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Introduction 
As the mathematical culture of every man and every culture is constructed and 

organized differently in the various seasons and regions of the globe, in the same 
diversified way are being built the directions of mathematical education and 
research on the particular circumstances of each country. 

Nowadays this organization is dynamically emerging from the interaction 
among the internationalized processes and the local processes. On the one hand the 
comparative studies, the international medals or the controversial private financial 
supports and in the other hand individual acts are conducing to universal 
mathematical discoveries and local learning activities to teaching innovations. The 
digital bridge of the network creates a new topos for the mathematical culture and 
for the mathematical education.  

In this area, between globalised standards for the mathematics education and 
the historicity of local mathematical communities and educational structures, the 
dialogue is open and intense while the teaching practices are now developed within 
the influences of the growing and antagonistic market of parallel educational 
services and products. 

Our journal tries to contribute in the persistence of the variety, in the 
coexistance and the exchange of different ideas about mathematics and their 
education.  

We believe that the improvement of mathematics teaching and learning in the 
entire world cannot be realized in a homogenous way. We have to organize and 
explore in a different mode the international comparative studies, profiting of the 
alternative views, the ecosystemic educational research, the digital and networking 
environment as well as the ethnomathematical approach.   

The International Journal for Mathematics in Education (HMS i JME) wishes 
to contribute in this orientation and are inviting our colleagues of the international 
community to send us their contributions. 

The sixth volume of the HMS International Journal for Mathematics in 
Education includes six research papers, four of them are respectively corresponded 
to four plenary speeches realized during the 31st Hellenic Conference of 
Mathematics Education on November 2014 titled “Challenges and Perspectives of 
Mathematical Research and Education in the Internationalized and Network Era” 
and two research papers.  
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The article of Ferdinando Arzarello titled “From Socrates to Sherlock Holmes: 
cultural, cognitive and didactical tools for pursuing the logic of inquiry in the 
classroom” concerns the introduction of activities using new technologies and 
if/how these relate with proving activities. Every activity in the classroom is 
shaped by cultural, epistemological, and cognitive analysis and the results one gets 
strongly depend on a combination of them, which vary with circumstances. He 
discussed such issues and illustrated them introducing some concrete examples 
from teaching experiences.  

The article of Jean Dhombres titled “Réflexions mathématico-historiques à 
l’âge du Net sur les réformes dans l’enseignement et les réactions à ces réformes” 
makes an overview on several mathematics textbooks concerning the evolution of 
history of mathematics and its relationship with mathematics education. 

The contribution of Karl Gustafson titled “The Future of Mathematics: From 
the Pure-Applied Debate to Reality” looks at Mathematics from Past to Present to 
Future, using case-studies approach, selecting key examples to illustrate and from 
which to learn.  

The contribution of Marianna Tzekaki titled “Mathematics Education for a 
new era” aims to investigate the following questions: In what society do we 
estimate that today's students will live, what will they face in the future and what 
disposition will they need to meet the requirements of the new era? Can 
mathematics education play a role in the development of this disposition and what 
goals need to be set, what content and what teaching approaches to meet these 
requirements? Isn’t it critical for researchers, programs’ designers and teachers to 
pursue systematic answers to these questions and bring in new advances to the 
teaching of Mathematics? 

Sonia Kafoussi, in her article “Can preschool children collaborate in 
mathematical tasks productively?”, investigates how pairs of preschool children 
collaborated productively during their efforts to solve mathematical tasks. 

Finally, Michael Voskoglou, in his article “The APOS/ACE Instructional 
Treatment for Mathematics: A Fuzzy Approach”, introduces principles of fuzzy 
logic on comparing the performance of two student groups concerning the 
comprehension of the real numbers in general and of the irrational numbers in 
particular.  
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Introduction 
For the second time in the last sixty years, some historical and cultural 

circumstances offer the opportunity to develop a global perspective of re-
form of mathematics education all over the world.  

Fifty years ago, the necessity of meeting the challenge of the Sputnik (a 
strong historical and political motivation), the crucial role taken by mathe-
matics in science and technology, and the extraordinary cultural enterprise 
of Bourbaki and its encounter with a leading personality in psychology, like 
Piaget, found in the OCSE-OCDE context the appropriate environment to 
launch the New Mathematics reform as the main road to increase mathemat-
ical (and reasoning) skills of the population of leading western countries. In 
the reality, the New Mathematics movement spread not only in the OCSE-
OCDE countries (with different influences on national curricula and practi-
cal implementations in school), but also in several African, Asiatic and 
South American countries. 

In recent years, globalization of economy, universality of technological 
development and related needs for manpower skills play the role of strong 
historical motivations for a reform that should bring to unified standards for 
mathematics in school not only in the 34 OCSE-OCDE countries, but in 
several other countries as well (keeping into account the political and cul-
tural leading role of OCSE-OCDE countries). 

As a consequence, in the international debate, many scholars, teachers 
and policy makers speak now of the 21st century competencies and consider 
important items like: “critical and inventive thinking; communication, col-
laboration and information skills; and civic literacy, global awareness and 
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cross-cultural skills.” (Ministry of Education, Academy of Singapore 
Teachers, 2014; see  
http://www.academyofsingaporeteachers.moe.gov.sg/professional-networks). 

In many countries people are working on the so called “21st century 
competencies framework”, in order to guide the development of the national 
curriculum and to design school-based programmes to nurture these compe-
tencies. 

 
Like 55 years ago (Royamont meeting, the launch of the New Mathe-

matics reform), OCