenoble, 1998.

* 11 convient de signaler le role qu’a eu le livre de Jean Piaget dans la collection la Pléiade
voulue par Raymond Queneau, Logique et connaissance scientifique, Paris, Gallimard,
1976, juxtaposant une épistémologie des mathématiques fondée sur les structures et la con-
ception génétique d’appréhension de ces structures selon les ages de I’enfant de Jean Pia-
get.
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profondément politique de celle-ci, politique au sens aristotélicien
généralis€ de gouvernance des affaires publiques, dont aujourd’hui
I’éducation, ne limite en rien la juste prétention de scientificité¢ de la
didactique. Cette discipline accompagnait indissolublement un mouvement
pédagogico-scientifique désigné du nom de “mathématiques modernes”,
faisant un net appel au sens positiviste du progres, a la volonté de passage a
I’¢re post-industrielle, et au sens d’un inéluctable changement auquel la
querelle des Anciens et des Modernes donnait une lointaine mais active
référence. Malheureusement, a ce discours politique qui ne colle pas a
I’expression anglaise de New math, était en quelque sorte opposé un contenu
qui paraissait découpé au sein d’un monde idéal et a-historique, toujours
appelé mathématiques. Dans I’intention de lui donner un nouvel ordre, sans
plus. Il s’agissait de travailler sur les structures, avec 1’idée forte que les
structures les plus fondamentales devaient venir en premier, donc étaient
¢lémentaires au sens pédagogique cette fois. Cela voulait dire que la
géométrie affine passait avant la géométrie métrique dans 1I’enseignement du
college, mais aussi que la topologie générale devait venir avant I’analyse
des équations différentielles et des équations aux dérivées partielles dans
I’enseignement universitaire, ou encore que la logique formelle devait
passer avant tout exposé¢ algorithmique. Le nouvel ordre n’était pas un
choix, mais un impératif. Le mot d’ordre simpliste “a bas Euclide”
symbolisa cette révolution, pourtant déconnectée de 1’enjeu industriel et
menée par les seuls mathématiciens dans une forme d’autisme aux autres
sciences notamment, et peut-étre aussi aux restructurations de leur science
elle-méme.

En chaussant les lunettes de I’historien, tant pour relativiser que pour
spécifier, je voudrais faire prendre conscience des enjeux de tout changement
dans les mathématiques, sans vouloir assurer qu’ils s’accompagnent toujours
du type de révolution provoquée par les “mathématiques modernes”, ni bien stir
qu’ils entrainent quasiment toujours les effets de réaction. Ce sont en tout cas
ces effets qui me préoccupent ici. De sorte que si j’évoque la “réforme des
mathématiques™ du XVII° siécle et pour éviter une trop longue histoire, ce sera

> L’expression figure chez de nombreux auteurs du XVII® siécle, méme chez Thomas
Hobbes, un Anglais comme toujours sensible aux effets de la tradition.
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pour constater la naissance du livre que nous considérons a tort comme ayant
de tout temps existé : le cours écrit de mathématiques. L’expression est toujours
utilisée, mais avec le sens aujourd’hui d’un manuel. Ce “cours” fut plutot le
récit par les mathématiciens eux-mémes de ce qu’ils voulaient changer. Ne
peut-on dire qu’il correspond aux “lecons vendues en ligne”, discutées dans la
citation par laquelle j’ai commencé ? Le “Cursus mathematicus/Cours
mathematique”, premier ouvrage au monde a prendre un tel titre est dQ a Pierre
Hérigone en 1634: il atteindra six volumes huit ans plus tard. Le cours est
bilingue, donc saute la barriere du latin qui était la langue réservée des
universités ; le cours se veut aussi un accompagnement possible pour les
“autodidactes”, jusqu’a ranger sous ce nom ceux que les mathématiques
universitaires ne satisfaisaient pas. A elle seule cette suggestion d’un public
large change la donne mathématique. Le cours ne prétend pourtant pas
contraindre un ordre de lecture, afin que “chacun puisse avoir séparément la
partie qu’il jugera lui étre le plus nécessaire”, quoique retenant d’Euclide qu’il
faille mettre en premier, mais au sein de chaque volume, “les parties
nécessaires & I’intelligence de celles qui sont aux suivants™. Cette versatilité en
elle-méme est encore un changement. Il ne sera pas définitif ! Il me suffit de
commenter le contenu des cinq premiers livres pour que I’on percoive la
révolution sur le plan institutionnel, et je donne a voir cinq pages de titres pour
les différents volumes, car elles explicitent le contenu (ill. 1 2 5).

% Pierre Hérigone, Cursus mathematicus/Cours mathematique, Paris, 1634, tome I, Prolé-
gomenes.
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Page de titre du premier volume du Cours de mathématiques de Pierre Hérigone en 1634. Les
¢léments d’Euclide sont traités par notes, comme on le verra plus loin, et suivis par des textes
généralement ignorés des cours universitaires de cette époque. La théorie de Viéte vient en dernier
donnant le développement de sin nx et cos nx en sin x et cos X.
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Page de titre du deuxiéme volume du Cours de mathématiques de Pierre Hérigone en 1634. Le calcul
ecclésiastique est celui du calendrier, et I’on voit ’apparition de 1’algebre, avec indication de la
méthode d’analyse.

HMS 1 JME, Volume 6. 2014 (28-78)



36 Jean Dhombres

CVRSVS MATHEMATICI|
TOMVS TERTIVS.

ntinens conftru@ionem tabularum Sinuum, &
Logarithmorum, vnd cum carum vfu in Ana-
tocifmo, & tridgulorum reilincorum dimen-
fionc : Geometriam pradticam : Artem mu.
nicndi: Militiam: & Mechanicas.

TROISIESME TOME

DV COVRS MATHEMATIQVE.

Contenant la conflrution des Tables des Sinus ¢
Logarithmes, anec leur vfage anx intercfls , ¢or on]
La mefure des syiangles reclilignes : La Geomesrie
prattigse : Les Fortifications : La Milice: ¢y les
Mechaniques.

Par Pizarz Hericons, Mathematicien.

285

A PARIS, M.DC. XXXIV.

Chez I'Authear, en I'lfle du Palais, A I'enfcigne
de I'Anguille, &
Chez HeNay LE GRrAS, au troificfme pilier
YeiS®\  de la grande Salle du Palais.

YRt
: = Awes Priwilege dw Roy.

Page de titre du troisiéme volume du Cours de mathématiques de Pierre Hérigone en 1634. Les tables
numériques viennent avant la géométrie pratique et les textes sur la mécanique.
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Page de titre du quatriéme volume du Cours de mathématiques de Pierre Hérigone en 1634.
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Page de titre du cinquiéme volume du Cours de mathématiques de Pierre Hérigone en 1637,
trois ans apres les quatre précédents. Un dernier volume paraitra quelques années plus tard.
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Est détruit le robuste quadrivium universitaire, limité a I’arithmétique et
a la géométrie selon Euclide, a la sphere selon Ptolémée et a la théorie des
proportions propre a la musique, qui étaient les bases du savoir depuis
Boéce au moins. Voici en effet qu’apres les Eléments d’Euclide, sans géne
aucune, Hérigone ajoute des choses reconstituées d’Apollonius sur les
problémes des lieux, donc une préparation a ce qui deviendra la géométrie
analytique avec Descartes et Fermat, et 1’expression polynomiale des sinus
et cosinus d’un multiple d’un angle a partir des mémes fonctions de cet
angle. C’est une formule mathématique qui fait jouer le développement du
bindme, mais sans que 1’on puisse alors expliquer pourquoi. Ce résultat
provenait d’un travail de Viete publi¢ en 1615 seulement par Anderson.
Vingt ans plus tard, Hérigone 1’insérait en ce premier volume’, malgré son
apparente complication, et surtout malgré son manque de lien avec le reste
des mathématiques ! Personne alors n’avait I’idée des formules d’Euler qui
firent ce lien, et apportérent une autre révolution au siécle suivant, d’abord
cantonnée dans des mathématiques trés spécialisées®. Le second volume
débute par I’arithmétique pratique, et il fournit des données sur le calendrier,
en quelque sorte une actualité puisque le calendrier grégorien avait été établi
en 1582 et ne convainquait toujours pas les pays protestants, ni les pays
orthodoxes d’ailleurs. Cette arithmétique est suivie par 1’algebre, et c’est
une grande nouveauté pour ce qui se présentait comme un programme
d’études encyclopédiques. Aux volumes suivants apparaissent les
logarithmes (dont la premicre publication, tables et théorie, remontait a
1614 seulement), les tables trigonométriques, la gnomonique, etc. Le
mouvement numérique, largement absent des textes antérieurs mais
caractéristique de la révolution marchande, est donc remarquablement
représenté¢, de sorte qu’il n’y a aucune distinction faite entre des

7 L’algébre posait un probléme d’insertion, bien plus que la trigonométrie qui se coulait na-
turellement dans les Sphériques, ou les logarithmes qui trouvaient place plus ou moins na-
turelle dans 1’évolution de la théorie des proportions. L algébre posait aussi une question de
culture nationale, en rompant avec 1’uniformité européenne du quadrivium, forcé par la pe-
regrinatio academica, celle des étudiants comme celle des professeurs, uniformité qu’a dé-
crite L.W.B. Brockliss en 1996 dans son article « Curricula » pour le volume publié¢ a
Cambridge sur 4 History of Universities in Europe,1500-1800, dirigé par H. de Ryder-
Symoens. Il y avait de fait plusieurs algebres, outre celles du monde arabe, celle des cos-
siques, celle des algébristes italiens du XVlIe siécle. L’algebre polynomiale de Descartes a
tout balayé.

¥ Je résume par une formule qui n’est toujours pas au programme des lycées :

cosnx +isinnx = (cosx +Hsinx)". La force de persuasion d’un d’Alembert fut insuffi-
sante pour faire accepter cette formule en physique.
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mathématiques pures et des mathématiques qui seraient seulement utiles.
Pas plus qu’entre les mathématiques pour les colléges et les mathématiques
pour les professionnels. La trigonométrie sphérique est traitée avec les
fonctions de la trigonométrie plane, indispensable en navigation qui porte
les Européens sur toute la surface océanique du globe. La “réforme” de
Pierre Hérigone se résume symboliquement dans I’emploi du mot
“mathématiques” ; il désigne concrétement un ensemble et non une seule
voie linéaire a la maniére des Eléments d’Euclide. Le mot « réforme », au
XVII® siécle, ne pouvait qu’avoir comme connotation la Réforme religieuse
du siécle précédent, qui avait durablement divis¢ 1I’Europe, mais aussi
favoris¢ 1’idée d’une « république des lettres » et d’une solidarité dans
laquelle purent s’insérer les tenants de la révolution scientifique. Comment
penser a une possible Contre—Réforme ?

Si c’est en raison de la place donnée a I’algebre qu’Hérigone dut
inventer un tout nouvel ordre laissant la liberté au lecteur, il ne fut pas suivi
et on peut justement parler d’une réaction, précisément dans le genre du
cours, puisque le second cours publié, le Cursus mathematicus du jésuite
Kaspar Schott en 1661, plagait 1’algébre a la toute fin de I’ouvrage (ill. 6).
Tout en ayant fait comprendre, de fagon baroque, que cette finalité rendait
vain tout le projet ! Dans les colléges jésuites, on préféra s’en tenir aux seuls
Eléments d’Euclide, édulcorés en quelque sorte par omission du livre 10, et
d’ailleurs en général des livres arithmétiques (7 a 9). Je rappelle que les 13
livres d’Euclide porterent longtemps le seul titre d’éléments (sans que I’on
spécifie de quelle science ils étaient les éléments), puis au XVII® siécle,
brusquement, et a la suite d’un professeur que I’on considére aisément
comme un « réactionnaire », Clavius, on parla pour le méme ouvrage
seulement des « Eléments de géométrie » . Le mot qui nous parait si
familier avait aussi pour fonction de gommer la présence de 1’algébre.

? Voir Jean Dhombres, Les savoirs mathématiques et leurs pratiques culturelles, Paris,
Hermann, a paraitre.
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I11. 6. Figure extraite du frontispice du Cours de Schott en 1661, exhibant par des figures cette fois les
différentes disciplines mathématiques, les plus a jour en tout cas, puisque 1’on voit les trajectoires
elliptiques de planétes. L algébre est de fait reléguée en dernier dans cet ouvrage, donc n’y joue
pratiquement pas de role.

La révolution de Hérigone fut pourtant bien percue par quelques
enseignants, mais ils eurent alors a se justifier d’étre “modernes”. Le mot
sous-entendait une perte de rigueur, contre laquelle bien sir ces enseignants
devaient s’expliquer. Nous sommes donc a fronts renversés par rapport aux
mathématiques modernes ! Et voila qu’intervinrent, en contradiction avec le
genre des Eléments d’Euclide, la nécessité ressentie par les mathématiciens
de dire I'utilité de leur science par rapport aux autres sciences et non par
rapport a la seule philosophie. De sorte que le XVII° siécle vit la floraison
moins de cours d’algebre que de discours sur I’algébre. Celui de John
Wallis en 1685, A Treatise of Algebra both historical and practical shewing
the original, progres, and advancement thereof, from time to time, and by
what steps it hath attained to the heigth it is now, traduit en latin quelques
années plus tard comme pour mieux le faire entrer dans la pratique
universitaire, présente un titre positiviste avant la lettre. Mais si
I’historienne Jacqueline A. Stedall a judicieusement intitulé son ouvrage, 4
Discourse Concerning Algebra, dans sa justification de la gloire donnée a

HMS i JME, Volume 6. 2014 (28-78)



42 Jean Dhombres

Harriot aux dépens de Descartes, ou encore par le sous-titre donné a son
ouvrage, English algebra to 1685, elle manque assurément un mouvement
en réseau bien plus largement européen. Elle opére, mais apres John Wallis,
une captation de type nationaliste, pour ce qui était en fait un mouvement de
réforme. Ce qui est d’autant plus étrange que ce n’est pas ’algebre anglaise
qui a fait I’histoire ! Le Traité d’algebre de Michel Rolle en 1690 fut le
premier sans doute a éliminer ce genre de discours sur I’algebre. Pour
proposer 1’organisation d’une discipline, qui naturellement incorporait bien
des aspects d’analyse, notamment le théoréme de Rolle pour 1’étude des
variations des fonctions. La méthode de Rolle fut poursuivie avec
nonchalance par Newton dans son livre le plus souvent édité, parce que livre
d’enseignement, [’Arithmetica universalis, un livre qui justement ne porte
pas le nom d’algebre.

La nouveauté n’en était pas moins dans 1’ordre de la pensée : la conduite
analytique du raisonnement devenait la garante du progres, et en quelque sorte
on pourrait lire le Discours de la méthode de Descartes en 1637 comme un
dépassement des discours d’algébre. Une image me fascine quant a
I’enseignement : ¢’est celle d’une thése de la toute fin du XVII° siécle. C’est un
exercice donné a des jeunes gens, en 1’occurrence le travail d’un professionnel
de la marine n’en suivant pas moins les cours des jésuites. On est bien dans
I’esprit du Cours d’Hérigone, et loin de celui des “mathématiques modernes”.
Alors méme que la modernisation de I’enseignement était indéniable. On voit
sur ’image une formule d’algebre (c’est en fait une citation de Descartes, et
allusion aussi bien a la proportion dorée comme on peut le constater) dans un
lieu scolaire (manifesté par des putti) pour dire la possibilité de gouverner la
construction navale'’. Ce qui est une propagande injustifiée a cette date, avant
le Traité du navire et de ses mouvemens de Pierre Bouguer de 1746 ou la
Scientia Navalis de Leonhard Euler de 1749 ou le Calcul différentiel et intégral
permettait enfin de traiter le probleme de la stabilit¢ ou du mouvement du
navire. Sur ce dessin, le triangle didactique cher a bien des théoriciens est
représenté avec trois composantes. Deux sont usuelles : les putti qui
symbolisent le lieu scolaire, et les dessins et formules qui symbolisent le savoir
théorique de I’enseignement de type nouveau. Mais le troisieme est inédit,
puisqu’il s’agit des applications, et sur cette image on voit méme des ouvriers
qui travaillent sur les lisses du navire en construction. On voit aussi la trace

10 Cette gravure se trouve dans des théses passée au séminaire de Toulon, et conservées a la
Bibliothéque municipale de Lyon (BM, )
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parabolique a la Galilée des boulets de canon. Le corps professoral, le troisieme
sommet usuel du triangle didactique, a disparu ! Cette thése manifeste donc une
réaction a la réaction du cours réduit au seul Euclide, formaté par Clavius. Si
I’intérét considérable du mouvement intellectuel a 1’origine de notions comme
celle de triangle didactique a été la prise en compte de 1’acte d’enseignement
des mathématiques, jusque dans ses aspects contractuels'' avec comme
raccourci langagier la transposition didactique'?, il apparait que cet acte tient
aussi aux circonstances historiques et épistémologiques, et notamment a
I’imaginaire d’une société, sans doute en I’occurrence fagonné par Descartes,
qui pensait que I’on peut opérer beaucoup par les mathématiques, a condition
que celles-ci ne soient pas tournées vers elles-mémes.

Forcément des esprits se sont opposés a 1’algébre, et le témoignage de
Blaise Pascal est ici majeur, qui évite 1’algébre alors que celle-ci lui aurait
permis bien davantage dans ses constructions infinitésimales et de calcul
intégral. Pour les enseignants, la difficulté¢ était de laisser I’algebre s’infilter
dans le quadrivium, car elle prenait facilement un aspect totalitaire, se faufilant
partout et détruisant les distinctions de disciplines auxquelles tenaient ces
enseignants. Formidablement, I’invention du Calcul, différentiel et intégral,
allait permettre donner une place a I’algébre comme connaissance en
prolégomenes, établie en vue des mathématiques dites sublimes, et aussi bien
de leurs applications  la science navale par exemple'”. Par ce mouvement de
mise en préliminaires, mais de fagon inattendue, I’¢lémentaire devint
complétement cloisonné'® : il avait sa vie propre, et forcément celle-ci devenait

" La notion trés intéressante de contrat didactique correspond a la mort du cours répété
parce que c’est ainsi, dont Lucienne Felix se moque avec une rare puissance dans ses mé-
moires publiées par L’Harmattan en 2005.

12 Yves Chevallard, La transposition didactique. Du savoir savant au savoir enseigné, La
pensée sauvage, Grenoble, 2° édition, 1991.

" 11 me semble que I’on pourrait expliciter cette forme de lutte en faveur de 1’algébre en
historicisant le reproche souvent fait au début du Calcul, avec le besoin de tout rapporter a
la géométrie. Ce que 1’algébriste André Weil manifestait en disant qu’il fallut I’extirper de
la « gangue géométrique » (Article Calcul infinitésimal dans 1I’Histoire des mathématiques
de Nicolas Bourbaki).

'* Un deuxiéme exemple de révolution, que je traite au galop, est celui de la construction
des nombres réels, inventée par Dedekind aussi bien que par Cantor. L’essentiel sans aucun
doute est le procédé¢ diagonal, permettant de distinguer le continu dans R et le dénomblable
dans Q, mais aussi la possibilité de montrer que R est unique a un isomorphisme prés de
corps valué totalement ordonné complet. Ce qui fut fait par David Hilbert dans les
Grundlagen der Geometrie de 1899. Dés lors, tout était prét pour la définition du métre
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celle du collége, et non I'université. Dans ce cadre, bien des colleges se fixerent
sur les seuls Eléments d’Euclide, devenus symptomatiquement Eléments de
géométrie. C’était éviter I’analytique, et en forgeant une “mathématique
internationale”, alors dite jésuite en référence aux colléges de cette Compagnie,
répartis dans le monde jusqu’en Chine ou en Amérique latine. Elle réduisait les
mathématiques & un savoir assez étroit, mais ciselé dans ses détails, avec un
accent particulier sur la géométrie. A tel point que ’on refusa d’utiliser la
trignométrie pour la construction des cadrans solaires — 1’objet le plus visible de
I’influence mathématique dans une cité européenne a cette époque — au profit
d’une construction géométrique, certes trés jolie'. La considérer comme une
réaction n’est pas la dénigrer, mais faire prendre conscience des choix, jusqu’a
celui de I’esthétisme'®.

souple de géométrie affine de la classe de quatrieme dans les premieres années de la
réforme des mathématiques modernes vers 1970.

' Jean Dhombres, What images from the seventeenth century in the European cities may
tell about the visibility of the mathematical sciences including astrology, in Vittoria Feola
(éd.), Antiquarianism and Science in Early Modern Urban Networks, Sciences et Tech-
niques en Perspective, vol. 16, fasc. 2, 2014, pp. 158-181.

' Certains évitérent I’algébre par le biais des indivisibles. En témoigne le remarquable
livre d’Ignace-Gaston Pardies qui fut traduit jusqu’en mandchou pour I’information de
Kang Xi.
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I11. 7. Frontispice d’une thése soutenue a Toulon, avec apparition (une premiére pour une gravure)
d’une formule algébrique. Elle est en fait tirée de la Géométrie de Descartes et proche aussi bien du
nombre d’or.
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T11. 8. Page de titre de la thése soutenue a Toulon, et publiée sous forme de livre
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La révolution ratée des symboles pour le raisonnement
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I11. 9. Le théoréme de Pythagore chez Pierre Hérigone.
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I11. 10. Les propositions 47 et 48 au livre I dans 1’editio princeps de 1533, soit le théoréme de
Pythagore et sa réciproque

Je n’en ai pas fini avec le Cours de Pierre Hérigone, car il donne aussi a
réfléchir sur la fagon dont on peut procéder pour modifier I’enseignement.
Je ais prendre pour m’expliquer le cas du théoréme de Pythagore, ou plutot
la proposition 47 du premier livre des « Eléments d’Euclide », telle qu’elle
est «écrite» par Pierre Hérigone dans Cursus mathematicus/Cours
mathématique (ill. 9). L’imprimeur Henry le Gras n’a pas pu faire tenir le
théoréme sur une seule page, et du coup, comme le donne a voir le montage
ci-dessus, n’a pas respecté 1’alignement sur la gauche en passant a la page
suivante. '’ Le résultat est suffisamment célébre pour que 1’on n’ait aucun

'7 Jean Dhombres, La preuve mathématique en tant qu’elle est épreuve de mémoire, in Ra-
fael Mandressi (dir.), La preuve, PUF, Paris, 2009, pp. 59-84 ; Jean Dhombres, Sur un texte
d'Euler relatif a une équation fonctionnelle : archaismes, pédagogie et style d'écriture,
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mal a la suivre, alors méme que peut surprendre 1’écriture ici fournie. On ne
peut pas la dire algébrique. Elle donne donc a réfléchir (voir par comparai-
comparaison ill. 10 et la démonstration dans la premicre édition en grec en
1533).

La figure s’impose distinctement dans cette page qui parait
d’organisation moins claire que la figure, puisqu’apparaissent quatre
colonnes assez différentes, aprés I’énoncé bilingue du théoréme dont on
apprécie le balancement rythmique, évitant le pédant vocabulaire de
I’hypoténuse : I’aire du carré BCED est la somme des aires des carrés BFGA
et AHIC. 11 faut cependant un dictionnaire pour décrypter le signe égal, ici
donné par 2|2, deux 2 séparés par une barre verticale qui joue a la maniere
du pivot d’une balance, dont la premicre intervention est a la ligne qui suit
Req. m demonstr. a la quatriéme colonne. Un analogue de notre signe égal,
avec deux lignes paralleles, apparait quelques lignes plus tot dans le méme
texte, mais il signifie le parallélisme justement des droites AM, BD et CE, et
du coup on peut s’interroger, en lisant Hérigone aujourd’hui, sur les raisons
qui ont fait plus tard adopter le signe ¢gal des paralléles, avec un possible
primat donné a la géométrie. Aucun signe égal n’était utilisé par Euclide,
qui n’en avait pas moins la notion d’égalité portant sur des grandeurs,
comme des aires, des longueurs, des angles, etc. Hérigone invente donc plus
qu’une symbolisation : il fait intervenir un mode de pensée, avec 1’égalité
figurée en tant que relation ayant des propriétés que l’on reconnait
aujourd’hui sous le nom de relations d’équivalence. Pour mieux en faire
voir la portée, je les donne avec la notation d’Hérigone (réflexivité a2l 2a,
symétrie a2l 2b donne b2| 24, et transitivité, a2| 2b et b2| 2¢ donnent a2| 2¢).
Alors que notre signe égal banalise par le sens acquis de ’algébre. Mais
justement cette banalisation n’est-elle pas le résultat lointain d’un
mouvement lancé par Hérigone ? Auquel cas son 2| 2 serait un signe avant-
coureur !

L’écriture est de méme nature que la notation avec le parallélisme qui
nous parait bien plus naturelle et riche. Hérigone entendait singulariser la
relation d’égalité portant sur des mesures de grandeurs, et son choix de 2|2
signifie le maintien d’une spécificité pour les proportions que par ailleurs
I’algebre tendait a diminuer. De méme, Hérigone « note » la proportion, A4
est a B comme C est a D, a partir du milieu de la partie de droite, avec

Sciences et Techniques en perspective, vol. 8, 1985, pp. 1-55; Jean Dhombres, De
I’écriture des mathématiques en tant que technique de I’intellect, in Eric Guichard (dir.),
Ecritures : Sur les traces de Jack Goody, Presses de ’ENSSIB, Lyon, 2012, pp. 157-198.
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introduction de la lettre m (pour proportion sans doute) et on constate qu’il
n’y a pas exhibition de I’algebre que nous connaissons, mais un jeu qui
individualise précisément le rapport dans I’agencement de la proportion,
sans aller pourtant jusqu’a une égalité de rapports. Or, indépendamment de
la volonté peut-on dire de Pierre Hérigone, son signe 2| 2 tendait vers une
conception algébrique. A la méme époque, Harriot faisait en algebre
I’assimilation avec la géométrie en donnant presque notre signe égal.

Descartes écrira trois ans plus tardoc, déformation de e, pour désigner en

latin une égalité qu’il situait aussi bien en algebre, ou plutoét en fondement
de sa théorie des équations. C’est ainsi constater que Descartes abrégeait
seulement D’écriture dans le but de mettre en avant une indéniable
nouveauté, la ou Hérigone donnait une explication sous forme d’un
graphéme. Tous les deux, en proposant une notation alors inhabituelle,
signalent un sens nouveau ; par ailleurs les deux notations ont aujourd’hui
disparu dan un grand et fréquent mouvement d’élagage. En quel sens
toutefois peut-on parler d’échec pour Hérigone ?

C’est qu’au dela d’une distinction entre un carré ([_] ) sans point et un
carré suivi d’un point qui préfigure le sens de fonction comme [ ]bc
indiquant la puissance d’ordre 2, I’écriture d’Hérigone est dérangeante par
une prétention de réduction du raisonnement mathématique. Chaque ligne
du texte, au sens trés matériel d’une certaine famille de mots placés
horizontalement dans une méme colonne, doit étre une phrase compléte ;
elle est une étape de la démonstration, des lors repérable en tant qu’unité, et
repérable par des références a des propriétés précédentes (généralement
euclidiennes). Cette spatialisation logique que l’on peut aussi décrire
comme une succession ordonnée d’atomes horizontaux d’écriture, ou encore
des abrégés sténographiques d’une phrase complete, est une contrainte
extraordinaire. Elle implique que toutes les idées mathématiques doivent
pouvoir se décomposer en unités de tailles équivalentes. La disposition en
lignes séparées par des colonnes — quatre ici — est une forme de la
spatialisation de 1’écriture mathématique, et on a avantage a parler plus
précisément d’un dispositif'®. Il ne sera pas maintenu, ce qui ne signifie pas
que legon n’en sera pas tirée.

' Je ne suis pas siir qu’on gagne autre chose qu’un effet de mode en qualifiant ce dispositif
de « rhétorique ». Avec le seul mot dispositif, il me parait utile de bénéficier de 1’allusion
voilée a la disposition spatiale, aussi éloignée du genre publicitaire que du bric-a-brac, ou
méme du style, et lui donner ainsi la signification d’un mode induit de lecture.
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La naissance du calcul polynomial ou le geste des formules

algébriques

La méthode des coefficients indéterminés vaut aujourd’hui comme
recherche numérique et elle parait ’exemple le plus élémentaire d’une
modélisation par la détermination de parameétres a partir de données
expérimentales en vue d’établir une loi de la nature'’. Comme exemple
suffisamment explicite de cette méthode, d’ Alembert proposait la résolution
d’une équation différentielle linéaire du premier ordre,

gy +by=P,

dx
ou P désigne un polynome du second degré, et b est une constante réelle
quelconque. Sans aucunement s’intéresser a 1’équation homogene associée,
il résolvait Q’+bQ = P avec un polyndme Q posé a priori comme étant du
second degré, avec des coefficients justement indéterminés, et c’est ce Q
qu’il appelait « quantité ». Il conformait donc la solution. Il notait, en
conservant de Descartes le fameux xx au lieu de la puissance d’ordre 2 :

Q =A+B+Cxx

Comme la dérivation diminue d’un degré la puissance, le systeme
linéaire a trois équations en 4, B et C est triangulaire non dégénéré, donc
résoluble, donnant 4, B et C explicitement a partir des coefficients du
polynome connu P. En ce sens la méthode des coefficients indéterminés est
devenue le paradigme de la formulation mathématique par adaptation a
I’empirisme phénoménal ou expérimental. Ce n’est pourtant pas de cette
manicre qu’elle fut présentée par son indéniable inventeur, Descartes, en
1637. Alors méme qu’il ne s’adressait pas a un public de mathématiciens,
mais voulait aider au gouvernement de chaque esprit par la seule raison.
L’Encyclopédie, sous la plume de d’Alembert, restait bien succincte en son
entrée « Méthode » en ce qui concerne du moins les mathématiques :

La route que ’on doit suivre pour résoudre un probléme. *°
N’était pas énoncé un impératif sous la forme : « il faut suivre ». Mais
’article défini « la » induit que la « route » est unique. Chez Descartes avec
cette méthode des coefficients indéterminés, ce qui est unique (mais a n
variables) est le polyndme unitaire de degré n, apparaissant comme un

' Pour que 1’on saisisse I’adaptation de la méthode a la pratique expérimentale, sinon a la
réalité, il suffit de mentionner que c’est par la méthode des coefficients indéterminés que
Fourier a découvert les coefficients éponymes. Voir Jean Dhombres, Jean-Bernard Robert,
Joseph Fourier, créateur de la physique mathématique, Paris, Belin, 1992.

% Entrée méthode, pour les mathématiques ; repris dans I’Encyclopédie méthodique.
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incontournable de sa postérité, alors que la méthode elle-méme avait
d’autres effets possibles, comme le commentateur de Descartes pour les
colléges en 1730 I’indiquait suffisamment®'. D’ Alembert précisait toutefois
que le mot méthode ne s’appliquait que lorsque plusieurs questions se
trouvaient résolues par la méme procédure. Ce qui serait une bonne lecture
du commentaire « en passant » que donne Descartes de sa méthode ! Mais
d’Alembert aboutissait a ce monstre épistémologique, pourtant familier,
d’une qualification de « méthodes générales ». Il est soumis a la rhétorique
qui les oppose aux « méthodes bornées » ! Seuls les enseignants, et non les
mathématiciens chercheurs, acceptent de présenter des méthodes qu’ils
savent « bornées : c’est au fond cela qui fait I'intérét du programme d’une
seule année scolaire, ou le « polyndme vectoriel » peut trouver sa place.

Mais je donne directement du texte de Descartes une « équation » du
sixieme degré en y, la seconde équation écrit-il au livre II de la Géométrie a
propos d’une courbe bien particuliére a laquelle il s’agit de construire une
tangente, et dont la nature importe peu pour mon propos”>. Ce probléme dit
géométrique de la tangente a cette courbe phénoménale est réduit a celui,
algébrique, de dire I’existence d’une racine double pour une équation.
Descartes s’en expliqua aussi, mais la encore mon but est de suivre la
démonstration en ce qu’elle porte sur des formes™.

2! Claude Rabuel, Commentaires sur la Géométrie de M. Descartes, Marcellin Duplain,
Lyon, 1730.

> La construction d’une tangente a un cercle est un des morceaux de bravoure de toute
description de la mathématique cartésienne. Voir Vincent Jullien, La Géométrie de Des-
cartes, Paris, PUF, 1998, et I’édition récente de la géométrie par André Warusfel.

2 Extrait de I’édition originale de 1637 de la Géométrie de Descartes, (p. 348). Se trouve
dans les Euvres de Descartes, t. V1, p. 420.
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qui feruent a connoiftre les fix quantitss f, g, b, £,v,8&n
D'otilef fortayf¢ a entendre, que de quelque genre,
que puifle eftrela ligne courbe propofée, il vient tou-
fiours par cete fagon de er autant d’equations,
quoneft obligé de fuppoler de quantirés , qui font ine
connués. Mais pourdemefler par ordre ces equations,

I1l. 12. Extrait de la Géométrie de Descartes, un essai annexé au Discours de la méthode.

Il y a a voir la disposition spatiale d’un polyndéme en y, a repérer des
paramétres b, ¢, ou d et deux autres consonnes s et v, que je dirai inconnues
pour rester avec le vocabulaire de Descartes et ne pas utiliser trop vite la
notion de ultérieure de variable. On voit dans cet extrait entrer une autre
lettre e, qui joue un role de variable réelle trop souvent passé sous silence, et
quatre lettres encore : f, g, h et k qui sont celles mémes de la méthode des
coefficients indéterminés. Pour le vocabulaire, ’expression ici écrite
« équation » de Descartes n’implique pas I’égalit¢ a zéro d’une forme
algébrique : la forme polynomiale elle-méme est aussi dite une équation”.
Descartes savait trés bien mettre 1’égalité a zéro lorsque ceci s’avérait
nécessaire dans son exposé.

* En parlant de « somme qui se produit », Descartes pensait le polyndme comme objet
ayant une forme, mais aussi comme quantité que je décris comme de nature vectorielle
(« polyndme vectoriel »).
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La derniére phrase de ce texte surprend, et inquicte : il est dit qu’il y a autant
d’équations que d’inconnues, en tout cas que d’inconnues que l’on est
obligé de supposer. L’inquiétude est celle de quiconque a fait un peu
d’algebre, et sait qu’une telle comptabilité, nombre d’équations et nombre
d’inconnues, n’est jamais un critére de résolution, méme avec des équations
linéaires. J’ai recensé ci-dessous les équations en jeu. Ces équations, au
nombre de six a priori, correspondent a I’identification des deux polyndmes
unitaires du sixiéme degré. Cette identification est le résultat du produit
polynomial de y° — 2ey + ¢’ par le polyndme général unitaire du quatriéme
degré.

fo- 2 - =3 &
9> — 2f + € = -2 cd+b+d?
h3 — 2cg? + €f = 4 bed—2d%
Kkt — 2eh® + e2g? = -2 bcd+ c2d? — d%s? + d%v?
— 2k* + €h? = -2 bAd?
ekt = bc?d?

Se pose la question de savoir quelles sont les inconnues « qu’on est
obligé de supposer ». Une premiere réponse serait de dire que ces inconnues
sont les quatre coefficients, £, g°, i’ et k*, que 1’on qualifiera d’indéterminés,
ceux qui font le polyndme général du quatrieme degré. Descartes prévient
cette pensée, puisqu’il dit que le nombre des inconnues est 6, et non 4,
correspondant aux 6 équations. Le lecteur doit donc se souvenir des
quantités v et s, qui entrent dans la premiere équation écrite et qui ne suivent
pas dans ’alphabet les b, ¢ et d. Ces quantités v et s sont des inconnues,
auxquelles viennent s’ajouter alors les quatre coefficients f, g°, &’ et k”.
Plane néanmoins un doute dans ce décompte sur le réle de ce que je ne veux
pas d’emblée appeler la variable e, puisque justement c’est cette qualité de
variable que la méthode est aussi chargée de faire comprendre. On doit
admettre que cette attitude de doute est celle souhaitée chez son lecteur par
Descartes : il 1’oblige a toujours étre au clair des objectifs du calcul a un
moment déterminé de ce calcul, précisément quant a la stratégie de 1’ordre
qui reégle le calcul. C’est une option de didactique! J’en souligne
volontairement 1’expression pour m’étonner de ne pas voir des attitudes
semblables d’aujourd’hui, en vue d’un tel apprentissage. Mais n’est-ce pas
parce qu’on dissocie le calcul de la méthode !
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Présentement, 1’ordre est dans la vision de six inconnues parce qu’il y a
six équations, et on oublie provisoirement e, car ¢’est une quantité connue.
J’écris ces six équations, et en passant prend conscience qu’avoir choisi des
puissances comme g°, /’ et k”, est une aide dans la disposition des calculs.
On peut en effet vérifier qu’un terme n’est pas a sa place ! Argument in
absentia, le visuel sert de repére du faux, dont la discrimination est jugée
par Descartes comme essentielle. La nouvelle abréviation fait ressortir, au
moyen d’alignements verticaux, les coefficients indéterminés que je note
avec des majuscules F = f, G = gz, H =N et K = k’, sans les membres de

droite qui sont des constantes.

-2e+ F
2 2eF+ G
e’F-2eG+ H
eG-2eH+ K
e’H - 2eK
e’K

Descartes poursuit en introduisant la prescription essentielle de sa
méthode : « déméler par ordre ». Cet ordre commence par celui des seuls

quatre coefficients.

Mais, pour demesler par ordre ces equations & trouuer
enfin la quantité v, qui est la seule dont on a besoin, & a
I’occasion de laquelle on cherche les autres ; il faut,
premierement, par le second terme chercher f, la
premiere des
quantités inconnués de la derniere somme ; & on trouue

f x2e—2b.
Puis, par le dernier [terme], il faut chercher £, la
derniere des quantités inconnués de la mesme somme ;
& on trouue

bbocdd
&
Puis, par le troisiesme terme, il faut chercher g, la
seconde quantité, & on a
gg ¥ 3ee—4be —2cd + bb + dd.

Puis, par le penultiesme, il faut chercher 4, Ia

penultiesme quantité, qui est
3 Jboodd  2bocdd
h o - "

B

e &
Et ainsi il faudroit continuer, suiuant ce mesme ordre,
iusques a la dernicre, s’il y en auoit dauantage en cete

ow
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somme ; car c’est chose qu’on peut tousiours faire en
mesme fagon.

Puis, par le terme qui suit en ce mesme ordre, qui est
icy le quatriesme, il faut chercher la quantité v, & on a

|} b

St e , ke _ Jee ye, Zhe , dee  Rdee
& 4@ 4@ e T TP
ou mettant y au lieu d’e, qui lui est esgal, on a
2yd Ibyy bby 2ey . J :
Voo . Y oava 2 XY B
di at Tl d VN T '
pour la ligne” AP.

I11. 13. Autre extrait de la géométrie de Descartes

Cet extrait suffit pour répondre a la question de la preuve. Non pas la
preuve de la méthode des tangentes toute entiere, ni la preuve de la
méthode des coefficients indéterminés reposant sur 1’identification des
coefficients des polyndmes. La preuve est passée a 1'ordre de
résolubilité®® des six équations, avec six inconnues. Pourquoi le faire
ici ? Pourquoi scinder le discours de Descartes ? C’est que lui-méme
invite a cette réflexion, en venant de dire que « c’est chose qu’on peut
toujours faire en méme fagon »*’. La preuve est celle de Descartes avec
la généralité indiquée de la résolution au-dela du sixieme degré, ce que
nous identifions a une résolution en cascade par alternance™. Bref, ¢’est
la forme qui domine, la forme sous laquelle un probléme algébrique se

25 Ce mot de « ligne » AP exige, pour étre compris, de revenir a la signification de la
premieére équation, et d'une courbe. Je n’en ai pas besoin pour la présente discussion.
D’ailleurs Descartes lui-méme se contente d'un dessin. Celle-ci clot la discussion sur
I’équation par laquelle a commencé notre entrée dans le texte de Descartes.

26 Le mot de résolubilité n’est pas admis par des dictionnaires frangais, solvabilité étant
préféré, mais je le préfere parce que faisant paire avec le mot résolution.

27 La Géométrie, p.421, et ici dans la citation fournie.

% Le lecteur moderne a tout de suite visualisé la méthode pour ces quatre coefficients,
puisque ceux-ci apparaissent dans le systéme linéaire de six équations donné ci-dessus, et
en fait deux systémes linéaires triangulaires. L’expression cascade, comme 1’expression
triangulaire que j’ai utilisée, sont mal choisies, car anachroniques, 1’algebre linéaire n’étant
pas faite chez Descartes. Il faudrait dire une double cascade (d’une part avec F, G et H,
d’autre part en inversant 1’ordre avec K, H et G), ou encore la forme -crois-
sante/décroissante, comme dans le célébre poeme Les Djinns des Orientales de Victor Hu-
go. A condition de voir que dans les équations n’interviennent ni I’inconnue v, ni
I’inconnue s, a I’exception des membres de droite des équations linéaires a trois des quatre
lettres F, G, H et K, ni la lettre e qui est pour le moment une constante parmi d’autres.
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présente pour pouvoir étre résolu. La forme en accordéon du systéme li-
linéaire est liée a la multiplication par un polyndme de degré 2. Il y a une
rhétorique de correspondance de deux ordres, de deux autres ordres,
I’ordre des quantités (les coefficients indéterminés), et ’ordre des
équations tel que 1’a déterminé la méthode d’identification des
coefficients des puissances décroissantes, ou ordre des termes. La
correspondance est langagiere : par la pénultieme (ou avant dernicre
équation), il faut chercher la pénultiéme (ou avant derniére quantité).
Mais Descartes prend soin de casser cette correspondance, puisque des le
départ il indique qu’il faut « premiérement », par le « second terme »
chercher la « premicre » des quantités de la « derniere somme ». Il
ajoutera que par le « troisiéme terme » il faut chercher la « seconde
quantité ». L’emploi du « il faut », et non pas « il est clair», ou « on
voit », est une indication que le nouvel ordre, 1’écriture des équations
dans un ordre autre que celui provenant des puissances décroissantes,
requiert un parcours algébrique de la forme des équations.

La question de généralité soulevée est de savoir si ce nouvel ordre des
équations, ou cette forme, suffit a la résolution particuliére, en vue de la
détermination des coefficients indéterminés, indépendamment du degré de
la forme polynomiale de départ. Descartes assure : « on peut toujours faire
en méme facon ». Il a raison pour trouver les racines doubles. Omet-il de
dire pourquoi ? On peut aisément dire cette raison avec les mots de
Descartes : intervient la forme du polynome de degré 6 obtenu par
multiplication du polyndme y° — 2ey + ¢’ par le polynéme « feint »*°, ou
général, y* + £’ + g2y2 + i’y + k*. Cette multiplication, & la maniére dont
Descartes la conduit (commencant par le polynome de second degré),
impose que pour chaque coefficient au plus trois des lettres £, g°, /’° et k*
(visualisées ici par F, G, H, K) interviendront linéairement, et qu’au début
(premicre €quation, degré 5 ou deuxiéme terme) comme a la fin (derniere
équation, degré 0, troisiéme terme) une seule des lettres interviendra. Puis
pour la deuxiéme équation (degré 4, troisiéme terme) comme [’avant
dernieére équation (degré 1, sixieme terme), deux seulement des lettres
seront liées. La forme des équations qui dit leur résolubilité, a condition de
bien ordonner, résulte de la nature de la multiplication polynomiale, donc du
« polyndme algébrique » : trois termes sont au plus en jeu parce qu’il y a
trois termes dans un polyndéme de degré 2.

29 L’expression d’équation « feinte » est de tabuel, dans son Commentaire a la Géomé-
trie de Descartes.
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S’il y a une rhétorique fallacieuse de I’ordre dans cet extrait de la
Géométrie de Descartes, on la trouve juste ici, avec cet ordre de la
résolubilité passant de la résolubilité des coefficients indéterminés a celle de
I’inconnue v. Comme s’il s’agissait du méme ordre! Par contre, la
rhétorique de I’ordre avec premier/dernier, etc., par son décalage, indique
bien les attentions a prendre, et la non automaticit¢ du calcul. Il est
prévisible si I’on ordonne convenablement.

C’est pourtant la que la méthode de Descartes manque sa preuve
générale. Avec la possibilit¢ méme d’écrire une courbe algébrique P(x,y) =
0 sur la forme résolue y = f{x). « On ne laisse pas de pouvoir toujours avoir
une telle équation » annongait-il quelques pages plus t6t°". Cette affirmation
est fausse. Le calcul différentiel seul montre qu’il est possible, et seulement
localement, d’exprimer y = f{x), a condition d’accepter pour f, non pas un
polyndme, mais une série entiére. Telle est la formule de Taylor-Young’'.
Le succes de la méthode polynomiale de Descartes n’est pas garanti pour
toutes les courbes algébriques, et ce n’est pas seulement une question de
complication, mais tient a la nature méme des courbes algébriques qu’il
croyait suffisamment simple, alors qu’elle posséde par certains cotés le
méme aspect non fini des courbes transcendantes, ou mécaniques dirait
Descartes. A moins de penser que Descartes se trompe en supposant la
forme fonctionnelle dans tous les cas, il ne peut raisonner que sur des
exemples. Il sort au moins deux généralités de sa démarche sur le probléme
des tangentes. La premicre déja dite est relative a 1’ordre : c’est I’écriture
polynomiale générale suivant les puissances décroissantes avec des
coefficients généraux. La reconnaissance de la généralité des coefficients, et
donc de la forme polynomiale, a été postulée par le degré 4, mais est
devenue une réalité par la résolution méme des coefficients en jeu, qui sont
effectivement déterminés. La seconde généralité, liée a la précédente, tient a
ce e qui intervient dans toutes les formules donnant les coefficients
indéterminés. La signification de e est d’étre un nombre réel quelconque :
une abscisse. Car est ainsi fixé le point courant sur la courbe en lequel on
veut calculer une tangente. C’est aussi une variable d’algébre qui peut étre
mise a la place de y, précisément par la mise en facteur du carré de (y-e). On

30 Géomeétrie, p. 416.
2 n

' Cest Iécriture f(x+a) = f(x)+af'(x) %f"(x) +...+a—'f"(x) + d’une fonc-
! n!

tion suffisamment réguliére /', qui a finalement détroné la formule du bindme de sa place
centrale en analyse algébrique deuxiéme manicre.
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passe de la lettre algébrique muette du polyndome a la valeur réelle de la
géométrie des courbes. Il y a deux constatations. D’une part, il ne fait plus
de doute que les coefficients d’un polyndome ne soient des nombres réels, et
pas seulement des rationnels. L’ontologie du réel est passée au
polynome par la réalit¢ analytique d’une courbe, qui est ’ceuvre de
Descartes et qui tient lieu de forme phénoménale, sans seulement étre une
représentation ou une traduction en une autre langue. La substitution de la
variable y en e, une conversion qui est partiec prenante de la méthode de
calcul, génere précisément le « polyndme fonctionnel », c’est-a-dire du
polynome an tant que fonction d’une variable.

Se présente ainsi un aspect €pistémologiquement singulier de cette
écriture dans la mesure ou la pensée adopte des formes de ce qu’elle est
censée donner a penser, en 1’occurrence 1’espace, ou I’étendue comme
écrivait Descartes. Ce dernier utilisera aussi bien la spatialisation pour une
forme algébrique, avec le choix d’une double écriture horizontale et
verticale des polyndmes ; elle sera maintenue assez longtemps. Avec cette
spatialisation de I’écriture polynomiale, on ne peut pas dire qu’il s’agisse
seulement d’une convention au sens ou il n’y aurait aucune explication a
trouver dans le moyen graphique utilisé. La spatialisation fait usage d’une
« analogie », qui n’est pas entée sur le sens mathématique des proportions,
mais reprend le geste du calcul d’un polyndme ou I’on regarde de droite a
gauche, par exemple lorsque 1’on développe un produit crois¢ de
coefficients comme (a+b)(c+d), qui se déploie spatialement alors que la
lecture des puissances successives de 1’indéterminée est linéaire, de gauche
a droite. C’est ce que j’appelle le geste de la formule.

Au contraire, le symbole de I’égalité pour Hérigone, 2|2, est
simplement emblématique en ce qu’il rappelle la balance. Mais on retrouve
I’une des affirmations les plus anciennes de la pédagogie de 1’algebre, avec
le fait de « I’équilibre des deux membres » de I’équation, comme des poids
qui, retirés car gommés d’un coté du signe, doivent étre également retirés de
I’autre coté, ce qui fait précisément intervenir le signe moins. Ai-je besoin
d’insister sur ce qu’il y a d’invention dans cette pensée du négatif, aprés ce
que Kant en a dit qui souhaitait son introduction dans les raisonnements
philosophiques ? On rencontre ainsi une des plus belles questions de
I’histoire des mathématiques en ce qu’elle peut aider a comprendre le
fonctionnement de I’esprit humain dans sa réflexion collective : faut-il voir
I’invention du signe moins dans 1’allusion algébrique a des comptes
commerciaux a équilibrer ou dans la pensée qui reste spatiale de la balance ?
Je ne prétends pas trancher, mais je suis slr, quand il y a un choix
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didactique pour 1’'une ou I’autre option, que cela répond a d’autres critéres
que des critéres mathématiques. Je voudrais donc poursuivre sur de tels
choix, a partir de problémes particuliers et n’étant plus a la mode.

La modes de certains problemes : I’inscription d’un carré dans un
triangle

I11. 14 et 15. Extraits de la planche XV des figures de Samuel Marolois, dans 1’édition par
Albert Girard en 1651 du Traité, et practique de Géometrie, et premierement de [ 'usage du
compas.

Le probleme qui consiste a inscrire un carré dans un triangle est
envisagé par l'auteur d’une géométrie qualifiée de pratique, affublée
pourtant du nom de traité. Sans doute parce que les gestes techniques y sont
justifiés. Le mathématicien professionnel qu’est Samuel Marolois -
I’adjectif professionnel étant seulement mis pour dire qu’il ne s’agit pas
d’un universitaire - sera « corrigé » en 1628 par un autre professionnel
Albert Girard. Il fut le traducteur et commentateur en frangais de Simon
Stevin, I’introducteur en Europe de 1’écriture décimale illimitée. Les deux
auteurs ne disent pas les origines du probléme, ce qui ne veut pas du tout
dire qu’ils ne les connaissent pas. Il est certain qu’un simple regard jeté sur
les deux figures du bas de la planche (ill. 14 et 15 ) établit que la situation
exploitée est celle de la similitude géométrique. Si elle fait fond sur la
figuration la plus simple de deux triangles dont deux cotés sont paralléles,
forme dite de Thalés, on voit bien plus. La construction dans la premiére
figure numérotée 147 du carré cherché FGIJ dans le triangle ABC s’obtient
par similitude du carré ACED, le centre de similitude étant O. Joue aussi
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bien dans la seconde figure le carré qui contient le numéro 148, les lettres
des sommets n’étant pas toutes lisibles en raison de la pliure du livre, mais
aussi bien le carré GDLI. La premicre similitude est une homothétie (de
centre O, milieu de AC) suivie d’une rotation autour du méme point d’un
angle plat’ (symétrie par rapport a ce point 0), mais ce sont deux simples
homothéties (de centre B ou A) pour les deux cas de la deuxiéme figure.

Qui pourrait, s’il n’avait déja fait I’exercice, penser que cette preuve
peut donner lieu a une formule intéressante ? En appelant # (= BD) la
hauteur issue de B du triangle ABC (fig. 147 de I’ill. 14), et b la longueur
dela base AC de ce triangle, on dispose pourtant de la longueur du co6té HI
du carré, noté par x, selon

hb
1 __hb_
(1) T htb

Cette expression est immédiate lorsqu’'on la déduit non pas de la
similitude géométrique qui a servi de construction, mais de deux
similitudes de centres distincts, autrement dit de deux configurations

différentes de Thales. Puisque l'on a %:% de la similitude des

AH
triangles BHJ et BAC, et %: B par similitude des autres triangles ABF

HB AH AH+HB AB
et ABD. De sorte qu’en ajoutant, %+ X = ML =

+ =
h AB AB AB AB

. s \ . 1 hb
ce qui par une autre opération , donne (1) a partir de 1= e
A+
+

h b
formule (1) indique en particulier les roles symétriques de h et b, mais
suggere aussi une autre construction, a partir du constat que 2x est en
fait la moyenne harmonique de h et b: il suffit de construire une
longueur au-dela de C et sur le prolongement de AC une longueur CZ= h,
pour en tracant de C une parallele a ZB obtenir le point H comme
intersection avec AB.

1,

32 Je ne peux pas envisager chez ces géométres la présence d’une homothétie qui aurait un
rapport négatif.
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La liberté méme du carré de départ dans la deuxieéme figure, est un
gage que la démonstration figurée est vraiment une preuve par
composition, ou en synthese comme on disait encore. Sans donc qu’il y
ait besoin de supposer le probléme d’abord résolu et de faire analyse.
La similitude joue a plein par une propriété de conservation : un carré
est transformé en un autre carré, et la conservation d’'un « intérieur »
ou d'une inscription du carré dans le triangle se voit aussi bien en
supposant non obtus les angle a la base. La similitude comme
transformation géométrique est précisément celle qui évite l‘analyse,
laquelle requiert de supposer le probleme résolu. Dans la premiére
figure facilitée par la propriété d'un triangle équilatéral, la similitude
pourrait se réduire a celle disons plus classique des seuls triangles HFO
et ECO. Dans la seconde figure, la similitude se voit au sens d'une
transformation géométrique qui est 'homothétie de centre E qui
produit a partir du carré EGDI le quadrilatere nécessairement carré
KLIH. La deuxieme figure, et je devrais dire la deuxieme démonstration
figurée, est un apport de Girard a la premiere figure qui est due a
Marolois33: Girard s’explique. Ce qui prouve suffisamment que le
probléme posé I'a été pour susciter la réflexion, et éventuellement
établir une critique sur les méthodes précédemment utilisées. C’est
sans aucun doute un des avantages du recours a l'histoire que de
rappeler que les mathématiques ne sont pas science de recettes, mais
aussi bien engagement critique sur la nature des preuves fournies.

L’aspect anachronique de la présentation que je viens de faire est-il
génant ? Dans la mesure ou tant d’historiens prétendent qu’il faille attendre

3 Le traité de Marolois parait avec ses Opera mathematica ou (Euvres complétes , avec
des dessins de Vredemann de Vries ("Opera mathematica", ou Oeuvres mathématiques
traictans de géométrie, perspective, architecture et fortification, par Samuel Marolois,
ausquels sont ajoints les fondements de la perspective et architecture, de J. Vredm. Vriese,
augmentée et corrigée en divers endroicts par le mesme auteur, Hagae-Comitis : ex off. H.
Hondii, In-fol. oblong, pl. et front. gr., 1615-16) ; Girard le reprend en 1628-29 (Oeuvres
mathématiques de Samuel Marolois, traitant de la géométrie et fortification, réduites en
meilleur ordre et corrigées d'un nombre infini de fautes écoulées aux impressions précé-
dentes : la géométrie par Théodore Verbeeck,... et la fortification par Francois Van Scho-
ten,... ,/Amsterdam : G. J. Caesius, 1628, 2 parties en 1 vol. in-4° , fig. et pl.). Une seconde
édition du traité a lieu en 1651 : "Opera mathematica", ou Oeuvres mathématiques traictans
de géométrie, perspective, architecture et fortification, par Samuel Marolois, de nouveau
reveue, augmentée et corrigée par Albert Girard, Amsterdam : J. Janssen, 1651, 2 vol. in-
fol., pl. et frontisp. gr.
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le XIX® siécle, sinon méme Felix Klein et la fin de ce méme siécle, pour
concevoir des transformations géométriques en tant qu’opérant dans
I’espace et donc sur des figures entieres en conservant précisément certaines
propriétés. Ce n’est pas parce qu’il y a eu changement de conception
générale sur la géométrie qu’il faut en déduire que plus tot on ne percevait
pas le role de la similitude, un peu comme si les mathématiciens d’autrefois
ne pouvaient comprendre que le niveau du programme qu’on leur assigne !
Reste plutot la question de savoir pourquoi cette preuve du XVII® siécle,
préfigurée par des démonstrations arabes du méme genre, resta enfouie dans
une géométrie pratique qui perdait peu a peu toute actualité a se fixer sur les
seules méthodes géométriques.

Marolois ne donne d’ailleurs pas la formule (1), qui pourrait aisément
s’interpréter en terme de moyenne arithmétique. Le respect de la théorie des
proportions requiert d’autres formulations, par exemple celle indiquant que
x est la quatriéme proportionnelle de 4, A+b, et b, ou encore celle de b, h+b
et h. Mais dites ainsi, quoique suggérant d’autres constructions
géométriques, ce sont autant de formules de type algébrique qui sont
seulement écrites avec des proportions en place des équations de type
polynomial®* Toute différente est ’attitude du mathématicien qui a donné
son nom a I’algébre. Car dans le kitabu 'l-mukhtal\ar fi Uisabi 'l-jabr wa'l-
mugqabalah (Abrégé de calcul par la restauration et la comparaison), celui
que j’écrirai simplement al-Khawarizmi s’était servi a titre méthodologique
du probléme du carré dans le triangle. Pour précisément faire jouer une
notation algébrique, et notamment indiquer une voie qui conduise a la
formule (1). Chez al-Khawarizmi, la résolution consistait a distinguer la
«chose », ou coté du carré inscrit cherché, de ce carré méme (mal).
Forcément, compte tenu de la mise en algebre, le probléme devait étre
suppos¢ résolu, et si I’enjeu de I’analyse était un calcul d’aires, qui
contraignait donc a faire intervenir le carré de la « chose », I’objectif était
I’obtention d’une équation. L’étonnant, et d’abord imprévisible résultat, est
que ce carré disparaisse dans les calculs algébriques menés. Lorsqu’on écrit
effectivement comme équation a résoudre 1’égalité de I’aire du grand
triangle a la somme des aires des trois triangles a laquelle on ajoute 1’aire du
carré, I’aire du triangle du haut retranche un terme en moitié du carré, et en

3% Jean Dhombres, Sull’invenzione delle formule matematiche e delle identita delle notevo-
li, Bolletino dei docenti di matematica, 66, Mai 2013, p. 9-28.
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fait de méme la somme des aires des deux triangles du bas. Ce qui com-
compense exactement le terme en x> provenant du carré géométrique™.

Si ’on constate qu’en faisant usage du théoreme de Pythagore la
méthode d’al-Khawarizmi est basée sur 1’application des aires, une méthode
dont I’origine est jugée bien antérieure a celle d’Euclide, on ne peut que
reconnaitre a 1’écriture algébrique 1’avantage de donner a voir la disparition
du terme carré, et peut-étre méme de la prévoir. Ce n’est pourtant pas que la
présence d’un terme carré éventuel serait a priori une géne pour le calcul
proprement algébrique, mais en 1’occurrence, sa disparition est un moyen
pédagogique. Les commentateurs insistent a juste titre sur le fait qu’al-
Khawarizmi joue I’algebre au sens précis ou son programme est d’atteindre
une équation : il inaugure le genre algébro-géométrique, et le probleme du
carré inscrit le met en évidence.

Faut-il attribuer plusa la formule ? Si c’est bien Descartes qui fit
apprendre a systématiquement prévoir la réduction d’une équation, et aussi
bien que I’on trouve anormal de résoudre par un terme carré ce qui ne
dépasse pas le premier degré pour I’inconnue choisie qui est ici x, il ne s’est
exprimé qu’en 1637. Avec Descartes ’algébre n’était plus la simple
obtention d’une équation, mais jeu sur une structure, celle de 1’algebre
polynomiale qui n’est qu’une toute petite partie du calcul. Il y a en plus la
méthode des coefficients indéterminés. On peut deviner que, dans une
tradition cartésienne, et pour le probleme d’inscription du carré dans un
triangle, on ait abandonné la méthode d’application des aires, pour en venir
a une méthode épistémologiquement mieux adaptée. Serait-ce celle donnée

3 Si Iaire du triangle du haut est évidemment %X(h — X), pour la somme des aires des

deux triangles du bas, il est utile de faire intervenir deux inconnues de plus, y et z , liées
certes par la relation b+y+z= b, et de vérifier ce que j’écris lourdement, mais comme tout
débutant en algebre doit faire.

E(b—(x+z))+ E(b—(x+y)):E(Zb—(x+z)—(x+y)

=2 (2025~ (z+y) =2 2b=x)~(b-x)) = (b-x)
On voit alors bien la simplification opérée :
X X
E(b—h)+ 5(b—x)+x2 =1bh ,

soit
hx+bh= bh.
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par Héron d’Alexandrie ? Pourquoi pas, mais méme en ce cas, rien ne per-
permettrait de considérer le «retour» a un auteur antique comme une
réaction. Car la formule dit au plus une dépendance fonctionnelle de type
homographique en chacune des variables b ou 4.

Dans les dessins arabes sur le probléme, le triangle est isocele. Mais la
symétrie de b et 4 devient une évidence si le triangle choisi est rectangle.
Cette figure du triangle rectangle intervient comme une figure de base dans
le livre classique chinois des Neuf chapitres sur les procédes
mathématiques. Mais si les exemples y sont donnés sous forme
arithmétique, on s’apergoit que la méthode utilisée est celle des aires, a la
facon de al-Khawarizmi et non des proportions. Il n’y a pas d’explication
algébrique, quand bien méme la voie choisie consiste a supposer le
probléme résolu.
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[llustration 16. Explication et figure pour le probleme 9. 29 des Neuf chapitres, dans la
version de Yang Hui en 1261, reproduit en 1993.

Ce probleme se trouve dans le neuviéme rouleau des Neuf chapitres sur
les procédures mathématiques, avec les commentaires anciens de Liu Hui,
un livre portant sur la base (gou) et la hauteur (gu) d’un triangle rectangle et
lié a ce qui sert d’image fondamentale.

On somme la base et la hauteur, ce qui fait le diviseur, Base et hauteur sont
multipliées 1'une par I’autre, ce qui fait le dividende, Et en effectuant la
division du dividende par le diviseur, on obtient le c6té du carré.
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Par contre, le commentaire indique précisément que I’on doit faire une
supposition pour entreprendre le calcul, ce qui est préciser la position
d’analyse. Je donne alors la version de ce probléme sous la forme due a
Yang Hui en 1261 dans son Xiangjie jiuzhang suanfa (Explication détaillée
des procédures de calcul en neuf chapitres), ou ’on voit le jeu sur un
décompte des aires, avec utilisation de couleurs (ici seulement noir et
blanc), selon un procédé assez fréquent qui remplace les notations®.

Soit base 6 bu’” hauteur 12 bu, combien fait le coté du carré inscrit ?
L’explication du probléme (jie ti) se fait avec des petits carrés entiers (ill.
19).

La surface blanche du carré inscrit 16 et les surfaces noires inscrites
16 sont égales. Les deux (triangles) blancs grands et petit et les deux
noirs sont égaux.

Je termine ce voyage autour de I’inscription d’un carré dans un triangle
avec un auteur, John Leslie, avec un exposé qu’il donna en 1821, dans un
Cours de mathématiques, se voulant aussi une introduction a la philosophie
naturelle. Il suffit de lire pour comprendre que la situation est celle de la
similitude, a la facon dont Marolois I’abordait, et avant Klein. Mais 1’auteur
écossais s’acharne a défendre deux opérations distinctes, 1’analyse et la
synthese, dans la mesure ou, par réaction, il ne veut pas parler d’algebre en
géométrie®®. Voild une mathématique des classes bien dogmatique. Et
comme telle sujette au ridicule. Mais, doit-on condamner ce jeu s’il n’est
que destiné a apprendre une discipline du raisonnement ?

36 SRR JLEETYE xiangjie jiuzhang suanfa (Explication détaillée des procédés decalcul en
neuf chapitres), %ff Yang Hui, 1261. Cité d'aprés une réimpression dans Zhongguo
kexue jishu dianji tonghui 1 BIFM2F 7 L FEF ME, Henan jiaoyu chubanshe, 1993, vol. 1,
p. 981.

37 On peut traduire bu par un pas.
3 John Leslie, Geometrical analysis an geometry of curves, in A Course of Mathematics,
W. &C. Tait, Edinburgh, 1821, vol. 2, pp. 15-16.
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PROP, X. PROB.

To inscribe a square in a given triangle.

Let ABC be the triangle in which it is required to in-
scribe a square IGFH.

ANALYSIS.

Join AF, and produce ‘ )
it to mect a parallel to AC B‘""——“——"‘]"
in E, and let fall the perpen- '
diculars BD and EX. G -

Because EB is parallel to / [\
FG or AC, AT : AE :: | A - |
FG:EB(VL.2.El); and AL\ Y

since the perpendicular EK

is parallel to TH, AF: AE: : FH: EK. Wherefore
FG: EB:: FH: EK; but FG=FH, and consequent-
ly (V. 8. and 5. EL) EB=EK. Again, EK, being equal
to BD, the altitude of the triangle ABC is given, and,
therefore, EB is given both in position and magnitude ;
whence the point E is given, and the intersection of AE
with BC is given, and consequently the parallel FG and
the perpendicular FH are given, and thence the square
IGFH.
COMPOSITION.

From B draw BD perpendicular and BE parallel to
AC, make BE equal to BD, join AE, intersecting BC in
I, and complete the rectangle IGFH. .

Because BE and EK are parallelto GF and FH, AE :
AF :: BE: GF, and AE: AF :: EK : FH ; wherefore
BE: GF:: EK.: FH; but BE=EK, and consequently
GF=FH. Itis hence evident that IGFH is a square.

Révolutionner les habitudes culturelles

Je passe justement a la question des jeux, puisque m’y introduit la
remarque précédente sur le travail de Leslie. Jusqu’au début du XVIlle
siecle, le jeu mathématique, c’est-a-dire une activité ludique pour laquelle
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des stéréotypes mathématiques sont engagés (nombres, numérations et
énumérations, équations, combinaisons de situations), se caractérise par
une fixité de type algébrique sur des questions de caractére arithmétique.
Fait référence le plus souvent un calcul modulo un nombre, et on pourrait
peut-&tre dire que la preuve par neuf est typique du jeu disponible. Un
exemple parmi tant d’autres consiste a demander d’écrire deux nombres en
utilisant tous les chiffres entre 0 et 9 une fois seulement, d’additionner et
d’effacer un des chiffres dans le résultat. Le meneur de jeu est capable de
dire le nombre qui a été effacé, aussitot qu’on lui présente ce qui reste.
Voici un autre jeu dit de société. On demande de choisir de té€te un nombre
a trois chiffres, et celui qui a fait ce choix doit, sans rien dire de ses
résultats, doubler le chiffre des centaines et ajouter 5, puis au résultat
ajouter le chiffre des dizaines et multiplier par 10, enfin ajouter le chiffre
des unités : il prononce le résultat. Le meneur du jeu n’a qu’a soustraire
250 pour pouvoir énoncer le nombre qui fut effectivement choisi*’. Une
formule algébrique, lorsque le choix abc a été fait, résume le geste du
meneur.

100a + 10b +c= [(2a+5)5+b]10+c-250.

Et saute aux yeux de qui sait un rien d’algebre la convention méme de
I’écriture décimale, qui est de nos jours enseignée bien avant 1’algébre, et
ce depuis la Révolution frangaise. Pourquoi n’est-elle pas appelée ’jeu” la
parole qui consisterait a dire : “multiplie le chiffre des centaines par 100,
celui des dizaines par 10 et ajoute le chiffre des unités. Tu auras le nombre
cherché” ? C’est, qu’ainsi présenté, le soi-disant jeu coincide avec
I’explication du décimal que retient I’enseignement.

L’enseignant d’aujourd’hui sait que le décimal n’est en rien naturel,
mais il sait que son réle de maitre est de le faire passer pour tel. Il sait que
le décimal est venu a ’esprit des mathématiciens arabes au terme d’une
algébre polynomiale bien maitrisée, alors que le décimal est désormais
rangé dans I’arithmétique et dans un élémentaire du calcul *'. Le jeu de

%% Je suis bien incapable de faire I’histoire de ce jeu, ou plutét de dire quand apparait ce tour
particulier. A-t-il été inventé au XVlIle siecle, alors que Pascal expliquait des questions nu-
mériques en se servant de 1’analogie de 1’heure, donc en faisant un calcul modulo 12 ?

%0 Ce jeu est attesté a la fin du XVI° siécle, lorsque Simon Stevin signale I’avantage de la
numération décimale, et ce qu’elle change aussi bien pour la conception du nombre.

1 L’origine savante du systéme décimal a-t-elle jamais été occultée ?
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société ci-dessus expliqué n’a donc pas un avantage dirimant sur
I’enseignement usuel, et il apporte une complication algébrique. Elle est
jugée mathématiquement inutile.

C’est bien le summum de la mathématique euclidienne présentée dans
ces jeux, et ils ne sont pas du tout attestés dans une pratique de classe. La
géométrie euclidienne est absente dans I’immense majorité des cas, alors
qu’elle faisait le fond de 1’enseignement des mathématiques. De tels jeux
ont-ils pu manifester une innovation bien antérieure, et qui est celle de
I’algeébre ? On le justifierait par les anecdotes qui font trouver I’age d’un
mathématicien au terme de la résolution d’une équation. Je ne connais guére
d’histoire des mathématiques qui ne reprenne la vieille histoire grecque
donnant I’age de Diophante sous forme de rébus, ou plutét disposant
I’histoire sous forme additive de sorte que la mise en algebre soit
automatique. Le récit lui-méme n’est pas jeu, mais enseignement : I’enfance
de Diophante dura le sixiéme de sa vie, et la barbe ne lui vint qu’aprés un
autre douziéme de sa vie, alors il se maria un septiéme de sa vie plus tard, et
un fils lui vint cinq années plus tard, dont le temps de vie fut la moitié

exacte de celle du pére, qui survécut quatre années a son fils (

1 1
gx + Ex +7 xX+5+ Ex +4 =Xx). Je me demande si la résolution purement

arithmétique de la devinette n’était pas au fond celle attendue, a savoir
trouver un plus petit commun multiple aux dénominateurs mentionnés au
cours du récit, 6, 12, 7, et 2, soit 84, et vérification qu’avec 84 on disposait
de la solution. L’algebre apporte la vérification qu’il ne peut y avoir aucun
autre age pour Diophante. Mais le seul fait de raconter avec des indications
précises, signale dans un cadre d’enseignement que la réponse est possible,
unique, parce que toutes les indications sont pertinentes et qu’il n’en
manque aucune. Prendre la résolution de la devinette comme un jeu
empécherait de comprendre pourquoi la résolution est effectivement
possible en suivant strictement toutes les données de I’énoncé. Ceci est
I’opinion que je me fais pour expliquer l’absence de jeux vraiment
algébriques dans les jeux dits classiques.

Que I’innovation qu’est 1’algebre puisse avoir été connue du public par
les jeux, reste une question historique et elle attend une étude plus précise ;
non pas un développement nouveau sur 1’origine de ’algebre, car c’est un
des themes les plus courus de I’histoire des mathématiques, mais I’étude de
la forme de sa diffusion dans 1’enseignement, et la reconnaissance par la
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culture que 1’algebre apportait une nouvelle forme de pensée que 1’on pou-
pouvait jouer.

I11. 17. Une lecon de géométrie analytique de Descartes dans un cadre mondain.

Ce qui fait vraiment histoire pour le moment, c’est qu’a partir du XVIle
siecle, toute mathématique nouvelle n’entraina pas composition de
nouveaux jeux (algebre des polyndmes, logarithmes, géométrie des courbes,
enveloppes, caustiques, méthodes infinitésimales ensuite, calcul différentiel
et intégral plus tard). Du point de vue de l‘historien, la richesse d’un
répertoire de jeux anciens tient plus a 1’habillage rhétorique, et a la
présentation du jeu qui renseigne sur des habitudes sociales ou des
représentations, et trés peu au substrat mathématique. Aujourd’hui, tout a
changé en ce que les jeux mathématiques utilisent bien plus de disciplines
mathématiques, et qu’une discipline mathématique méme est née avec la
théorie mathématique des jeux#2. C’est cette discipline, avec sa recherche

211 me semble que dans leur grande majorité les jeux mathématiques actuellement connus
ne soient pas antérieurs au XIX® siécle, et Sam Loyd parait un fondateur. Son successeur,
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des stratégies gagnantes, qui a fait entrer les jeux mathématiques dans
I’enseignement ; on peut aussi penser que des jeux mathématiques indépen-
indépendants de 1’enseignement ont pu, au XIX® siécle, conduire a cette
discipline. I1 me semble qu’en tout cas c’est avec le XIX® siecle que peut
commencer une histoire proprement mathématique des jeux mathématiques.

Puis-je alors considérer comme un jeu le probléme dit des trois cercles,
qui avait été¢ splendidement reconstruit en 1600 par Victe selon une
progression successive de problémes et par une remarquable utilisation de la
similitude. Dans un livre perdu, Apollonius avait expliqué comment trouver,
trois cercles étant donnés dans un plan, un cercle qui leur soit tangent a tous
les trois. Surprend la sincérité avec laquelle Descartes le traite, car bien loin
de faire valoir le calcul algébrique avant toute autre chose, et concédant
qu’il lui suffit d’avoir compris le niveau algébrique que le probléeme

requiert, il donne d’abord a voir une fausse bonne piste.
Mais ce chemin me semble conduire a tant de multiplications superflues que
je ne voudrais pas entreprendre de les déméler en trois mois. **

Descartes réfléchit a haute voix a 1’intention de son illustre éléve, la
princesse Elisabeth, fille de Frédéric V, ce roi de Boheme d’un hiver. Et
manifeste I’avantage a priori de la géométrie repérée par des axes
orthogonaux.

J’observe toujours, en cherchant une question de géométrie, que les lignes
dont je me sers pour la trouver, soient paralléles, ou s’entrecoupent a angles
droits, le plus qu’il est possible ; et je ne considére point d’autres théorémes,
sinon que les cotés des triangles semblables ont semblable proportion entre
eux, et que, dans les triangles rectangles, le carré de la base est égal aux
carrés des cotés. **

Il indique que son analyse n’est pas sans fin, qu’elle permet justement de
«ne plus passer outre ». Car suffit la considération du degré du probléeme
considéré, ici deux, donc d’établir que le probléme géométrique, lorsque
possible, est résoluble a la régle et au compas. Du moins si on se réfere a

I’ordre qu’il a su établir dans sa Géométrie.
Enfin, retournant a 1’une des trois premicres équations, et au lieu d’y ou de z
mettant les quantités qui leur sont égales, et les carrés de ces quantités pour yy

Edouard Lucas, dans ses Récréations mathématiques (Paris, 2e édition, Gauthier-Villars, 2
vol. 1891), présente les jeux nouveaux sous une forme d’explications par des théorémes, et
crée véritablement le genre du jeu mathématique comme enseignement.

L ettre de Descartes a la princesse Elisabeth, novembre 1643, (Euvres de Descartes, tome
IV, p. 39, orthographe modernisée. Référée par Lettre a Elisabeth.

* Lettre a Elisabeth, p. 38.
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et zz, on trouve une équation ou il n’y a que x et xx inconnus ; de fagon que le
N . . 4
probléme est plan, et qu’il n’est plus besoin de passer outre. *°

Descartes succombe quasiment toujours a son esprit indépendant et
altier, pour indiquer sur le champ que c’est la géométrie elle-méme qui est

un jeu, et non I’algebre qui conduit la solution
que le surplus, qui consiste a chercher la construction et la démonstration par
les propositions d’Euclide, en cachant le procédé de 1’Algebre, n’est qu’un
amusement pour les petits géométres, qui ne requiert pas beaucoup d’esprit ni
de science. *°

Newton répondra vingt quatre ans plus tard au premier livre de son
opus magnum, les Principia mathematica philosophiae naturalis, et
directement sur le probléme des trois cercles, en montrant sa possible
résolution a la régle et au compas, n’utilisant pas les opérations de 1’algébre
et ses €équations. Car Newton réduit la construction a des droites associées
géométriquement a des hyperboles. Il ne se sert que des proportions, par
exemple pour représenter une droite, justement la ou Descartes les
remplagait par des €quations polynomiales. Cet exemple est sans doute le
plus beau lieu ou ait pu se discuter le role des proportions dans la pensée.
Comme Descartes, Newton dans son « Arithmétique universelle » publiée
en 1707 seulement, et donnant une autre construction du probléme des trois

cercles, exagere radicalement sa position.

Une équation est, en général, I’expression d’un calcul arithmétique, ou 1’on
prononce que quelques quantités sont égales a d’autres. Une équation ne peut
étre géométrique qu’autant que les quantités qu’elle contient sont
géométriques, telles que lignes, surfaces, solides ou proportions. C’est par
une innovation des modernes qu’on y a fait entrer des multiplications, des
divisions, et d’autres calculs de cette espéce ; et cette innovation n’est pas
heureuse ; elle répugne aux premiers principes de la science. ¥/

Ici, 11 m’importe d’analyser précisément la facon de travailler de
Descartes avec la méthode des coordonnées pour le probléme des trois
cercles, dont je dois rappeler qu’elle ne nous est connue que par ce qu’il en
donne a lire dans ses lettres a Elisabeth. Mais il m’a semblé qu’a I’encontre
de tant de commentateurs, je ferai mieux comprendre I’originalit¢ de

* Lettre a Elisabeth, p. 42.
% Lettre a Elisabeth, p.
47 [saac Newton, Arithmétique universelle, trad.. fr. Noél Beaudeux, Paris, 1802.
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Descartes, jusque dans sa portée didactique, en donnant en premier la facon
de Newton dans les Principia.

L
llf !' \\‘ :

R RN 3

W O \,‘\\

75
AR P
AN R

I11. 18 et 19. Figure donnée par Newton au livre I des Principia, en justification du lemme

XVI, dans une section consacrée au role joué par les foyers dans le travail sur les courbes

coniques (éd. originale, p. 67). Figure utilisée par Descartes dans sa correspondance avec
la princesse Elisabeth pour le probléme avec trois cercles deux a deux tangents.

o .
/
£y I| i \

Je repére par la figure donnée par Descartes, supposant tout comme
Newton le probléme résolu, et exploitant la situation des trois cercles
donnés, de centres respectifs 4, B et C et dont il est pratique d’appeler a, b,
et ¢ les rayons respectif. L’objectif devant étre d’exprimer a partir de ces
données le centre D du quatrieme cercle et de son rayon que Descartes note
x a la suite de ce que lui proposait la princesse. On voit aussitot les relations
AD= x+a, BD= x+b et CD= x+c, du moins dans la configuration envisagée
pour les tangences dites extérieures des cercles, mais pouvant étre adaptées
en donnant un signe aux rayons. Newton fait disparaitre x, omet les
questions de signe, en exprimant que D est sur I’hyperbole de foyers 4 et B,
dont le grand axe est la différence entre le plus grand et le plus petit des
rayons a et b. Il s’évite d’avoir a décider s’il s’agit de BD-AD ou de AD —
BD. Naturellement, par permutation circulaire, interviennent aussi bien deux
autres hyperboles. L’idée est de remplacer ces courbes par des droites, en
I’occurrence leurs directrices. De fagon précise, sa figure (ill. 18) qui pose Z
en place de D, introduit le point P sur AB, et en pointillés la directrice de
I’hyperbole (courbe dessinée selon ZM), venant orthogonalement en P, et le
point O sur AC, donnant de méme la directrice posée orthogonale a AC. Ces
deux directrices se coupent en 7. Ce sont les proportions, en utilisant
I’excentricité (donnée par le rapport de MN a AB), qui font que P, Q et T
sont effectivement constructibles a la régle et au compas. Le point Z est
effectivement repéré par orthogonalité, a partir des projections R et S sur
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chacune des directrices, et une fois encore les proportions sont utilisées pour
établir que le rapport de ZR a ZS est connu a partir des seules données du
problémes, ce qui en quelque sorte sert d’équation a la droite issue de 7 sur
laquelle se trouve Z. Il reste a déduire la longueur ZT a partir de ces seules
données, ce qui dépend seulement des proportions dans les triangles. Du
moins si ’on y est habitué, plus facile peut-étre si I’on y met de la
trigonométrie, ce que Newton ne fait pas. L’affaire est faite aux yeux de
Newton, qui fait une référence a la reconstitution du probléme d’ Apollonius,
mais pas plus que Descartes ne donne une construction explicite. Sa régle
d’intelligibilité est la simplicité des proportions, explicitant aussi bien des
longueurs (ainsi de la longueur 77) que des directions (la droite 77).

Descartes a pour regle d’intelligibilité les équations, mais précisément
celles-ci ne viennent pas n’importe comment, et on doit prévoir leur
intervention pour acquérir a plus grande simplicité, qui n’est pas un
affichage, mais une recherche. Sans doute contraint par la princesse, qui
veut travailler avec le seul rayon x, Descartes donne d’abord une legon de
calcul, et justement prend appui sur une formule des Metrica de Héron
d’Alexandrie, donnant 1’aire d’un cercle en fonction des trois cotés. Car
I’équation deés lors la plus naturelle, provenant de la vieille méthode
d’application des aires, est celle qui résulte de I’addition des aires des trois
triangles ADB, DBC, DCA, égale a 1’aire de ABC, ces aires étant ainsi
directement exprimables a partir des données. On trouvera bien slr une
équation portant sur x, mais son degré ne signifie rien, car il faudra
supprimer bien des racines carrées, et donc beaucoup multiplier. Tel est le
sens de son premier avertissement.

Dés lors, il propose véritablement la méthode des coordonnées en
rappelant qu’il est judicieux d’introduire d’autres inconnues que x, comme
la position de D. Sit6t dit, sitot fait, et Descartes pose DG=z et DF=y;ila
donc pris le risque d’une rupture de symétrie du role des trois cercles, en
prenant pour axes orthogonaux la hauteur issue de 4 sur la base AC, fixant
donc des valeurs de repérage comme AE=d, BE = e, CE=f. La figure (ill.
19) est remarquablement explicite. A ces trois inconnues, il faut au moins
trois équations. Il parait naturel d’utiliser le théoréme de Pythagore sous sa
forme algébrique, méme s’il fait jouer des carrés, mais encore convient-il de
choisir les bons triangles. Evidemment ils doivent contenir DA, DB et DC,
de sorte que ADF, BDC et DCF s’imposent; surtout des relations de
symétrie entre les carrés de z et y doivent a priori permettre des
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simplifications dans le traitement ultérieur des équations. Tel est le jeu de la
prévision cartésienne.
a’+2ax+x> =d> =2dz+7"+y°

b> +2bx+x* =e> —2ez+y* +7°

A H2ex+x1= 42247007

Tout est joué¢ si 1’on respecte cette fois 1’ordre de résolution de
Descartes, puisqu’en soustrayant la premiere de la troisiéme, on explicitera
z, d’ailleurs sous une forme affine en x a laquelle Descartes a habitué son
fidele lecteur de la géométrie et en soustrayant la premicre et la seconde on
explicitera y, tenant compte de I’expression précédente de z, donc ayant
encore une forme affine en x. Si I’on reporte ces valeurs dans une
quelconque des équations, vient évidemment une équation du second degré
en x. C’est alors qu’il énonce non sans soulagement : « il n’est plus besoin
de passer outre ». Et fustige cette fois, non les géomeétres opiniatres qui

recelent leurs méthodes, mais bien les calculateurs qui n’ont plus a en avoir
Car le reste ne sert point pour cultiver ou recréer 1’esprit, mais seulement
pour exercer la patience de quelque calculateur laborieux.*®

Notre temps en juge autrement qui témoigne d’un « théoréme du cercle
de Descartes »*’. Car ce dernier n’en propose pas moins le calcul & la
princesse, lui suggérant toutefois une simplification des données, en
supposant tangents deux a deux les trois cercles de départ. Il conserve
assurément le repérage orthogonal avec la hauteur. Le calcul moderne, qui
tient mieux compte des signes selon la nature des tangences, écrit deux
relations dont on ne dénigrera aujourd’hui, ni la simplicité, ni I’inefficacité,
ni bien sir 1’¢élégance.

1 1 1 1 1 1 1 1Y
A —F+—F+—+—|=|—+—+—F=—].
a b° ¢ X a b ¢ x

Newton n’a pas obtenu de résultat de cette sorte, etreprochera en
quelque sorte a Descartes d’utiliser le théoréme de Pythagore sous sa
forme algébrique, celle issue comme nous l'avons dit d’une
interprétation de I'avant derniere proposition du livre I des Eléments

*® Lettre a Elisabeth, p.
¥ C’est I’expression de D. Pedoe, On a theorem of geometry, The American Mathematical
Monthly, 1967, p. 627 ; reprise par Coxeter dans the American Mathematical Society
I’année suivante (p. 5).
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d’Euclide, en n’allant pas a ce qui fait la « bonne » interprétation, qui est
celle du livre VI, avec la théorie des proportions et les triangles
semblables. Quoiqu'on pense de tels arguments, Descartes a
certainement réfléchi a ce jeu sur les proportions. Il maintenait, nous
I'avons lu, I'usage du théoreme de Thales, alors méme que la réduction
a des équations faisait disparaitre les manipulations des proportions. Et
restant dans l'ordre algébrique des calculs, il a trouvé une tres jolie
défense dans l'idée d’homogénéité avec I'écriture polynomiale, bref
jouant la cohabitation entre les données et les variables, ou inconnues.
Ce qui se traduit par une écriture comme aaax ou bbxx pour les termes
intervenant dans un polyndome du quatrieme degré : cette homogénéité
devient un moyen de vérification de la qualité du calcul. Dans sa lettre a

Elisabeth, Descartes insiste :

I est bon aussi alors d’observer que les quantités qu’on dénomme par
les lettres, aient semblable rapport les unes aux autres, le plus qu'il est
possible ; cela rend le théoreme plus beau et plus court pour ce qui s
‘énonce de I'une de ces quantités s’énonce en méme facon des autres, et
empéche qu'on ne puisse faillir au calcul, pour ce que les lettres qui
signifient des quantités qui ont méme rapport, s’y doivent trouver
distribuées en méme facon; et quand cela manque, on reconnait son
erreur.>0

Conclusion

En conclusion, je ne veux pas répéter le jeu des réactions. Partant d’un
autre constat, celui d’une révolution de nature culturelle qui sous-tendait le
projet des “mathématiques modernes” : ¢’était celle de 1’éducation de masse
pour laquelle on pensait que la remise en ordre des mathématiques
empéecherait les seuls “héritiers” de benéficier du support familial et du
pouvoir symbolique de la connaissance a 1’ancienne des propriétés dans le
triangle, des démonstrations par polaires réciproques en géométrie, ou des
identités remarquables, etc. Il fallait donc présenter les mathématiques
comme une métaphysique, presque un a priori de la pensée. Parce que porté
par les politiques et les enseignants de mathématiques, ce mouvement
francais s’accompagna de la création institutionnelle des Irems, ces
organismes qui heurtaient de plein fouet le monde universitaire par
I’alliance toujours incongrue, quoique encore syndicalement et donc
politiquement révendiquée, des diverses strates de I’enseignement de la
Maternelle a I’Université, donc incluant la recherche, dérangeant aussi bien

0 Lettre a Elisabeth, p.
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I’Association des professeurs de mathématiques de 1’enseignement public
(APMEP), qui eut la force pourtant de le soutenir grice a des hommes
comme Gilbert Walusinski’'. 1l devait quand méme y avoir une
contradiction entre une autarcie de la discipline pour des raisons de fond, et
la pratique professorale dans les classes qui fait que la mathématique n’est
pas seule enseignée. Je suis sir qu’il y aurait une histoire voisine, mais sans
doute différente en Grece. Mais quoiqu’il en soit, je sais que c’est bien par
crainte de ne pas avoir suffisamment de relais auprés des enseignants de
mathématiques que Stevin n’imposa pas sa réforme décimale, avec sa file de
chiffres séparés par une virgule, le jeu des milliémes ou des milliers,
apparue assez soudainement en Europe a la fin du XVI° siécle dans La
disme. Le petit livre parut en 1585 a Leyde™, porteur aussi bien de la
numération binaire illimitée dont jouent nos ordinateurs.

Rares, treés rares sont les chercheurs tels Marcel Granet pour la Chine
ancienne, qui ont su exprimer le jeu numérique et combinatoire, donc
mathématique, dans ’expression des mythes dominants d’une civilisation®.
Et on n’a peut-étre pas fait pour I’Europe 1’analyse culturelle du réle de la
fraction, s’opposant au décimal. Qu’ajoute-t-on quand, a la maniére de
Fernand Braudel, on dit la réforme décimale favorisée par le mouvement du
trés long terme de la quantification et de la pratique bancaire ? La difficulté
est certes que les deux rythmes, celui de I’invention mathématique et celui
de la marchandisation, ne battent pas a 1’unisson : le décimal, déja connu
par exemple dans le monde arabo-musulman a partir de pratiques
polynomiales, sera par ailleurs mal regu en Europe par ceux pour qui il
serait objectivement de la plus grande utilité**, et il faudra une loi en France
pour I’imposer a tous deux siecles plus tard. C’est la loi du systéme

3! Son réle a été mis en valeur par Eric Barbazo dans sa thése soutenue 4 ’'EHESS en 2009,
L’APMEP de 1910 a 1970. Voir Eric Barbazo, Pascale Pombourcq, Cent ans d’APMEP,
brochure de I’APMEP, n° 192, 2010. Des textes plus fouillés en sont issus aujourd’hui.
Voir aussi un témoignage de 1’inspection générale, Pierre Legrand, Dans la tempéte des
maths modernes, in Jean-Pierre Rioux, Deux cents ans d’inspection générale, Paris, Fayard,
2002, pp. 287-305.

*? La Disme, un livre qui est inclus dans L Arithmétique de Simon Stevin de Bruges, Chris-
tophe Plantin, Leyde, 1585. Le texte a souvent été réédité a ['usage des écoliers. Mais je
crains qu’il soit d’emblée difficile de le trouver sur le Net.

>* Marcel Granet, La pensée chinoise, Paris, 1934, réédition Albin Michel, Paris, 1968.

> Les rétifs au décimal, alors que les banquiers I’adoptent pour les tables d’intérét, furent
d’abord les universitaires (alors méme que cela servirait a imposer 1’algébre dont ils savent
les avantages), mais les astronomes aussi qui gardent le systéme sexagésimal.
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métrique décimal, avec sa kyrielle des millimeétres ou kilométres récitée de-
depuis 1’école primaire ; on I’épinglera sous 1’adjectif « républicain »,
preuve s’il en est qu’une réforme mathématique joue a tout le moins sur les
formes de représentation d’une société. A 1’époque, celle des Montagnards
et des Girondins, on pensait que ce systéme avait quelque valeur morale en
permettant a tous de juger des quantités, justement, universellement et
uniformément. La réaction, il faut le rappeler, est dans [’appellation
anglaise, imperial, pour les measures restées non décimales jusque dans la
seconde moitié du XX° siécle, et donc symboliquement jusqu’a la fin du
systéme impérial des colonies™. Mais ce systéme de pence, de shillings et
de pounds, sans parler des crowns, n’a-t-il pas un effet particulier, celui de
protéger le champ marchand ? Des pédagogues ont alors prétendu qu’il
incitait les gens a penser mathématiquement par la difficult¢ méme du
systéme, en comparaison de la facilité du décimal ! Voila un exemple méme
de pensée réactionnaire, vraisemblablement nationaliste. Elle n’en mérite
pas moins I’attention du didacticien et du psychologue.

Par sa volonté d’étre scientifique, dans son observation d’une classe ou
de I’apprentissage des notions mathématiques, la didactique se condamne,
comme bien des disciplines mathématiques elles-mémes, a une autarcie. J’ai
essayé, par des exemples anciens, et tous ne dépassant pas le niveau des
¢tudes secondaires, avec 1’algébre ou la similitude pour le carré inscrit dans
un triangle, de montrer que les changements, dans les classes comme dans la
recherche, obéissent aussi a des facteurs extérieurs, que ce soit avec la
vogue du numérique a 1’age de I’exploitation des grandes découvertes, ou de
I’apparition du calcul algébrique comme nouvelle forme de logique
explicative. Le dire ainsi n’est pas prétendre donner la raison sociale ou
idéologique de ces influences, mais en ne les éludant pas, en évitant
d’affirmer que les mathématiques sont entieérement autonomes dans leurs
changements, en parlant méme de réactions, de permettre une
compréhension du mode de fonctionnement des mathématiques et de leur
enseignement.

> Jean Dhombres, "Mesure pour mesure, universel contre régional : le systéme métrique
comme action révolutionnaire", in A. Jourdan, J. Leerssen, Remous révolutionnaires : Re-
publique batave, armées francaises, Amsterdam, 1996, pp. 159-199 ; Jean Dhombres, Ré-
sistances et adaptations du monde paysan au systeme métrique issu de la Révolution : les
indices d'évolution d'une culture de la quantification, in A. Croix, J. Quéniart (éd.), La cul-
ture paysanne (1750-1830), Annales de Bretagne et des Pays de la Loire, 100, n°4, 1993,
pp. 427-439.
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Abstract
I will look at Mathematics from Past to Present to Future. As each of us
has a different and incomplete knowledge of each of those, I will employ the
so-called case-studies approach, selecting key examples to illustrate and
from which to learn. The narrative will also include some of my personal
experiences. I will conclude by advancing a new mathematical ideal:
TriMathlete. For such mathematical individuals, the future is bright indeed.

1. Introduction

This paper is an elaboration of my Keynote lecture for the Hellenic
Mathematical Society at Veroia, Greece in November 7-9, 2014. I had
visited Veroia previously in 2011 and 2012 to lecture in the Web Science
Master Course. I was especially surprised and delighted in 2011 when two
students on their own initiative organized a private visit to the nearby
recently uncovered tomb of King Phillip II of Macedonia, father of
Alexander the Great. It was quite spectacular. One enters the earthen
tumulus to find a fantastic hidden world of undesecrated golden caskets,
delicate crowns, and unique tomb wall paintings.

Greece is the cradle of mathematics and of scientific inquiry. The two
are not the same, and a tension already present from the beginning continues
to this day. A central tenet of this paper is that the future is bright for
mathematicians who can overcome that tension.

Because the general topic of the future of mathematics is so vast, I will
rely on a few key “case studies” that have caught my attention over the

HMS i JME, Volume 6. 2014 (79-93)



80 Karl Gustafson

years to assist in making my points. To bring these to life, some of my own
experiences will be woven into the narrative. I commit to making every
effort in this paper to refuse to indulge in rhetoric or submerge the reader in
philosophy.

As in my lecture, the following sections we take up in order are:
Mathematics, the Past, the Present, the Future; The Problem of Dogma
illustrated by a case study from my own institution; and Conclusions,
including a proposed new ideal. In this paper I will not discuss my
recommended solutions to the general institutional problems, although for
those I do have some potential remedies.

2. Mathematics

Contemporary philosophers often raise the question: Was mathematics
created or discovered? Of course this matter goes back at least as far as
Plato, who would argue in favor of the latter. A good example is the 1995
Changeux-Connes debate [1]. I discussed that debate in [2, Section 8] from
the standpoint of free will versus determinism. Going beyond that issue, I
concluded, “In sum, neither of the debaters can escape their own limited
experience base and so their opinions and positions are automatically
prejudiced.”

Nonetheless we must establish some guidelines for our words here. 1
shall take Mathematics to include all three of its aspects identified in my
title, namely: Pure mathematics, Applied mathematics, and Reality
mathematics. Rather than impose constraining definitions, 1 prefer to
differentiate by means of descriptors. Pure mathematics for example
connotes definitions, Applied mathematics connotes equations, and Reality
mathematics connotes science. Another set of descriptors could be,
respectively, proofs, solutions, and larger societal value. Still another set of
descriptors could be, respectively, single-disciplinary, inter-disciplinary,
multi-disciplinary. I will further develop this parsing of mathematics, and
correspondingly mathematicians, in this paper. You can then choose your
own sets of differentiating descriptors as you progress through reading. Or
you can just sit back and consider your colleagues and pretty well place
each of them with enforced one-bit precision into one of these three classes.
Of course we could go to second level descriptors and conjunctions and
endlessly finer Venn diagrams, and then even get lost into semiotics.

The point, however, is to begin a conversation about the immediate
future of mathematics and, as a corollary, of mathematicians. To do so, |
have looked at Mathematics in three historical periods. The Past takes us
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back to you, the Greeks. The Present I have chosen as encompassing the
Twentieth Century, up until now. The Future takes us forward into the
Twenty-first Century.

3. The Past

In the Fall of 1980, Carl Sagan presented a thirteen-part television
series called Cosmos [3], which absolutely captivated the American public.
That was also the political season that saw Ronald Reagan charm his way
into the presidency of the United States of America and thereby pave the
way for his Star Wars initiatives. It was also the year in which I confronted
the Mathematics Department at Colorado with its need to revive our
dormant Ph.D. program in Applied mathematics.

I still remember Episode 7 of Cosmos: The Backbone of Night. That
phrase was used by the Kung Bushmen of the Kalahari desert for the Milky
Way, as their explanation for what holds up the sky. However, most of
Episode 7 is Sagan’s tale of how scientific inquiry and mathematics
originated in Greece in the 6™ to 4™ centuries B.C. You can read Episode 7
online via a number of sources.

When this episode first aired on November 7, 1980, I was struck
memorably by how Sagan presented the issue of the tension that exists
between abstract thought and scientific technology. He portrayed Theodorus
as a master engineer, exemplifying the great science of the Ionians. In
contrast, he portrayed the Pythagoreans and Plato as believers in Nature to
be seen by pure thought. Sagan then took sides and accused the
Pythagoreans of using the dodecahedron as a mystical device to advance
their own political power. He continued further and argued that their
extinguishing the light of experimental science, coupled with the later
restricting policies of Christianity, inhibited scientific progress for 2,000
years, until Kepler and Galileo entered the scene.

There are many interesting observations in Sagan [3] that give great
credit to many Greeks for effectively lost original scientific ideas that had to
be rediscovered or recreated later. As to the politics, I checked a standard
reference [4] and did not find any major discrepancies in Sagan’s account.

Recalling this episode from Cosmos brings to mind a more recent
article regarding Aristotle. Michael Rowan-Robinson [5] defends Aristotle
against the attacks nearly 2,000 years later by Galileo and others. As
everyone in this audience knows, Aristotle was a student of Plato and was
brought to Macedonia by King Phillip II to tutor the young Alexander. In
the same year, 336 B.C., that Phillip was assassinated and Alexander
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became King, Aristotle transferred to Athens and set up the Lyceum.
Although the Lyceum would ultimately differ from Plato’s Academy, which
emphasized a rather elite view of knowledge, Aristotle followed the same
tendencies and looked to metaphysical reasoning to discover Nature’s laws.

Rowan-Robinson naturally brings his own conditioning and prejudices
to his findings. He is an astrophysicist. I found his cut “...mathematicians,
who love to imagine that their ideas represent some underlying reality about
the universe” quite amusing. Aristotle is defended for his accounting for a
real, viscous, frictional, velocity-driven world, whereas Sir Isaac Newton’s
later contribution was to bring in acceleration.

The noted physicist Yuval Ne’eman [6] chose to attack the thesis of [5].
He argues that the Pythagoreans had already worked out the harmonic
nature of a vibrating string with fixed ends. He goes on to postulate that as
the beginning of quantum mechanics. I find that quite a stretch—that
classical music is quantum mechanics. No matter. Then Ne’eman goes off
on an attack on the Bible and the Koran. There Sagan [3] would likely agree.

I found Ne’eman’s take interesting for another reason. By chance (I am
in the same volume) I was aware of his article [7] in the proceedings of the
XXII Solvay Conference on Physics held at Delphi. There he attacks both
irreversibility models in quantum physics and non-unitarity in quantum field
theory. On the other side, he also again asserts the damage to scientific
progress caused by the dogmatism of the Christian, Muslim, and Jewish
religious institutions during the Dark Ages.

What are we to make of all such argumentations, all such debates? In
my recent autobiography [8] I formulate a principle that, notwithstanding
politicians’ standard advice to address only issues, and not motivations, if
you want to better understand what is really going on in any debate, it is
indeed useful to discern the underlying motivations, and if necessary, bring
them to the surface. Among scientists and mathematicians, beneath the
rhetoric is often a compulsive seeking of recognition for themselves or for
the scientific persuasion within which they reside.

Ne’eman has been generally credited with key parts of the standard
model, but was not included in the Nobel Prize in Physics which went to
Murray Gell-Mann in 1969. Irreversibility contributed to the Nobel Prize in
Chemistry for Ilya Prigogine in 1977. Non-unitarity in quantum field theory
was part of the Nobel Prize in Physics for Steven Chu in 1997. A second
motivating factor is that Ne’eman’s lifelong work on the standard model,
with all its symmetries, preconditions his position to be against departures
from the (mathematical) beauties of unitarity-based physics.
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We cannot leave Greek mathematics without mentioning Archimedes.
According to the noted historian E.T.Bell [9], Archimedes was one of the
three greatest mathematicians of all history, along with Newton and Carl
Friedrich Gauss much later. There is no need for me here to go into all of
Archimedes’ contributions to science, engineering, and mathematics. Nor to
attempt here any detailing of the contributions to physics and mathematics
of Newton. Nor all of those of Gauss, who is sometimes considered the
foremost of all mathematicians.

However, as an amusing and instructive final case study for this section,
I do wish to refer to an account in Bell’s famous book, notably [9, pages
238-242] in his chapter on Gauss. Bell states, “Probably all mathematicians
today regret that Gauss was deflected from his march through the darkness
(on Fermat’s Last Theorem in number theory) by ‘a couple of clods of dirt
which we call planets’—his own words—which shone out unexpectedly in
the night sky and led him astray.” Bell deplores the fact that Gauss found
more intriguing the problem of computing the approximate orbits of the
just-discovered dwarf planets Ceres and Pallus. Somehow Bell seems to
forget his passage just above where he quotes Gauss as saying, “But I
confess that Fermat’s Theorem as an isolated proposition has very little
interest for me, because I could easily lay down a multitude of such
propositions, which one could neither prove nor dispose of.” Bell ignores
Gauss’s stated opinion that pure mathematics was not important enough to
deserve continuing support from the Duke of Brunswick. Through his
results in astronomy, Gauss obtained a permanent professorship in
Gottingen. Moreover, from that work Gauss gave us the method of least-
squares approximation, from which came the all-important Gaussian bell-
shaped probability distribution.

Bell was a very prolific research mathematician and writer and clearly a
romantic, and I admire his great book with its forceful opinions which
brought alive to several generations the history of mathematics. But his
lifelong research interest in number theory surely conditioned and therefore
influenced his judgments. Later [9, p547] he similarly disqualifies Henri
Poincaré for pure mathematical greatness because of his interests in
mathematical physics.

I conclude this section by forcing myself, freely acknowledging the
conscious and unconscious conditioning of my experiences, to select, to
one-bit precision, representative antiquity Greek mathematicians for my
three classifications of mathematics. For Pure mathematician I choose
Pythagoras, e.g. for his emphasis on proof; Theodorus as Applied
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mathematician, e.g. for his engineering inventions; and Archimedes as
Reality mathematician for his broad contributions to science as well as to
mathematics. You do not need to agree with these assignments and you can
make your own choices as you like. We are all mixed states.

4. The Present

The dominance in the Greek era of axiomization and proof over
application and rational experimentation was of course not absolute, and it
actually dimmed as Christianity overwhelmed that part of the world and
replaced scientific inquiry with doctrines of religious faith. The Islamic
culture in its enlightened period brought mathematics along for a while, and
then in the Sixteenth Century the modern Scientific Revolution could no
longer be stopped. Most of classical mechanics with its accompanying
mathematics developed roughly in the period 1600 to 1900. In that sense,
physics, past and present, if mathematical and directed at important real
tangible problems of societal need or interest, is an example of Reality
mathematics. I can count at least 18 of Bell’s [9] 28 men of mathematics
who were seriously occupied with Reality mathematics of one kind or
another, usually physics, sometimes probability. One point to be made in
this paper is that the arenas for fruitful Reality mathematics are these days
far more plentiful, and growing.

I will take the Present to begin about 100 years ago with David
Hilbert’s great address in 1900 to the Paris International Mathematics
Congress, in which he outlined twenty-three important problems/tasks for
mathematicians. His sixth problem postulated the axiomization of most
parts of physics. This address of Hilbert constituted an important revival of
the importance of axiom and proof in mathematics.

I have sometimes wondered if Hilbert was partially motivated by his
frustration in trying to compete with the more intuitive physicists, such as
Poincaré and Albert Einstein.

Along came Kurt Godel and his 1931 proof that, for certain logical
axiomatics, Hilbert’s demand for internal consistency implies unavoidable
incompleteness in the propositions that can be treated. Then came Alan
Turing’s 1936 unpredictability of algorithmic halting time. Gregory
Chaitin[10] followed with his Omega theorem, which places randomness
and even subjectiveness at the very foundations of mathematics. See my
discussion in [2].

Following World War II, the Bourbaki [11] blossomed in France with
their desire to build a monolithic mathematics untainted by any Applied or
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Reality mathematics. One of my colleagues in South America complained to
me years ago that the influence of and the young professors sent there by the
Bourbaki destroyed mathematics in South America for generations.

Applied mathematics as a profession, beyond the traditional British
kind of classical mechanics, arrived a little later, especially in the 1960s as a
result of the advent and rapid development of electronic computers. The
Cold War also helped, as I recount in [8], where you will find that I think
the not-much-later evicting of Computer Science from most departments of
mathematics was one of the great errors of the American mathematical
community during the 1970s. As a result, mathematicians and others with
significant interests in computer science had to form their own departments.
A lot of Applied mathematics and Reality mathematics is being carried out
in those Computer Science departments these days. At the University of
Colorado, our Pure and Applied mathematics departments appear to be
static or shrinking while the Computer Science department continues to
grow.

It should be remembered that the great power of the method of rigorous
mathematical proof was that, in antiquity and much of the Past, it was the
only way to try to know the truth. We now have much better experimental
facilities, and enormous computing power for simulation. For example,
Monte Carlo simulations, although not rigorous proofs, enable a new “way
of knowing” for many situations for which rigorous analysis is simply not
feasible. And sometimes, combined with algebra or analysis, computing
power has been harnessed to actually provide a rigorous proof of an
otherwise unattainable proposition, by consideration of a large but finite
number of cases. The solution of the four-color problem is a well-known
example.

This brings to mind an incident about twenty years ago when a
colleague who specialized in mathematical foundations caught me in the
hall and asked me incredulously ,“Have you read that article by John
Horgan?” I had not. He was referring to [12], The Death of Proof. Horgan
had seized upon the completion of the 200-page proof of Fermat’s Last
Theorem by Andrew Wiles (with the help of others) as a sort of last-gasp of
Pure mathematics, as it ran against all the other needs of modern
mathematics for applications and for use with computers in solving real-
world problems. I have just gone back to read [12] and Horgan interviewed
many noted mathematicians and thereby brought out a lot of information
and opinions. He is very good at probing until he gets the quotes he wants.
Carried away with his notoriety gained from [12], he went on to write [13]
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The End of Science. Perhaps he was inspired by the slightly earlier 1992
book [14] by Francis Fukuyama, who wrote about the end of everything.

It is far too easy to be a naysayer. Shortly after Fukuyama’s book [14]
came out, Professor Ilya Prigogine invited me to lunch one day in Brussels
and asked me what I thought about it. I quote from my account in [15]. “I
had read the book and told him I didn’t appreciate anyone, like Fukuyama,
who claimed to have such ‘final answers’. To which Prigogine replied, not
only that, but Fukuyama was completely wrong. Rather than society having
reached some final shape, in fact human history was just beginning. Ninety-
five percent of the world’s population wouldn’t even know what Fukuyama
was talking about, as their lives still operate on a much more basic level.”

It seems to me that physics is entering a new era. The new physics, with
dark matter and dark energy comprising most of the universe, is just
beginning. We still don’t understand gravity. Quantum mechanics works but
we do not understand it. The science of our minds is barely underway. Cell
communication in biology, the role of proteins in regulating our DNA and
RNA in genetics, the new microbiology of the bacterial component of our
bodies, all are exciting new fields of science. Both with and beyond its key
role in algorithmic simulations, mathematics will find many new challenges
in these arenas. And also in unexpected arenas. Look at Google: Its
PageRank algorithm went back to Markov processes and the old numerical
power algorithm for the computation of the first eigenvector, and created an
entirely new information industry of great societal and commercial impact.

Pure mathematics, because of its inherent beauty and intrinsic structure,
will be with us for a long time. In a sense, it is art. The pertinent question, it
seems to me, is whether it should be allowed to continue to dominate the
politics and hence the make-up of most mathematics departments; and if not,
how much of it should be funded?

In the last 100 years Mathematics has become a victim of its success.
Much of it is now taught and practiced by non-mathematicians in areas from
engineering to finance and even in the social sciences. Much like the rapid
recent spreading of the English language over all continents, mathematics
has become the lingua franca of the scientific world. It is more and more
regarded as just a fact of life. And it is seen as a tool. There is not much
interest among the general public in spending large sums pushing ahead on
very technical mathematical problems for their own sake. We need English
teachers and we need Math teachers. That is the public view.

Here are three selections for representative outstanding Pure, Applied,
and Reality mathematicians for the Twentieth Century. I will stay with
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Hilbert for Pure mathematics, especially for his 1900 formulation of his
versions of it that influenced much of the first half of the century’s
mathematical preoccupations. Any choice of representative for Applied
mathematics is more problematic since so many work in their own
specialized fields. Let me just pick Andrei Kolmogorov for probability and
other Applied mathematics. I nominate John von Neumann for best Reality
mathematician, as he went from pure functional analysis to quantum
mechanics to economics to pioneering computer science. His premature
death in 1957, perhaps as a result of his exposure to radiation at Los Alamos,
was certainly unfortunate. One cannot help but wonder to what else might
he have turned?

5. The Future

The future for mathematicians is bright. For one thing, it is regarded as
interesting and remunerative work. 7ime Magazine is among sources that
have placed mathematics within the top ten best jobs. One of my colleagues
told me we were placed first. I did a little checking and found [16] that we
were placed third in 2011, with median earnings of $98,000 per year. To be
there, we were combined with Computer Science. Above us were petroleum
engineers and pharmaceutical scientists. These conclusions were pulled out
of a study by the Georgetown University Center on Education. The criterion
seems to have been strictly monetary.

Further browsing as I checked this propaganda I had been hearing
brought me to a 2014 Wall Street Journal article [17]. Here, a job-search
website, CareerCast.com, named mathematician as the best occupation of
2014. “Math skills unlock a world of career opportunities,” the CareerCast
publisher states. Statisticians were ranked #3, actuaries #4, and computer
systems analysts #8. Mathematics as a field is projected to grow 23 percent
in the next eight years. And the scoring method that yielded these happy
outcomes was based upon four attributes: competitiveness, salaries, growth
potential, and stress factors. Tenured university professors came in #2, but
at $68,970, with the lowest annual salary of the top-ten rated professions.

In 1977 a colleague and I looked at the rapidly contracting academic
market for our own pure mathematics Ph.D.’s and started teaching
numerical analysis and optimization. In the 1980’s, at the behest of our
Engineering College, I moved heavily into computational fluid dynamics.
For five years, 1988-1993, I was the only mathematician in a seven-
department $22 million NSF engineering center at the university devoted to
optoelectronic and quantum computing. I produced numerous Ph.D.’s in
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mathematics and the engineering sciences who have had very successful
careers at Boeing, Lockheed-Martin, Silicon Graphics, U.S. Geological
Science, Seagate Technologies, in ocean modeling, and in similar industries.
In the last twenty years I have taught Derivatives and Risk finance and have
produced two Ph.D.’s for those enterprises. Only a few of my 21 Ph.D.’s
have gone into academia.

We started an Actuarial Sciences and Quantitative Finance
undergraduate certificate program the University about twenty years ago. |
steer promising undergraduate mathematics students into that program,
which of course requires that they also take a number of courses from the
Business School and from the Economics Department. Invariably these
students pass one or two of the Actuarial Society exams and are offered
good jobs. In addition to demonstrated mathematics and finance expertise,
good people-skills, and a true interest in meeting new professional
challenges, are also requisite for success in such careers.

These positive career stories bring into better focus my distinguishing
of Reality mathematics from just Applied mathematics. Often Applied
mathematicians remain in one specialty their whole lives. Reality
mathematics requires more. In particular, you must master at least one
partner field until you are as good as those who work solely in that field.
You must become as competitive in Finance as those who are straight from
Business schools. You must understand aerodynamics better than most
engineers. You must become one of them. If it be physics, it may take you a
lifetime.

One of my colleagues likes to point out that in the 1960’s, when he and
I obtained our Ph.D.’s in mathematics, there were 300 Ph.D.’s produced
annually and 500 good tenure-track academic positions in the United States.
Now there are 1500 Ph.D.’s produced annually and still 500 good tenure-
track positions. Although the number of Applied Ph.D.’s has been increased,
the production of Pure Ph.D.’s continues unabated. Why is that?

Part of it is just cloning. Pures produce pures. Another is cost. After all,
four-year colleges are looking for mathematics teachers and not world-class
interdisciplinary and  multidisciplinary ~ experts.  Also,  because
mathematicians have been given a rather unique training in rational and
critical reasoning, that niche is marketable and they all seem to be valued
enough to find good jobs somewhere. And I have noticed that most of our
graduate students are very computer literate.

At the undergraduate level in the United States, the government
agencies are pouring money into STEM: Science, Technology, Engineering,
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and Mathematics. Not waiting on mathematics and education departments,
engineering schools have jumped in, creating new programs to train future
high school teachers who will be exposed to all four components of STEM.
Here is an excerpt from a typical NSF funding solicitation that today came
in to my email, for an Enriched Doctoral Training in the Mathematical
Sciences. “The program will support efforts to enrich research training in
the mathematical sciences at the doctoral level by preparing Ph.D. students
to recognize and find solutions to mathematical challenges arising in other
fields and in areas outside today's academic setting.”

David Mumford and I were both lecturers at two conferences in
Vietnam in 2005, and I was surprised at learning of his abandoning his work
in algebraic geometry (for which he was awarded the Field’s Medal) for a
new career in patterns and vision. We had many delightful conversations on
a wide range of mathematical subjects while in Vietnam. In 2011 David
created a considerable stir with his op-ed [19] with Sol Garfunkel in the
New York Times. Their point was that the recently imposed nationwide
federal Common-Core mathematics requirements are forcing all high school
students to learn lots of algebra and calculus that they will never use—and
that they would be better served by the mathematics of real life, such as how
mortgages are priced and what the statistics of medical trials really mean. In
other words, even at the elementary and lower levels of mathematics
education, Mumford and Garfunkel are advocating more Applied, and more
Reality.

6. The Problem of Dogma: A Microcosm Case Study

Dogma pervades almost every cultural aspect of human society. Such
was one of the messages of E.O. Wilson’s Pulitzer Prize winning book [20].
Also you may look at many of the violent conflicts currently raging or
simmering in our world and see a problem of dogma at their foundation.

Here is a microcosm case study with which I have great familiarity:
Mathematics at my institution, the University of Colorado at Boulder. I
could write a book about it, but will not and instead will be brief and I hope
not without a sense of humor.

Before turning to that tragicomedy, recall that as I recounted in Section
3 and as emphasized by Sagan [3], dogma fights were already present in
ancient Greece at the very beginning. One can read Section 4 as the gradual
re-emergence of the dogmas of practical mathematics and science,
temporarily displaced for a very short period in the Twentieth Century by a
return to a pure philosophical mathematical dogma. But Science in general
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ignored that counter-trend and exploded in magnificent progress. As a result,
as I portrayed in Section 5, the future is bright for mathematics in its wider
scope. [ will say a bit more about that in the next section.

I am a local boy and stayed in Boulder to graduate from the University
of Colorado in 1958, and I always wanted to get back “home” after
completing compulsory military service in Washington D.C., a Ph.D. in
Mathematics from the University of Maryland and postdoctoral work in
Europe, plus a stint at the University of Minnesota. I finally did so in 1968.
Back in Boulder, it seemed that the old mathematics dogma fights had been
overcome by the administration when in 1965 they took the Applied
department out of the Engineering College and the Pure department out of
the Arts and Sciences College, combining them into a single Department of
Mathematics—which was placed in a privileged position under the auspices
of the Graduate School. Then a whole new cadre of us were hired at a salary
level significantly above that of the Engineering and Law schools. We
became a top-25 department and things looked rosy and promising. But it
soon broke down.

A quick sketch is the following: For the fifty years before the merger,
the Applied department had been larger, for it had the larger teaching
mission, all of the engineering students. After the merger, the Pure
mathematicians took over, requiring rigor in all courses. Ten recently hired
younger members of the department were denied tenure because they had
interests in applications or computer science or mathematical education or
were otherwise tainted. I remember one, a champion sprinter, was even
criticized for spending too much time training with the track team.

In 1970, with Stan Ulam, I and others joint with the Physics department
created a new Ph.D. in mathematical physics. To oversimplify, this was
simply not welcome to the Pure mathematician “powers that be”, and they
quickly blocked any hiring in that field. In 1980, I and others resurrected the
old Ph.D. in Applied mathematics. This was also unwelcome. In 1990 the
administration threw up its hands in frustration and split the single
department back into two separate departments, Pure and Applied. I had to
choose one, and because I did not believe in the wisdom of the split and
fought those who wanted to separate the Applied department, I remained in
the Pure department. You can get just a few more details in my book [8,
Chapter 6]. Many amusing funny and sad anecdotes are better shared in
private.

That brings us to 2014. Looking at these two relatively small and
growing-weaker departments, both housed in the College of Arts and
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Sciences, now the administration wants to combine them. Moreover, they
wish to add a third component, of Statistics and Big Data. Really! Will the
administration ever apologize to me for ignoring my foresight, or now
request my help? Will the merger really happen? If so, will it work? Do I
care?

7. Conclusions and Ideal

1. No matter which of Pure, Applied, or Reality mathematics one finds
oneself within, there must be the component of several years of training in
mathematical rigor if one is to be called a mathematician. As I state in [8,
xii]:“There is a substantial, nontrivial, and not widely understood gap
between the training needed to become a pure mathematician and that of just
being an engineer or physicist. This gap cannot be fully appreciated by
applied scientists unless and until they successfully complete the committed
step of taking several course-years of algebra, topology, measure theory,
geometry, and real analysis, among others.”

2. For those mathematicians who can go beyond the essential training
and also master a completely different field, the future will be bright indeed.

3. As an ultimate ideal, in the Greek tradition of ideals, I advance the
new concept of TriMathlete: one who has succeeded in all three of Pure,
Applied, and Reality mathematics. The analogy is with triathlons. Rather
than seeking to be the world’s greatest long-distance swimmer, a rather dull
and monotonous prospect if you think on it, instead you get out of the water
and into a new competition on your bike; and then even if you are a great
cyclist, you hop off your bike and enter the final reality of running a
marathon. As models, we may identify from the far past Archimedes, Gauss
from the near past, and from the recent present I nominate John Von
Neumann. One need not become a TriMathlete, but it is a worthy goal to
hold, and in seeking toward it, both mathematicians and society-at-large will
benefit deeply.
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ABSTRACT
In what society do we estimate that today's students will live, what will they
face in the future and what disposition will they need to meet the requirements of
the new era? Can mathematics education play a role in the development of this
disposition and what goals need to be set, what content and what teaching
approaches to meet these requirements? Isn’t it critical for researchers, programs’
designers and teachers to pursue systematic answers to these questions and bring

in new advances to the teaching of Mathematics?

INTRODUCTION with many questions

In his keynote speech in PME38, Luis Radford revoked Aristotle and
the aims for education he set in Politics (Book Z, pp. 1337a — 1337b):

...that it must, therefore, be adopted laws for education and that it ought to

be defined equal for all, it is clear; which, then, will be the nature of

education and how should it be provided, it must not escape of our attention

... indeed, we do not all share the same opinions as to how we must train

young people, to virtue or to perfect life, nor is it clear whether (education)

should have the aim to exercise and cultivate the mind or form a moral
character. ..’

What would Aristotle feel realizing that 2350 years later the aims of
general education (and mathematics included) remain controversial and
ambiguous; that in Greek classrooms students typically follow programs and
old fashioned teaching methods exercising them, not for mental and moral
virtue, but mainly for examination procedures with questionable results
(Radford, 2014)?

! Translation from the ancient Greek text.
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What aims would he invite us to set, what content to propose and what
approach to adopt so that mathematics education would be linked to the
demands of the current time, as well as of the time that follows, as
suggested in his work? What factors determine these aims: the socio-
historical moment, the unknown future, the needs of people, the country, the
planet, of the historic- social location, of mathematics itself (Skovsmose,
2006)?

And how this future will be? In what society we estimate that today's
children will live? What will be the population growth of this already
globalized web dominated society, what will be the levels of health and
feeding, of poverty, of increasing inequality, of conflicts and violence,
already incredibly multiplied?

What situations will present students and future citizens encounter and
what equipment will be need to meet the demands of this society and the
creation of a better society for themselves and their descendants: to know
how to learn, to effectively understand the world, to perceive and process
information, to solve problems, to work systemically and creatively, to
develop continuous learning, to make estimations, projections, or to adapt to
changes (Yasukawa, 2010)?

Can mathematics education play a role in the development of all these
skills, and if so, what should be its content, methodology and function to
respond to this role? Can it stimulate the mental power of young people for
a better understanding of the world and its inequalities? We usually accept
Mathematics as a global, general, abstract, a- politic, neutral science, how
could we envision it to serve social justice and quality of life (Gutstein,
2003)?

While wondering «What Mathematics for a new era», we are in front of
immeasurable queries. It’s been a long time that Critical Mathematics
Education is studying these issues and has produced many interesting
viewpoints and research results. D’Ambrosio (2008) raises a serious
concern, arguing that Mathematics is closely involved and influence today's
global society. Both historically and socially, many of the recent advances in
technology, industry, military equipment, economy and politics were made
thanks to mathematical tools; on the other hand, respectively, the needs for
these fields have supported the ongoing development of Mathematical
science.

At the same time mathematics teaching, besides the positive influence
that can bring in education, can also work inversely, reinforcing inequalities
and exclusions, preventing understanding, leading to blind obedience,
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overconfidence in numbers or high authority over knowledge. Mathematics
is recognized as a high level global way of thinking, but it coexists with
equally recognized global problems of mankind such as injustice, war,
environmental problems, survival with dignity and so on. Will these
universalities be in contradiction or in collaboration, and how this result can
be accomplished?

In our days in Greece, as we are looking for ways out of the deadlocks
we are living in, for a better future, the answers we are seeking in order to
clarify the ontology, epistemology, methodology and results of
mathematical education are crucial. The essential is not about the state
doings and our expectations, but about our concerns for this situation and
our willingness to do something as scientists, educators and citizens of this
country.

The critical question, therefore, that we set in this presentation is the
following: how can we let mathematics education remaining for decades
without substantial changes in the way it works in school and is perceived
by the society, while around us such imperative changes are taking place?

WHAT GOALS for Mathematics Education?

Both in Greece and other countries, societies set very high and
ambitious goals for mathematics education. Recently, responding to social
demands, the program designers remove contents leading to learning
without understanding and memorization of rules, and focus on new
orientation on the basis of activation of students through research and active
engagement in challenging and interesting mathematical situations. The
curricula seek to develop high level processing of students’ experiences, to
enhance problem solving and modeling abilities, analytical- synthetic and
reflective thinking, etc. (Cyprus, 2010; Canada, 2009; Finland, 2009;
Scotland, 2007; Massachusetts, 2001). In addition to problem solving
abilities, programs also encourage other mathematical processes, such as
communication, reasoning, making connections, representational
developments and semiotic activity, etc.

It is argued that mathematics can influence the mental development and
progress of students and support their accomplishments and social
interaction because of its nature linking experiences and systems of thinking
and encouraging functions like self-control, dedication to a project,
aesthetics, self-confidence, etc. These elements are in the aims of both
Greek programs of 2003 and 2011 (DEPPS, 2003; New curriculum, 2011)
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All these confirm that mathematical education shapes a high quality
framework which, not only requires special adaptations for school
implementation, but also makes the preparation of mathematics teaching
particularly complicated. Certainly, research shows that many of these
objectives can be realized by the help of appropriate mathematical
instruction, but the distance between research experiments and school
reality, its content, methodology and materials remains long (Clements, et
als, 2013). We can continue to believe or imagine that mathematics teaching
is able to assist young people’s formation, but the educational practice, both
globally and locally, still operates with formulations and exclusions, and,
rather than enhancing students’ understanding, it mainly discourages them
from approaching Mathematics meaningfully. Thus, it is generally accepted
that aims leading to these high level results are indispensable for the
preparation of young students for a New Era, but the accomplishment of
these results requires careful and systematic design.

What NEW ERA for our students

A United Nations committee working on a quality education by 2050
(UN Oprn Working Group, 2014), records a future where the world's
population will be 9 billion, many planetary boundaries will be diversified,
global warming will be intensified, the food crisis will also increase, there
will be more poverty and fragility, rising inequality, conflicts, violence
health problems in many countries. This admittedly depressing picture,
presented by the Commission as a framework to help the design of an
education that could possibly improve it, is visible even from today. What
will be the new power balance in the world and what will be the position of
our small country in this uncertain environment?

The following eras, besides the shocking speed of changes, will include
(not so new anymore) globalized and complex systems such as web
network, multimedia, advanced communication and calculations tools,
virtual realities, online education environments etc.: Sriraman, Roscoe, and
English, (2010) summarize them in three key axes: systems with
applications in everyday life, conceptual understanding systems, and
systems modeling and designing real or conceptual systems.

They argue that our students will need in the future knowledge
concerning complex understandings of both actual and conceptual systems,
as well as of the models they structure them. They will also need skills to
create new models for situations and phenomena that will occur. At the
same time, collaboration skills as well as communication and technology
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abilities will become increasingly necessary. Few would dispute these
necessities, but how many of us keep wondering (theoretically or
practically) whether these elements are encountered by the education we
offer today?

We all see that the situations and phenomena that surround us are
gradually becoming more and more complex; we miss a lot of what is
happening worldwide. Still current citizens require considerable knowledge
and cognitive structures to understand, for example, how the economy
works, what is meant by debt, what model of development will reverse this
situation? Or to investigate thoroughly what is the role of the internet, how
it works, what will be the investment for its development and what will be
the future of technology? Respectively, what is the Cern experiment and its
consequences for the evolution of humanity, or what is happening in the
environment (natural and anthropogenic), how it operates, and what will be
the consequences in this field? These are only few of the phenomena that
form the present and the future of our world.

In the past, talking about situation problems and models, we referred to
something rather simplistic, as for example to make an algebraic equation to
solve a real problem. In the current and future era, all understanding,
description and interpretation require capturing of models that rely heavily
(as is the case now) in mathematics, technology and often in physical or
other related disciplines. These models (just like all mathematical models)
are complicated, complex, with levels of emerging meanings and concepts
and increasingly evolving (Lesh, & Sriraman, 2010).

Let us ask ourselves, though: are all these cognitive structures
indispensable for an individual to understand the complex phenomena
surrounding him? Do they mean something for his survival, his health, his
professional, social and personal life? A few years ago we might still be
able to answer differently these questions, but the shocking events that took
place recently make these answers obvious. The way we perceive our world
leads to decisions and actions for maintaining or changing it. In this
direction, mathematics play an important role, certainly if its teaching
highlights the specific nature of mathematical activity and enables young
people to understand and process situations and phenomena (Smokovse,
2006). How close is our education to this approach?

What MATHEMATICS EDUCATION for the future?
It is generally acknowledged that Mathematics is a high-level way of
processing, development of concepts and procedures, symbolization,
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instrumentalization, modeling etc. Therefore, it’s argued that mathematics
education should not seek to the teaching of the products of this process, but
of the way that produces these products. The accessibility to this way of
thinking becomes critical for the cognitive development of young people,
because, historically and epistemologically, it worked and is still working in
all mechanisms of understanding, designing and changing the world around
us.

Attempting to justify the importance of mathematics education and the
extent to which we should be concerned about the content and teaching of
mathematics, let’s recall the lecture of Marshall Stone” in the seminar,
organized in France in 1959 by the Organization of European Economic Co-
operation (and late OECD) provoked by ‘Sputnic shock’ (OEEC, 1961,
p-17, in Skovsmose, 2006 ):

.. we are literally compelled by this destiny to reform our mathematical
instruction as to adapt and strengthen it for its utilitarian role carrying the
ever heavier burden of the scientific and technological super- structure
which rest upon it...

We highlight in these words the special interest attributed to the
appropriate teaching of mathematics for the economic, political and social
future of an era. Relevant attempts to change mathematics education
positively for the future have been historically recorded in critical times: in
Germany after the war people sought for an education after Auschwitz and
in N. Africa after Apartheid etc. (Skovsmose, 2006). Thus, what
mathematics education do we need to prepare our country for a time after
the crisis?

As already indicated in the objectives, presented earlier, mathematics
education turns to the active participation of students in mathematical
experiences that allow the emergence of processing, problem solving and
reasoning abilities. How many of them are currently promoted in the
classroom? How can we create, through education - as Aristotle told us - a
moral active citizen, when the educational process developed in the
classroom make him passive receiver reproducing - often without
understanding - readymade and rather incomprehensible ideas?

The connection of the students’ experiences with high mathematical
systems of thought requires the development of a genuine mathematical
processing, i.e. an activity relevant to mathematical activity within the

2 O Marshall Harvey Stone was an important American mathematician, with rich contribution in
mathematics, but also participation in the research activity of the American Ministry of War during
the second world war. Later he continued as professor in the University of Chicago.
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science. Thus, deepening our reflection about a substantial mathematical
education, you need to first analyze what is problem solving ability and then
what is authentic mathematical activity?

MATHEMATICAL ACTICITY

Many researchers, attempting to explain the elements that describe an
authentic mathematical processing, study the way in which mathematicians
work. Schoenfled since 1992 argued that ‘thinking mathematically’ is
closely related, not only to problem solving, but also to metacognitive
processing of problem’s solutions (i.e awareness concerning solving process
and self- regulation). He approached the problem solving process by
analyzing its stages: reading the problem, analyzing it, exploring for
solutions, finding solution plans, implementing a plan and verifying the
result. Research has shown that, while young and inexperienced solvers read
very quickly the problem they encounter and use all the time searching for a
solution, which abandon quickly if it doesn’t work, an experienced solver
focuses on the systematic study and analysis of the problem, the design of a
plan solution, implement this plan with feedbacks and finally always
validate the correctness of the solution. These findings helped significantly
the development of teaching proposals exercising students, from early ages,
in problem solving abilities, concerning not only arithmetic or mathematical
but also more general problems (Stacey, 2005).

Respectively, the study of the elements of a genuine mathematical
activity could support the design of mathematics education aiming at
developing this special activity. So, what do we understand as mathematical
processing?

In a previous study we collected a number of similar or complementary
views on the issue (Tzekaki, 2014; Tzekaki, 2011). Some of these
approaches consider the mathematical activity as a way of modeling to
address and deal with real situations (Freudenthal, 1983), other as finding
appropriate solutions for situation-problems (Brousseau, 1997), and others
as transferring these solutions to a more general framework (Radford, 2006,
2014). Researchers argue that mathematical meanings derive from
mathematical connections or the process of symbolization (Noss, et als,
1997; Ernest, 2006) or more generally, from a dynamic link of situations,
with signs and concepts (Steinbring, 2005).

Even different approaches for the same issue, they all converge to the
position that the students need to reach a way of a high-level thinking and
processing that involves habits and mental routines. This special processing
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comprises research for properties and relationships, identification of patterns
and common structures, analysis and synthesis in parts and unit parts,
connections, links to language, representations, signs and symbols,
explanations / justifications, reflections and generalizations, and so on.

In addition to all above aspects, the study of gifted students revealed
dimensions of the mathematical way of working that illuminates further the
study of the phenomenon, adding to mathematical abilities related to what
was reported previously (finding relations analysis - synthesis,
representations and explanations), cognitive processes involving
connections between generalizations, flexibility and creativity, and finally
hyper-cognitive processes associated with self-dedication to work,
perseverance and confidence, etc. (Leikin, 2007; Kattou et als., 2012;
Kontoyianni, 2014). The study of competent persons in Mathematics gives
us very important information about the skills we seek to develop in
mathematics education.

The obvious question coming out of such an analysis is how we can
develop all this knowledge, abilities and attitudes to our students? And in
the broader perspective of critical mathematics education, what
mathematical knowledge is needed by our students in order to keep
reflecting upon the ways the reality is presented, upon justice, equality and
exclusion, in an attempt to understand or change it?

WHAT SCHOOL, WHAT CLASSROOR, WHAT Mathematical

classroom?

From all the elements presented earlier, it becomes apparent that the
teaching and learning of mathematics, aiming at supporting a substantial
students’ development, seeks to cultivate in young people this particular
human activity with the aforementioned elements, by creating appropriate
conditions and environments, and not limited to the reproduction of
concepts and procedures (Frade, et als, 2013). The formation of such a
framework is certainly not simple endeavor, but it is important to start
thinking about whether the activity we encouraged in today's classroom has
the characteristics of an authentic mathematical activity. Or also to start
searching for content, problems, tasks, situations and environments that will
allow such a development? And moreover, inversely, to start wondering if
the content of today’s mathematics teaching and the way we follow lead to
the exactly opposite consequences?

For more than at least 50 years researchers agree that substantial
mathematical students’ development requires their activation upon real
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questions, problems, unfamiliar situations, games, technology environments
etc., that can encourage them to make assumptions, to find solutions, to seek
modeling, to use sources or tools to justify, elaborate and formulate (e.g.
Freudenthal, 1983; Brousseau, 1997; Radford, 2006; Perry & Dockett,
2008). Such an education presupposes major changes both in collective and
individual level; only the strong belief (especially of teachers) that it is
really helpful for the students and the country can support them.

European Commissions’ proposals about the quality in education
(European Commission, 2013) are limited to structural (class size,
student/teacher ratio, teacher quality and working conditions) and
procedural changes (teacher - student interaction, appropriate classroom
practices that encourage students’ involvement, enhance identity, and sense
of ‘belonging and learning’), while supporting a unitary structure that
prevents artificial division (elementary, high school, etc.) in front of the
continuum of human development.

Getting into the heart of the problem, in a recent speech Radford (2014)
argues that the way in which the mathematics class works derive from
prevailing conceptions (and policy pursuits) about the forms of (re)
production of knowledge, but also about the ways the teacher and students
should interact (human cooperation). From this approach it becomes clear
that if our aim is not the reproduction or the individual acquisition of
knowledge, but the development of the youth, oriented to pedagogical and
cognitive disposition, operating collectively to address the characteristics of
the new era, then our conceptions and relevant practices require major
revisions.

The traditional transmissive educational model, Radford analyzes,
perceive knowledge as a product (and wealth) that someone holds and
someone else should acquire. Even in the progressive educational programs,
like constructivism, knowledge is still treated as an individual construction
and personal property, following the logic of private production, i.e. a
'private property'. Instead he argues that (2014, p. 18):

... Mathematical knowledge is not something possessible. It is not yours or

mine. Mathematical knowledge appears as pure potentiality—virtual

possibilities for mathematical understandings, meanings, and course of
action. To be materialized, knowledge has to be set into motion through
teachers’ and students’ labour.

In his view (and historical- cultural approach) knowledge is a synthesis
of what people do and process about this doing, which is a dynamic and
evolving way with action, thought and interaction in the world. In this sense,
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it cannot be seen as something that one gets and can record or transmit it
(which gives a completely wrong perception even of the mathematical
science itself), but as something that is produced and accessed by teachers
and students in cooperation within appropriate actions and contents, giving
to Mathematics its precise meaning (Radford, 2006).

CONCLUDING REMARKS

Summarizing the importance of mathematics education in the new era,
it is clear that we need to move away from the simplistic and conventional
approaches, for example, that mathematics is useful, is everywhere and
necessary for everyday life. We also need to move away from the idea that
working with mathematical objects (in simple or more advanced form, like
numbers shapes, equations, functions, etc..) teaches students mathematical
thinking or finally that mathematics education alone supports the critical
thinking of the citizens of the future.

As Skovsmose (2006) presents in details that depending on the forms,
mathematics education can encourage good but also bad practices, as
already mentioned, like blind obedience, exclusion, lack of cooperation, an
over-reliance on numbers or a development of high power through
knowledge. Similarly, some elements resembling 'democracy', as unique
approaches to a solution, or an unique book, a simplification and
standardization to make some aspect of mathematics understandable could
not help but rather exclude and lead to opacity, special distribution
knowledge and consequently of the power (Yasukawa, 2010).

The substantial benefit of mathematical education, both in individual
and in collective level, presupposes an engagement that meets the young
students’ needs (present and future) and the emergence of the important
dimensions of mathematics, like multiple approaches, alternative
assumptions and conclusions, choices and consequences from those choices.
We should not give to students and society the image that mathematics is a
set of eternal and undeniable truths, but a science that is continuously
formed, constructed, could be falsified, be corrected, in an attempt to better
understand the world (Davis & Hersh, 1991).

These aspects of mathematics can give the dimensions of critical
mathematics education and provide new disposition for the unknown future
that follows. On this issue there has been substantial research and
experiments (see. Gutstein, 2003), but the design and implementation of
these elements in all education require radical changes in mentality and re-
training of teachers. In our country these changes are critical because of the
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particular impasse we face, but it is not known when they would be mature
in the field of mathematics education. However, we can hope that together
with the revisions that are gradually taking place in Greek society, a
substantial mathematical education will arise.
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Abstract

The purpose of this study was to investigate how pairs of preschool
children collaborated productively during their efforts to solve
mathematical tasks. Fifteen pairs of preschool children (five years old)
participated in this research. The results revealed three types of
collaborative actions that allowed the preschool children to arrive at the
solution of a mathematical task: a) using materials simultaneously, b)
evaluating their different ways of solving a mathematical problem jointly
and c) inspecting the different answers to a mathematical problem jointly.
All the collaborative actions that the preschool children used gave them
learning opportunities, as they critically examined their proposed solutions
by repeating, through their actions, each other’s ideas or by confirming
their answers using alternative methods. The development of collaboration
from the preschool age could help the children to succeed productive
collaborations during their future mathematical education.

Keywords

preschool education; collaboration; small groups; mathematics

Introduction

Recently the study of children’s collaboration in mathematics has been
at the heart of research, as the social dimension of the construction of
mathematical knowledge plays an essential role in the contemporary
perspectives of mathematical learning and teaching (e.g. Chronaki &
Christiansen, 2005; Cobb & Bauersfeld, 1995; Dekker & Elshout-Mohr,
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1998; Lerman 1998; Sfard 2001). Collaborative learning is not just an
instructional arrangement that can be used to foster active children’s
learning, but it is in the essence of the learning processes. According to
Burton (2002), during collaboration children work together to solve a
problem as they share “the same disciplinary approaches” (p. 162).

In mathematics education, many researchers have mentioned that
collaborative learning allows children to feel responsible both for their own
learning and that of the other members of the group, the acquisition of
collaborative skills and the development of problem-solving ability at a
higher level (e.g. Chaviaris, Kafoussi & Kalavassis, 2007; Cobb, 1995;
Francisco, 2013; Good, Mulryan & McCaslin, 1992; Martin, Towers &
Pirie, 2006; McCrone, 2005; Pijls, Dekker & Van Hout-Wolters 2007,
Stacey & Gooding 1998; Voigt 1995; Weber, Maher, Powell & Lee, 2008).
Children’s collaboration allows them to check their ideas, listen and refine
their classmates’ ideas, formulate their thoughts through arguments in order
to understand better the mathematical concepts and/or procedures.

Moreover, many researchers investigating children’s collaboration have
focused on learning contexts concerning small groups of children (usually
two children). The research has revealed various factors that influence
children’s mathematical learning, including group composition, their beliefs
about collaboration in mathematics, their achievement in mathematics or the
quality of mathematical tasks (e.g. Good et al., 1992; Kafoussi, Chaviaris, &
Dekker, 2010; Webb, 1989). These findings suggest that productive
children’s collaboration in small groups for a meaningful learning is hardly
an easy goal to achieve in a mathematics classroom, as a productive
collaboration means to succeed a shared goal mutually through a continual
negotiation of collaborative actions and mathematical meanings.
Furthermore, little research has been done concerning preschoolers’
collaborative learning in mathematics (Tarim, 2009). The aim of this study
was to investigate how pairs (small groups of two) of preschool children
collaborated productively during their efforts to solve mathematical tasks.

Theoretical background

Investigating the circumstances that facilitate children’s collaboration in
pairs in mathematics in primary education, Cobb (1995) found that when
two children are working together to find a solution in a mathematical
problem, they may collaborate directly or indirectly. In the first case, the
children explicitly coordinate their efforts to solve the problem and they
make “taken-as-shared” interpretations of it. In the second case, one or both
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children think aloud while they seem to solve the problem independently.
By this way, they can capitalize on each other’s comments. According to the
same researcher, indirect collaboration is frequently more productive than
direct collaboration which doesn’t usually allow for learning opportunities.

Martin, Towers and Pirie (2006) have used the notions of interactions
and coactions in order to describe the ways of children’s collaboration in
groups. Interactions involve “the process of acting on the ideas of another in
a reciprocal or complementary way”, whereas coactions refer to the process
“of acting with the ideas and actions of others in a mutual, joint way” (p.
156). Both interactions and coactions can be crucial in order to promote
mathematical understanding (Francisco 2013).

Moreover, in an effort to gain a deeper understanding of the
constituting elements of a productive collaboration among children,
researchers have given emphasis on the notion and the elements of
argumentation that provide learning opportunities in mathematics
classrooms (e.g. Francisco, 2013; Krummheuer, 1995; McCrone, 2005;
Weber et al., 2008). They usually use Toulmin’s model (1969) about
argumentation, according to which an argument needs: a) a claim, that is an
assertion of which an individual is trying to convince others, b) data, that is
some statements on which the conclusion can be based and c) a warrant, that
is an explanation as a means of legitimizing why the claim supports the
conclusion. According to Krummheuer (1995), especially in the primary
education, participants usually try to demonstrate the rationality of their
methods when they solve a problem through their actions during their
collaboration. Hence, argumentation is manifested through ways that help
the participants to demonstrate, implicitly or explicitly, the rationality of the
action while they are acting. He mentioned that, in the primary education,
the children’s mathematical statements “carry the significance of acting on
experientially real mathematical objects” (e.g. counting on fingers)
(Krummheuer, 1995, p. 236) and these actions convey their process of
argumentation.

According to the above, our hypothesis was that the investigation of a
productive collaboration at the preschool age means to identify the types of
collaborative actions in which the preschool children engaged in order to
accept or assess the rationality of their solutions and arrive at the answer of
a mathematical problem.

Methodology

HMS i JME, Volume 6. 2014 (106-119)



Can preschool children collaborate in mathematical tasks productively? 109

Fifteen preschool children’s pairs (30 children, 17 girls and 13 boys)
participated in the research that took place in November and December
2011. The children were five years old and they attended public
kindergarten schools of the city of Rhodes, in Greece. We observed three
pairs from five different schools. They volunteered to participate in this
research and they were asked to solve mathematical problems in pairs. Each
pair had to solve one task. The tasks were not the same for all the pairs.
They were designed to cover basic mathematical topics for this age,
including numbers and operations, measurement and probabilities
(Clements & Sarama, 2004). The small-group activity lasted about 15
minutes for each pair and it took place outside the classroom (in the library
of the kindergarten schools’ buildings).

All the dialogues during the collaborations of the pairs were tape-
recorded. Data analysis was conducted with the transcripts of tape-
recordings of the children’s small-group activity, as well as with the
researcher’s hand-scripted observations. Drawing upon Krummbheuer’s
analysis about argumentation (1995), we first described the data and the
possible warrants that the preschool children accepted as “taken as shared”
during their collaboration. These elements allowed us to identify the
collaborative actions they supported in order to arrive at an acceptable
solution of the mathematical task.

The researcher presented the mathematical tasks to the children and
participated in their discussion by asking for clarifications when needed.
Concerning fostering children’s collaboration, the only advice that she gave
to them was that they should solve the proposed mathematical problem
jointly.

Results

The analysis of our data revealed three types of collaborative actions
that helped the preschool children to work together productively and to
arrive at the solution of a mathematical problem: a) using materials
simultaneously, b) evaluating their different ways of solving a mathematical
problem jointly and c) inspecting the different answers to a mathematical
problem jointly. In the following we are analyzing examples of the
preschool children’s collaboration in mathematics identifying the above
mentioned actions.

a)using materials simultaneously

This action is related to the use of the given materials of the task by
both children. They used the materials simultaneously while they were
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acting in order to proceed to a conclusion about the solution of the
mathematical problem. In the following examples, we are analyzing the
collaborations of two pairs of children.

Example 1

The children (two girls, Chara (C) and Ioanna (I)) had to measure the
side of a square table to help a squirrel to buy a tablecloth for its party. They
had big and small straws, yellow and green respectively at their disposal.
They should measure the side of the table by using these two different kinds
of straws in order to take a decision for the squirrel. The following dialogue
took place between the children.

Utterances Actions
1 C: Let’s start with the yellow straws.
2a I: Yes. Yes, with the yellow firstly. [2] They are putting the
2b I: Let’s put them. Do we have to count yellow straws together
3a them? one by one along the
3b C: Yes. side of the table. Ioanna
4 C:1,2,3,4... Come on, we will do it is putting one straw and
5  together. then Chara is putting
6 1:.1,2,3,4,5,6. the other one and this
7  C: They are six. Can I put the green ones? | process is continuing.
8 I Take some of them and I'll take the rest [6] loanna is giving
9 of'them. some straws to Chara
C:1,2,3,4,5,6,7, 8. You have to count and they are putting
10 too. them together in the
11 1:1,2,3,4,5,6, 7, 8. They are eight. same way that they did
12 R: So, how many yellow straws do you with the yellow ones.

need and how many green?
C: Six yellow and eight green.
13 R: Why do you need less yellow than green
14 straws?
C: Because this is smaller (she is looking at
15 a green straw) and it is taking up less room.
Eh; (She is looking at loanna)
16 I: Yes.
17 R: What are you going to tell the squirrel in
18 order to buy the tablecloth?
19 C: It is the same, but this one is smaller (she
20 is looking at a green straw). [19] loanna is writing
R: Do you want to write your answer? the symbols of the two
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Following we are presenting the dialogue that

I: Yes.

C: I don’t remember how we write the
eight.

I: It is two small circles. I’1l show you.

C: We finished.

numbers.

The children shared the given materials for the measuring of the side of
the table and they put them together along the side of the table in order to
find the result. Moreover, as they tried to find the answer to the problem,
both children used the counting process. The actions of putting the straws
together and the repetition of the counting served both as their data and as
their warrant for their answer. During this process they accepted this
collaborative action as a legitimate one for their conclusions.

Example 2

At the second example another pair (two girls, Stella (S) and Evi (E))
had to find the distances that the turtles of a forest had to cover in a speed
contest and to compare them. They had small markers at their disposal.

children.
Utterances
1 S: Have you understood what we are
2 going to do?
3a E: No! You?
S: Yes. We have to help the turtles to
3b measure the distances.
4 S:1,2,...
5 E: OK.
6 S:1,2,3,4,5.
7 E: 1,2,3.
8 S: 1, 2.
9a E:1,2,3,4,5.
9b S: Be careful, the markers are slipping.
10 S: 3, 4.
R: So, which of the turtles have to run the
11 longest distance?
12 S: The first one.
13a  E: This one (She showed the last one.)
13b  S: No! The first one.

took place between the

Actions

[3b] Stella is putting the
markers along the first
road and she is counting
simultaneously.

[6] Evi is putting the

markers along  the
second road and she is
counting
simultaneously.

[7] Stella is repeating
the same action for the
third road.

[8] Evi is repeating the
same action for the
fourth road.

[13b] She is counting
the markers again along
the last road.
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14 S: You measured it in a wrong way. 1, 2,
15 3,4.
R: And which turtle has to run the
smallest distance?
S-E (together): This one (They showed
the third road).

Stella proposed a concrete way of solution, by counting the markers as
she was putting them along the length of the road. Evi accepted this process
as their data. Subsequently, the children measured the different distances
together, successively. That is, Stella counted the first distance with the
markers and after that Evi made the same action for the second distance and
so on. When a child put the markers and counted, the other controlled the
whole process. This control functioned as a warrant for their measurement
and helped them to correct the wrong solutions (cf. utterances 8-9, 13b). The
collaborative action of realizing the measuring of the distances using both
the markers helped them arrive at their conclusions.

In both examples the collaborative action of using the materials
simultaneously seemed to be a fruitful one for the children’s learning. At the
first example, the children used the materials by putting the straws together
for the measuring of the length of the table each time. At the second
example, they divided the task in subtasks and they made the measurements
with the materials alternatively by checking each other. In both cases, this
action gave them the opportunity to understand better how to put the
informal measure units along a distance correctly in order to measure it as
well as to compare different lengths.

b) evaluating their different ways of solving a mathematical problem
Jjointly

This collaborative action emerged when the children were engaged in a
mathematical task and they investigated different ways in order to find the
answer of the problem, as we can observe in the following example.

Example 3
Similarly to the first example, the children (two boys, Ilias and John)
had to measure the side of a square table in order to help a squirrel buy a
tablecloth for its party. Firstly, they were asked to use their hands and
secondly cubes in order to make this measurement. The following dialogue
took place between Ilias (I) and John (J).
Utterances Actions
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J-1 (together): 1,2,3,4,5,6,7,8,9, 10.
J: They are ten.

I.: There is another way. 1, 2, 3,4, 5,6, 7.

R: Oh! Why did John find ten and you
seven?

I: But John counted in this way (%e is
repeating his own action and then John’s
action).

J: Yes! One way or another.

R: So, how long is the table?

I: We will do it in this way.
J:1,2,3,4,5,6,7. Seven.

I: Yes, seven.

J:1,2,3,4,5,6,7, 8. No, they are eight!
1:1,2,3,4,5,6,7, 8.

R: What happens now? Seven or eight?
J: My hand is smaller..

J: Do you want to count the cubes?

I: Yes.

J:1,2,3,4,5,6. Six.

I: 2,4,

R: So, what are you going to tell the
squirrel, seven, eight or six?

J: Maybe we are confused...

I: No...We counted them! (He is angry.)

I: The cubes are big. The hands are small.

R: So, what is more helpful for you? The
hands or the cubes?

I-J: The cubes.

R: Why?

I: It is easier.

J: I was confused with the hands. The
cube is better.

I: We put the cubes more quickly.

R: So, what are you going to tell the
squirrel?

I: Six.

J: Yes. We will give him the cubes and
we will say six.

6. Six. I counted them two by two.

[1] John is putting his
hands vertically along
the side of the table and
the boys are counting
together.

[3] llias is putting his
hands horizontally
along the side of the
table. John is making
the same action in the
air.

[8] He is putting again
his hands horizontally
along the side of the
table.

[9] John is counting
[lia’s hands.

[11] John is counting

his own hands by
putting them
horizontally.

[12] Tlias is counting
John’s hands.

[15] They are putting
the cubes together one
by one along the side of
the table. John is
putting one cube and
then Ilias is putting the
other one and this
process is continuing.

[29] He is putting again
the cubes along the side
of the table
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I: Yes. ‘

During their collaboration, John and Ilias discussed different ways of
solving the mathematical problem. Although they both accepted the process
of counting as their data, when they used their hands to measure the side of
the table, the placing of their hands vertically or horizontally challenged
their finding of an acceptable answer. However, this challenge emerged
when John tried to repeat the process of the counting that his partner
proposed by making the same action (cf. utterance 11). The action of the
evaluation of the different ways for the solution of the problem by both
allowed them to reach at their conclusions about the suitability of the
measurement units that they used (cf. utterances 21-26). They had the
opportunity to make comparisons between their hands and the cubes and to
formulate an explanation about the choice of the cubes for the measurement
process. Moreover, we should mention that they also acted collaboratively
in using the materials simultaneously, when measuring the side of the table
with the cubes (cf. utterance 15).

¢) inspecting the different answers to a mathematical problem jointly

This collaborative action was emerged when the type of the problem
that the children had to deal with required more than one answers. In that
case, the children inspected their different answers jointly while working
together.

Example 4

The children (a boy and a girl, George (G) and Katerina (K)) were
asked all the different combinations in order to hide six whistles in Bob’s
house. Bob would organize a party and he would like to play this game with
his friends. Bob had a two-storey house (a model of the house was given to
the children) and they had to think that Bob could hide some whistles on the
first floor and the rest on the second. The question was how many whistles
Bob could hide on the first and how many on the second floor. The children
had six whistles and a sheet of paper to record their answers at their

disposal.
Utterances Actions
la  G: This is the first floor and this is the
b  second. [1b] George is writing

G: He can put three whistles on the first | the answer (3, 3).
2a  and three whistles on the second.
2b  K: Yes! Three on the first and three on [2b] She is counting four
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the second.

K: I think that he can put four here (she
showed the first floor) and two here (she
showed the second floor).

G: No, four on the first and one on the
second.

K: No, because four plus two makes six!
G: Ah! Yes!

K: If he put one...

G: They remain five.

K: Maybe he can put five on the first and
one on the second floor.

G: Yes, one here (he showed the first
floor) and five here (he showed the
second floor).

K: No, I said five here (she showed the
first floor) and one here (she showed the
second floor).

G: OK, five on the first and one on the
second, eh?

: Yes, I think so...

: Yes. Can I write it?

1,2,3,4,5,6.

: Did you put them all together?

Yes.

: Will we put all of them on one floor?
Yes.

: And nothing on the other?

: That is zero?

G: No, he will put six here (he showed
the first floor) and seven here (he showed
the second floor).

K: Six and seven?

G: Yes, six (he showed again the first
floor) and seven here (he showed again
the second floor).

K: But six plus seven is...

K: Does he happen to put six and zero?
K: I think so...

ARORQRQQR

fingers in her hand and
she is putting two more
fingers in the other hand.
[5] He is writing the
answer (4, 2).

[6] She is holding one
whistle in her hand.

[7] He is counting the
rest whistles.

[13a] He is writing the
answer (5, 1).

[13b] He is putting all the
whistles on the first floor.

[18b] She is counting six
fingers.

[22a] She is trying to
count her fingers, but she
is troubled.

[23] He wrote the answer
(6,0)
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G: Mm...Ok.

R.: Can you put the whistles in another
way?

G: No.

K: Ok.

In the above example, the children found some of the different
combinations of this problem jointly. When a child told an answer, the other
one inspected it and this action led them to find the right one (cf. utterances
4-5, 22-24). This checking also gave them the opportunity to think of more
answers. For example, George’s mistake that 4 plus 1 could be an
acceptable answer gave the opportunity to Katerina to propose 1 and 5 as an
alternative answer. Furthermore, in contrast to the previous examples, the
children used different ways in order to support their answer. Katerina used
the counting of her fingers as a warrant for the right solution, whereas
George counted the whistles. These two different kinds of perceptual
counting unit items (Steffe et al., 1983) seemed to be acceptable by both of
them implicitly, as it was not a topic of discussion during their
collaboration.

Discussion

The purpose of this study was to identify the types of collaborative
actions that the preschool children realized as they worked together when
they had to solve a mathematical problem in pairs and to be led to a
conclusion. Our results showed that the preschool children can collaborate
productively when dealing with mathematical tasks, through coactions, as
they worked together on the same idea (Martin et al., 2006). Therefore, we
could argue that the preschool children interpreted the word “together”,
according to the researcher’s advice about the way they were expected to
deal with the tasks, as a realization of coactions for every step of the
solution of the problem. In all cases, the children explicitly coordinated their
efforts as they solved the mathematical problems.

In our research we identified three types of collaborative actions of the
preschool children: a) using materials simultaneously, b) evaluating their
different ways of solving a mathematical problem jointly and c) inspecting
the different answers to a mathematical problem jointly. All the
collaborative actions that the preschool children used gave them learning
opportunities, as they critically examined their proposed solutions by
repeating, through their actions, each other’s ideas or by confirming their
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answers using alternative methods. An interesting question for further
investigation is the relation of these collaborative actions to the zone of
proximal development for different groups of children.

We should mention that in many studies the role of a teacher is
significant for the construction of a productive collaborative learning
environment (Cobb et al., 1992; Dekker & Elshout-Mohr, 2004; Edwards,
2002). The main habits that students have to adopt with the help of the
teacher during their efforts to collaborate are usually: listening, explaining,
justifying, reconstructing. In our study the preschool children hadn’t been
taught any kind of collaborative skills, as our purpose was to investigate
possible collaborative actions that they might use on their own. Thus,
another research question concerns how a kindergarten teacher could
encourage children to use these collaborative actions, as they seemed to be
effective for their mathematical learning.

Finally, according to our findings, the preschool children’s spontaneous
collaborative actions allow us to assert that they do not experience essential
difficulties when they try to work together, which is in contrast with the
performance of older children who have already shaped more stable beliefs
about the learning and teaching of mathematics as well as about the
individuality that characterizes traditional mathematics classroom (Cobb et
al., 1992). Unlike the preschoolers, the older children have to change their
beliefs in order to succeed a productive collaboration (Kafoussi, Chaviaris
& Dekker, 2010). This fact could lead to the hypothesis that the
development of collaboration from the preschool age could help the children
to succeed productive collaborations during their future mathematical
education.
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Abstract

The APOS/ACE theory for learning and teaching mathematics was
developed during the 1990’s in the USA by a team of mathematicians and
mathematics educators led by Ed Dubinsky and one of its central ideas is
the use of computers as a teaching tool. In this paper we introduce
principles of fuzzy logic on comparing the performance of two student
groups concerning the comprehension of the real numbers in general and of
the irrational numbers in particular. The first group was taught the subject
in the traditional way (control group), while the APOS/ACE instructional
treatment was applied for the second group (experimental group). The two
groups are represented as fuzzy subsets of the set of the grades (from A to
F) achieved by the students in a pre-instructional and a post-instructional
test and the ¢entroid defuzzification technique is applied on comparing their
performance. The results of our classroom experiments showed that the
application of the APOS/ACE approach can effectively help students to
enlist the real numbers in a powerful cognitive schema including all the
basic sets of numbers.

Keywords: Fuzzy sets, centroid defuzzification technique, teaching and
learning the real numbers, APOS/ACE theory.
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1. Introduction

The fuzzy sets theory, introduced by Zadeh[24] in 1965, gave genesis to
fuzzy logic, a rich and meaningful addition to standard logic. The
applications which may be generated from or adapted to fuzzy logic are
wide-ranging and provide the opportunity for modelling under conditions
which are inherently imprecisely defined, despite the concerns of classical
logicians. Many systems may be modelled, simulated and even replicated
with the help of fuzzy logic, not the least of which are human cognitive
systems (e.g. [3], [5], [7], [8], [10-12], [16-19], etc)

Fuzzy logic offers a much higher problem solving capability than the
standard probability theory opening the door to the construction of
mathematical solutions of computational problems which are stated in a
natural language.

The methods of assessing the individuals’ performance usually applied
in practice are based on principles of the bivalent logic (yes-no). However
these methods are not probably the most suitable ones. On the contrary,
fuzzy logic, due to its nature of including multiple values, offers a wider and
richer field of resources for this purpose. This gave us several times in the
past the impulsion to introduce principles of fuzzy logic in assessing the
performance of student groups in learning mathematics and in problem
solving (e.g. see [8], [11-12], [16], [19], etc).

In this paper we shall apply such kind of principles in comparing the
results of performance of two groups of students of the Graduate
Technological Educational Institute of Western Greece concerning their
comprehension of real numbers in general and irrational numbers in
particular. The first group was taught the subject in the traditional way
(control group), while the APOS/ACE [acronyms constituted by the words
Actions, Processes, Objects, Schemas for the former and Activities (on the
computer), Classroom (discussion), Exercises (done outside the class) for
the latter]. instructional treatment was applied for the second group
(experimental group). The APOS/ACE theory for learning and teaching
mathematics was developed during the 1990’s in the USA by a team of
mathematicians and mathematics educators led by Ed Dubinsky and one of
its central ideas is the use of computers as a teaching tool (see [1-2]).

The rest of the present paper is formulated as follows: In the next
(second) section we present the headlines of the APOS/ACE theory and we
provide some simple examples for its better understanding. In the third
section we describe our classroom experiment, while in the fourth section
we apply a simple fuzzy model on our experiment’s process and we use the

HMS i1 JME, Volume 6. 2014 (120-142)



122 Michael Gr. Voskoglou

centroid defuzzification technique for assessing the performances of the two
groups. Finally, in the last (fifth) section we state our conclusions and we
discuss the future perspectives of this research.

2. The APOS/ACE theory for learning/teaching mathematics

APOS is a theory based on Piaget’s principle that an individual learns
(e.g. mathematics) by applying certain mental mechanisms to build specific
mental structures and uses these structures to deal with problems connected
to the corresponding situations [6]. Thus, according to the APOS analysis,
an individual deals with a mathematical situation by using certain mental
mechanisms to build cognitive structures that are applied to the situation.
The main mechanisms are called interiorization and encapsulation and the
related structures are actions, processes, objects and schemas.

The theory postulates that a mathematical concept begins to be formed
as one applies transformations on certain entities to obtain other entities. A
transformation is first conceived as an action. For example, if an individual
can think of a function only through an explicit expression and can do little
more than substitute for the variable in the expression and manipulate it,
he/she is considered to have an action understanding on functions.

As an individual repeats and reflects on an action it may be interiorized
to a mental process. A process performs the same operation as the action,
but wholly in the mind of the individual enabling her/him to imagine
performing the transformation without having to execute each step
explicitly. For example, an individual with a process understanding of a
function thinks about it in terms of inputs, possibly unspecified, and
transformations of those inputs to produce outputs.

If one becomes aware of a mental process as a totality and can construct
transformations acting on this totality, then we say that the individual has
encapsulated the process into a cognitive object. In case of functions
encapsulation allows one to form sets of functions, to define operations on
such sets, to equip them with a topology, etc. Although a process is
transformed into an object by encapsulation, this is often neither easy not
immediate. This happens because encapsulation entails a radical sift in the
nature of one’s conceptualization, since it signifies the ability to think of the
same concept as a mathematical entity to which new, higher-level
transformations can be applied. On the other hand, the mental process that
led to a mental object through encapsulation remains still available and
many mathematical situations require one to de-encapsulate an object back
to the process that led to it. This cycle may be repeated one or more times.
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For example, in defining the sum f + g of two functions possessing a
common domain, say A, it is necessary to reconsider again f and g at a
process level and thinking of all x in A to obtain a new process mapping
each x in A to the sum f (x) + g(x). Then this new process must be
encapsulated, in order to obtain the function f + g at an object level.

A mathematical topic often involves many actions, processes and
objects that need to be organized into a coherent framework that enables the
individual to decide which mental processes to use in dealing with a
mathematical situation. Such a framework is called a schema. In the case of
functions it is the schema structure that is used to see a function in a given
mathematical or real-world situation.

The APOS theory has important consequences for education. Simply
put, it says that the teaching of mathematics should consist in helping
students to use the mental structures that they already have to develop an
understanding of as much mathematics as those available structures can
handle. For students to move further, teaching should help them to build
new, more powerful structures for handling more and more advanced
mathematics. Dubinsky and his collaborators realized that for each mental
construction that comes out of an APOS analysis, one can find a computer
task of writing a program or code, such that, if a student engages in that
task, he (she) is fairly likely to build the mental construction that leads to
learning the mathematics. In other words, performing the task is an
experience that leads to one or more mental constructions. As a
consequence of the above finding, the pedagogical approach based on the
APOS analysis, known as the ACE teaching cycle, is a repeated cycle of
three components: Activities on the computer, classroom discussion and
exercises done outside the class. The target of the activities on the
computer is to help students in building the proper mental constructions for
the better understanding and learning of the corresponding mathematical
topic. The students discuss later in the classroom their experiences from the
computer tasks performed in the laboratory, they repeat the same tasks
without the help of computer this and they reach, under their instructor’s
guidance and help, to the proper conclusions. Finally, the purpose of the
exercises, which are given by the tutor as a home work, is to check and to
embed better the new mathematical knowledge (for more details see [1-2],
[17], etc).
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3. The classroom experiment

The implementation of the ACE cycle and its effectiveness in helping
students making mental constructions and learn mathematics has been
reported in several research studies of the Dubinsky’s team. A summary of
earlier work can be found in [21]. More recently this approach was applied
in studying the pre-service teachers understanding of the relation between a
fraction or an integer and its decimal expansion [22-23].

In developing and applying in practice the ACE design for teaching the
real numbers in general and the irrational numbers in particular we
performed during the winter semester of the academic year 2012-13
(October 2012) a classroom experiment with two groups of students of the
Graduate Technological Educational Institute (T. E. I.) of Western Greece
(ex Patras) being at their first term of studies. The subjects of the
experimental group were 90 students of the School of Technological
Applications (prospective engineers) attending the course ‘“Higher
Mathematics I”'. The students of this group were taught the real numbers in
the computers’ laboratory and in the classroom according to our ACE
design that we shall present below. The subjects of the control group were
100 students of the School of Management and Economics of the same T. E.
I. attending a similar mathematical course (the instructor was the same
person). In this group the lectures were performed in the classical way on
the board, followed by a number of exercises and examples. The students
participated in solving these exercises. Notice that the students of both
groups had more or less the same mathematical background from secondary
education, since they had finished the same type of Lyceum (the upper level
of secondary education in Greece). Further, the grades that they obtained in
the Panhellenic exams for entrance in the higher education were of about the
same level. Also, since they were in the first term of their studies, they had
attended no previous mathematical courses at the T. E. I. of Western
Greece.

On the first day in class the students of both groups completed
individually a five-item pre-instructional written questionnaire (see
Appendix I). The instrument served to establish the similarity of the two
groups and to guide the development of the teaching process. The results of

' This course involves an introductory chapter repeating and extending the students’
knowledge from secondary education about the basic sets of numbers, Complex Numbers,
Differential and Integral Calculus in one variable, Elementary Differential Equations and
Linear Algebra.
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the pre-instructional test for the two student groups are presented in the
following table:

Table 1: Results of the pre-instructional test

Experimental group (G)

% Scale Grade Amount of % of students
students
89-100 A 0 0
77-88 B 17 18.9
65-76 C 18 20
53-64 D 25 27.8
Less than 53 F 30 33.3
Total 90
Control group (Gy)
% Scale Grade Amount of % of students
students
89-10 A 0 0
77-88 B 18 18
65-76 C 20 20
53-64 D 30 30
Less than 53 F 32 32
Total 100

The interpretation of the data of Table 1 will be presented in section 4
in terms of our fuzzy assessment method.

Our APOS/ACE approach for teaching the real numbers to the students
of the experimental group involved three iterations of the ACE cycle. Each
cycle consisted of two class sessions, one for computer activities and one for
classroom discussions. Homework exercises were assigned and collected.
Notice that, since the proper understanding of rational numbers is an
essential pre-assumption for the comprehension of irrational numbers, our
design involved frequent repetitions of the corresponding situations for
rational numbers. Some of these repetitions were adapted from [22].
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In an action level the concept of an infinite decimal (rational or
irrational number) is understood by considering its finite decimal
approximations. The target of the first iteration of the ACE cycle was to
facilitate the interiorization of this action to a process. The students
completed in the computer laboratory activities with a preloaded decimal
expansion package. They developed general descriptions of what was stored
and answered various questions about an infinite digit string such as: What
is a repeating decimal? Which of the strings are repeating decimals? What
are the digits in the first 20 places after the decimal point and what would
appear in the 1005™ place? Further, students were asked to calculate the
successive finite decimal approximations of several square roots with
gradually increasing accuracy.

In the classroom discussion the students reported their group responses
and the class negotiated agreements. A notational system for infinite
decimals was devised. For example, since [1<.2<2, [.4<\2<l.5,
1.41<\2<1.42, 1.414<2<1.415, 1.4142<2<1.4143,
1.41421<\2<1.41422, etc, /2 can be written as 2= 1.41421..... . The
dots at the end indicate that the sequence of the decimal digits is continued
to infinity. Therefore, by accepting this symbolic representation of an
infinite decimal we can not see written all its decimal digits. We can only
see the digits of its given decimal approximation each time. The instructor
recalled at this point that a repeating decimal (rational number) can be
written in the form a,b¢ . Here a, b, ¢ are natural numbers, where a denotes
the integer part of the rational number, b is its decimal portion that possibly
appears before the repeating cycle (in case of mixed periodic numbers) and
c is the repeating cycle (period) of the number. A finite decimal can be
written as a repeating decimal with period 0 or 9; e.g. 2.5 = 2.50 = 2.49
The exercises included problems where certain information about an infinite
digit string was provided that was sufficient to specify the string.

The target of the second iteration of the ACE cycle was to facilitate the
encapsulation of the concept of a real number to a mental object. During the
computer activities students were asked to work out examples with
transparent and opaque decimal representations of real numbers like the
following:

The rational numbers > =0.6 , +=0.33.., 250 =2 82113113113... ,

5 3 99900
have transparent decimal representations, since we can foresee their decimal

digits in all places; but the same is not happening with ! = 0.0005373...,
1861
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which, possessing a period of 1860 digits, has an opaque decimal
representation. Notice that decimal representations of certain irrational
numbers, despite of their complex structure in general, are also transparent.
For example, this happens with the numbers
2.001313113111311113111113... where 1, following /3, is repeated one
more time at each time, and 0.282288222888222288882...where 2 and 8,
following 28, are repeated one more time at each time. Taking this
opportunity the instructor clarified to the class that an infinite decimal is an
incommensurable (non periodic) decimal not because its decimal digits are
not repeated in a concrete process (this in fact can happen according to the
above two examples), but because it has not a period, i.e. its decimal digits
are not repeated in the same concrete series. Some standard cases of decimal
expansions of transcendental numbers like ~ and e were also added to the
above examples. Students were also asked to convert fractions and roots of
second or higher order to decimals and vice versa. Further, the computer
activities included arithmetic operations among irrational and rational
numbers by using their finite decimal approximations.

In the classroom the students performed the same mathematical
activities without using the computers. In this way they realized that in
converting a fraction to a decimal, if the quotient obtained is an infinite
decimal having a long period, a long and laborious division is reached in
general, which is not possible to be determined soon. At this point the

instructor emphasized that given a fraction# , , <z »=0 , the quotient of the
14

division u : v is always a periodic decimal. The probability to be a finite
decimal is small enough, since a fraction, whose denominator is not a
product of powers of 2 and/or 5, cannot be written as a finite decimal. In
case of an infinite decimal, since the remainder of the division u : v is
smaller that v, performing the division and after a finite number of steps (at
most v-1) the same remainder will reappear at some step. This means that
the resulting decimal is a periodic one, having a period of at most v-/ digits.
Conversely, a standard method for converting periodic numbers to fractions
(although other methods could be used as well) is by subtracting both
members of proper equations containing multiples of a power of /0 of the

given number. For example, given x=2.75323232..., we write
10000x=27532.3232... and 100x=275.3232...., wherefrom we get that
9900x=27532-275, or xZ%. Reflecting on the above examples the

students reached to the conclusion that periodic decimals and fractions are
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the same numbers written in a different way. Students’ contact at school
with the definition of irrational numbers as incommensurable decimals is

usually rather slim, while emphasis is given on defining them as non

rational numbers (i.e. they cannot be written as fractions f , with u, v

integers and v=0). However, students must clearly understand the
equivalence between the above two definitions: Similarly to the fact that
rational numbers and periodic decimals are the same numbers written in a
different way, the same holds for non rational numbers and
incommensurable decimals. Thus, the set of real numbers R can be defined
as the set of all commensurable and incommensurable decimals and their
opposites. In closing the classroom discussion the instructor presented
empirically the concept of a sequence of finite decimals and of its limit (i.e.
what it means to “tend” to a number) and explained it to students by using
the appropriate examples, like this with /2 mentioned above. In no case is it
necessary for the teacher to give the analytic definition of the limit of a
sequence. The above empiric approach is enough for helping students to
encapsulate the concept of a real number to a mental object. The homework
exercises were standard problems related to the topics mentioned above
aiming to consolidate the students’ knowledge and understanding of these
topics.

The target of the third iteration of the ACE cycle was to help students
to enlist real numbers in general and irrational numbers in particular in their
cognitive schema related to the already known basic sets of numbers
(natural numbers, integers and rational numbers). A prerequisite for this is
that they must be able to transfer in comfort among the several
representations of real numbers. Therefore, the computer activities in this
cycle involved among others examples of constructions of line segments
with incommensurable lengths; either classical geometrical constructions by
using the Pythagorean theorem, like 2, 3, 5 etc, or cases where the

construction of the graph of a function is necessary, like 3/, with the
function f(x)=3/x (or f(x)=3/x-2) etc. They involved also examples of

0

.. . . x=y =+~ . .
writing real numbers in the form of a series ;10" , where x is an integer

and x;, x, ...., Ky, .... are natural numbers less than 10. Finally, the computer
activities involved also examples of interpolation of rational and irrational
numbers between two given integers, or between two rational (irrational)
numbers aiming to promote the later discussion in classroom about the
density of the sets of rational and real numbers.
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In the classroom discussion the instructor recalled first that in defining
the set Q of rational numbers as the set of all fractions and in order to count

each fraction only once, we considered only the fractions of the form +£,

14
where 1 and v are non negative integers (v=0), with greatest common
divisor equal to /. In an analogous way, since for all integers x and o with /
<a < 9wehave x.a = k.(0-1)9 and x9=x+] °, in defining R as the set
of all decimals and in order to count each real number only once , we must
exclude all infinite decimal expansions of the form x.x;x;........ , in which
there exists a natural number v such that x,=9 for all u>v.

Activities on geometric constructions of irrational numbers were also
organized in classroom combining history of mathematics with Euclidean
Geometry. For example, as we have already mentioned above, these
activities included the construction of the line segments of
length+/2,+/3, /5, etc with the ruler and compass only in terms of the

Pythagorean Theorem and the proper placing of them on the real axis,
followed by proofs of the fact that the above lengths do not correspond to

rational numbers (since they cannot be written in the form# , with 1 and v
14

natural numbers, v= 0). Within the culture of ancient Greek mathematics the
geometric figure was the basis for unfolding mathematical thought, since it
helped in obtaining conjectures, fertile mathematical ideas and justifications
(proofs). In fact, convincing arguments are built by drawing auxiliary lines,
optical reformations and new modified figures, and therefore mathematical
thinking becomes more completed in this way. Therefore the geometric
representations of real numbers enrich their teaching, connecting it
historically with the discovery of incommensurable magnitudes and the
relevant theory of Eudoxus. Following these historical steps of the human
thought is therefore a good way for helping students to accept the existence
of incommensurable magnitudes.

% In this case, if we denote by /x/ the integral part of x, we have that [x] = K, and at the
same time that [X] =«y+/, which is absurd! Therefore there is a debate in the literature
whether or not decimal expansions of the form x, 9 are representing real numbers; e.g. see
[15]. Fortunately the results obtained when using these representations are conventionally
correct because the corresponding operations could be performed in an analogous way
among the sequences of the partial sums of the corresponding series. This allows us at
elementary level to pass through this sensitive matter without touching it at all.
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Another crucial matter for the instructor is to find the proper way to
explain to students the continuum of R with respect to the density of Q. In
other words to persuade them that in a given interval of numbers it is
possible to have an infinite number of elements of a certain type (rational
numbers) and at the same time to be able to add an infinity of elements of
another type (irrational numbers), when this is not compatible with the usual
logic and intuition. It seems that the use of the geometric representations of
real numbers is a proper way to deal with this problem (an interval of points
on the real axis cannot be “filled” with rational points only). The difficulty
in this case is that most of the irrational numbers, like3/;, 7, e, etc, are

associated with lengths of line segments that cannot be constructed
geometrically. Therefore, we correspond to all these numbers points of the
real axis in an approximate way by using their finite decimal
approximations and our fantasy".

However, things became more complicated when we arrived to the
natural, but crucial, question asked by students: “Which numbers can be
written in the form of an incommensurable decimal number?” At the lower
high-school level (Gymnasium) students learnt that this happens with the
square roots of positive rational numbers that they cannot be exactly
determined (i.e. they have not an exact value). Later, at the upper high-
school level (Lyceum), they learnt that this also happens with the n-th roots,
neN, n>2. However, as the instructor emphasized at this point, the
converse is not true, since they are incommensurable decimal numbers that
cannot be written as roots, or in a more general expression they are not roots
of an algebraic equation with rational coefficients. Thus we arrive to the
concept of the transcendental numbers. This new kind of numbers usually
activates students’ imagination and increases their interest by creating a
pedagogical atmosphere of mystery and surprise. The instructor informed
students (without giving any proofs) that the set of algebraic numbers is a
denumerable set, while, as Cantor has proved, the set of transcendental
numbers has the power of continuum (i.e. it is equivalent with the whole set
R of real numbers, “filling” all the points of the real axis).This practically
means that transcendental numbers are much more than algebraic numbers,

* Mathematically speaking the above correspondence is based on the principle of the
nested intervals connected to the method of Dedekind cuts for defining the real numbers
(e.g. see section 2 of [13]), an approach not compatible with an elementary presentation of

real numbers to students.
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but, apart from some characteristic examples, like m and e, the information
that we have about them is very small relative to their multitude. That is
why one can characterize them as a “black hole” (in analogy with the
astronomical meaning of term) in the “universe” of real numbers [14].

In concluding, our general didactic approach included: A fertile
utilization of already existing informal knowledge and beliefs about
numbers, active learning through rediscovery of concepts and conclusions,
construction of knowledge by students individually or as a team in the
computer laboratory and in classroom. Construction of knowledge followed
in general student’s perspective, while teacher’s role was limited to the
discussion in the whole class of wrong arguments and misinterpretations
observed. The teaching process was based on multiple representations of
real numbers (rational numbers written as fractions and periodic decimals,
irrational numbers considered as non rational ones and as incommensurable
decimals which are limits of sequences of rational numbers, geometric
representations, etc) and on flexible transformations among them. It was
hoped that this approach could help students in building a powerful schema
for real numbers.

At the end of the instructional unit students of both groups completed a
new ten-item post-instructional written questionnaire (see Appendix II).
Students were instructed to work on the questionnaire individually and to
answer each question thoroughly. The instrument counted as a progress
grade added to the course’s final exam results. The results of the post-
instructional test for the two student groups are presented in the following
table:

Table 2: Results of the post-instructional test

Experimental group (G)

% Scale Grade Number of % of students
Students
89-100 A 3 33
77-88 B 21 23.3
65-76 C 28 31.1
53-64 D 22 24.4
Less than 53 F 16 17.8
Total 90
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Control group (G»)
% Scale Grade Amount of % of students
students

89-100 A 1 1
77-88 B 10 10
65-76 C 37 37
53-64 D 31 31

Less than 53 F 21 21

Total 100

4. Application of fuzzy logic in assessing the student’s performance

As we have already stated in our introduction, we have applied
principles of fuzzy logic in comparing the results of performance of the two
groups of students of the previous experiment by implementing on the
experiment’s process the following fuzzy model and the defuzzification
technique known as the centroid method. According to this method, the
centre of gravity of the graph of the membership function involved provides
an alternative measure of the system’s performance. The application of the
centroid method in practice is simple and evident and, in contrast to the
measures of uncertainty which can be also used as alternative
defuzzification techniques (for example see [11] and its references), needs
no complicated calculations in its final step. The techniques that we shall
apply here have been also used earlier in [7], [16-18], etc.

For a better understanding of the present section, the readers who are
not familiar with fuzzy logic are advised to study first the introduction of
[18], where the basic principles of this multi-valued logic are briefly
presented. For a detailed description of the fuzzy sets theory, the ideas and
principles of fuzzy logic and the uncertainty connected to it we refer to the
book [4].

Here, for reasons of continuity, let us start with the definition of fuzzy
sets [24]: Let U be the universal set of the discourse, then a fizzy subset A of
U, or equivalently a fuzzy set in U is a set of ordered pairs of the form 4=
{(x, m(x)) : xe U}, where m: U— [0, 1] is the associated to A membership
function.

The value m(x) of each x in U is called the membership degree of x in
A. The closer is m(x) to 1, the better x satisfies the property characterizing 4.
For example, if A is the set of the tall students of a class and m(x) = 0.9,
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then the student x is rather tall. On the contrary, if m(x) = 0.2, then x is
rather short, while if m(x) = 0.5, then x is of middle height.

Obviously, any crisp subset 4 of U can be considered a fuzzy subset of
U with membership function m defined by m(x) = 1, if x belongs to 4 and
m(x) = 0, if x is not in 4. Most of the classical notions for crisp sets (e.g.
subset, intersection, union, complement, etc) can be generalized in terms of
the above definition to corresponding notions of fuzzy sets.

Now, given a fuzzy subset 4 = {(x, m(x)): xe U} of U with membership
function m, we associate to each xe U an interval of values from a prefixed
numerical distribution, which actually means that we replace U with a set of
real intervals. Then, we construct the graph of the membership function
y=m(x). There is a commonly used approach in fuzzy logic to measure
performance with the pair of numbers (x., y.) as the coordinates of the
centre of gravity (centoid), say F., of the level’s section F contained
between the graph of m and the OX axis, which we can calculate using the
following well-known from Mechanics formulas:

I I xdxdy ) IJ. vdxdy

Y= ]‘J. dxdy e }Idxdy
G r (M

Concerning the described experiment, we characterize a student’s
performance as very low (F) if x € [0, 1), as low (D) if x € [1, 2), as
intermediate (C) if xe [2, 3), as high (B) if x € [3, 4) and as very high (A)
if x € [4, 5] respectively. Denote by G; the experimental group and by G;
the control group and set U = {A, B, C, D, F}.

We are going to represent the Gi’s, i=1, 2, as fuzzy subsets of U. For
this, if n;z n,p nic, n;p and n;4 denote the number of students of group G; who
achieved very low, low, intermediate, high and very high success
respectively, we define the membership function mg; in terms of the
percentages of the students who achieved the corresponding performance.
More explicitly for each x in U. we define *

* We recall that the methods of choosing the suitable membership function are usually
empiric, based either on the common logic (as it happens in our case) or on the data of
experiments made on a representative sample of the population that we study. For general
facts on fuzzy sets we refer freely to the book [4].
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IR if 80% n<n,<n
0,75, if 50% n<n, <80% n
y=m; (x)=40,5 if 20% n<n, <50% n
0,25, if 1% n<n, <20% n
0, if 0<n, <1%n

Then G; can be represented as a fuzzy subset of U by G;= {(x, m, (x)) :

xe U}, 1i=1,2. Therefore in this case the level’s section F' defined by the
graph of the membership function of the corresponding fuzzy subset of U is
the bar graph of Figure 1 consisting of five rectangles, say F;, i=1,2,3,4, 5,
whose sides lying on the x axis have length 1. It is straightforward then to
check (e.g. see section 3 of [18]) that in this case formulas (1) give:

1
Xe :E(yl +3y,+5y; +7y4+9y5)9

| 2 2 2 2
yc:_(yl tY, tY; +y, T s )

2 (2)
with y; = m(x;) , where x; = F, x,=D, x3=C, x;,=B,xs5=A
> m(x)
xelU
respectively and Vitytystytys =1.

Further, using elementary algebraic inequalities, it is easy to check that
y12+y22+y32+y42+y522%, with the equality holding if and only if
y1=y2=y3=y4=y5=% (e.g. see section 3 of [18]). Then a combination of
formulas (2) shows that the unique minimum value for y. (y. = %)

corresponds to the centre of gravity F,, (3,1 ).
2 10

The ideal case is when y;=y,=y;=y,=0 and ys=1. Then from formulas
(2) we get that x, = 2 and y. = 1. Therefore the centre of gravity in this
2 2

case is the point F; (2, 1). On the other hand, the worst case is when y;=1
2 2

HMS 1 JME, Volume 6. 2014 (120-142)



The APOS/ACE Instructional Treatment for Mathematics: A Fuzzy Approach 135

and y,=y;=y,= ys=0. Then from formulas (2), we find that the centre of
gravity is the point F,, (1, 1).
2 2

¥

m{DZ‘ L e o gy
m(F)
micyy T T
mgA‘%T' A
: A
01551020384 i X

Figure 1: Bar graphical data representation

Therefore the “area” where the centre of gravity F. lies is represented
by the triangle Fy, F, F; of Figure 2.

Y A
i T, | Fy
2 A N ! |
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1 ] 1 I
] I I
: ] ] X :
1 1 ! ! 1
I I | 1 1
1
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0 1ox s X, 9 %
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Figure 2: Graphical representation of the “area” where the centre of
gravity lies

Then from elementary geometric considerations one obtains the
following criterion for comparing the groups’ performances:
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o Among two or more groups the group with the biggest x. performs
better.
o [f two or more groups have the same x. > 2.5, then the group with
the higher y.performs better.
o If two or more groups have the same x. < 2.5, then the group with
the lower y. performs better.
For a more detailed description of the centroid defuzzification
technique see section 3 of [18].
We apply now this model to the data of Table 1 (pre-instructional test,
see section 3). The two student groups can be represented as fizzy subsets
of Uby Gi= {(A, 0), (B, 0.25), (C, 0.25), (D, 0.5) (F, 0.5)} = G,

Therefore the students of the two groups responded similarly to the
questionnaire’s items.

In the same way, on applying the model to the data of Table 2 (post-
instructional test, see section 3) we represent the two groups as fizzy subsets
of Uby G={(A, 0.25), (B, 0.5), (C, 0.5), (D, 0.5) (F, 0.25)} and

G2={(A, 0), (B, 0.25), (C, 0.5), (D, 0.5) (F, 0.5)}.

Then, from the first of formulas (2), we find for the pre-instructional
test that x.= 0.5%(0.5+3*0.5+5*0.25+7*0.25+9*0) = 2.5 for both groups,
while for the post-instructional test we find that
x.= 0.5%(0.25+3*0.5+5*%0.5+7*0.5+9*0.25) = 5 for the experimental group
and x.= 0.5*%(0.5+3*0.5+5*0.5+7*0.25+0*9) = 3.125 for the control group.

So, according to the above stated criterion, both groups demonstrated a
better performance in the post-instructional with respect to the pre-
instructional test (as it was logically expected), but the experimental group
demonstrated a significantly better performance than the control group in
the post-instructional test. Notice also that two analogous experiments were
performed during the academic year 2011-12. In this case the students’
performance was assessed by applying the classical GPA method ° and the
results obtained were similar to the above experiment [20].

® The Great Point Average (GPA) is a weighted average of the students’ performance. For
this, if # is the total number of students and 5 Ty T Ty o denote the numbers of students

getting the marks A, B, C, D, F respectively, GPA = 0.2 +1.n, +2.n0 +3n, +4n,
n

Obviously we always have 0 < GPA < 4.
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In concluding, it seems that the application of the APOS/ACE teaching
style enhances significantly the students’ understanding of the real numbers
in general and of the irrational numbers in particular.

5. Discussion and conclusions

Fuzzy logic, due to its nature of including multiple values, offers a
wider and richer field of resources in assessing the students’ performance
than the practice usually applied in bivalent logic does. This gave us the
impulsion in this paper to introduce principles of fuzzy logic on comparing
the performance of two student groups concerning the comprehension of
real numbers in general and of irrational numbers in particular. The first
group was taught the subject in the traditional way (control group), while
the APOS/ACE instructional treatment was applied for the second group
(experimental group). The APOS/ACE theory for learning and teaching
mathematics, developed during the 1990’s by Ed Dubinsky and his
collaborators, is based on principles of Piaget for the learning process and
one of its central characteristics is the use of computers as a teaching tool.

The two groups were represented as fuzzy subsets of the set of the
grades (from A to F) achieved by the students in a pre-instructional and a
post-instructional test and the c¢entroid defuzzification technique was
applied on comparing their performance.

The results of our classroom experiments, performed during the
academic years 2011-12 and 2012-13 at the graduate T.E.I of Western
Greece showed that the application of the APOS/ACE approach for teaching
the real numbers in general and the irrational numbers in particular can
effectively help students for building a powerful cognitive schema for the
basic sets of numbers.

However, all those discussed in this article must not be considered as an
intention to impose a model of teaching (at an elementary level) the real
numbers. On the contrary, our general belief is that the instructor should be
able to make a small “local research”, readapting methods and plans of the
teaching process according to the teaching environment and the special
conditions of each class [9]. Therefore this is simply an effort to introduce
an alternative approach that could help the instructor to reconsider and
organize better his/her teaching plans for this subject.

Among our future research plans is the performance of more classroom
experiments with different groups of students (high school students as well!)
in order to obtain statistically stronger results and conclusions. It will be
interesting also to apply to the same data, on the one hand assessment
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techniques of the students’ performance based on fuzzy logic, and on the
other hand usual assessment techniques based on classical logic (like the
GPS method mentioned above), and then to compare and analyze their
results, advantages and disadvantages. Furthermore, since the centroid
deffuzzification technique is part of a general fuzzy model introduced in
earlier works ([12], [17]) for dealing with situations in a system’s operation
characterized by a degree of fuzziness and/or uncertainty, another direction
of our future research concerns the effort of representing in terms of this
model even more such situations related to several sectors of the human
activity (e.g. education, management, artificial intelligence, everyday life,
etc).
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Appendix I: Pre-instructional questionnaire
1. Which of the following numbers are natural, integers, rational, irrational
and real numbers?

-2, _g , 0, 908, 5, 7333., x=31415.., 3, —J4,

2

221 5\/5) bl \/g » (\/§+2)(\/§_2)) —\/g) ﬁ_21 (éj
11 J20 2 3

2. Are the following inequalities correct, or wrong? Justify your answers.
2_ 14 202,

3 217 1001

3. Convert the fraction % to a decimal number. What kind of decimal number

is this and why we call it so? .

4. Find the integers and the decimals with one decimal digit between which
lies+/2 . Justify your answers.

5. Find two rational and two irrational numbers between 10 and 20. How
many irrational numbers are there between these two integers?
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Appendix II: Post-instructional questionnaire
1. Which is the exact quotient of the division 5:7?
2. Are 2.8254131131131... and 2.00131311311131111... periodic decimal
numbers? In positive case, find the period and convert the corresponding
number to a fraction.
3. Find the square roots of 9, /00 and /69 and describe your method of
calculation.
4. Characterize the following expressions by C if they are correct and by W if
they are wrong: 2 =1.41, 2 =1.414444..., 2 ~1.41, there is no exact
price for /2.
5. Find two rational and two irrational numbers between /70 and+/20 . How
many rational numbers are there between these two square roots?
6. Are there any rational numbers between 1_11 and L ? Tn positive case, write
down one of them. How many rational numbers are between the above two
fractions?
7. Are there any rational numbers between /0.2 and /0.22? In positive case,
write down one of them. How many rational numbers are in total between the
above two decimals?
8. Characterize the following expressions as correct or wrong. In case of
wrong ones write the corresponding correct answer.

B+5=B+05 B-7=3+7 \E = V2 , the unique solution of the equation
2 b 9 3

¥=3isx=4/3, J(l—Jﬁ)z =1-17

9. Construct, by making use of ruler and compass only, the line segments of
length 5 and find the points of the real axis corresponding to the real
numbers +/5 and -+/5 . Consider a length of your choice as the unit of lengths.
10. Is it possible for the sum of two irrational numbers to be a rational
number? In positive case give an example.
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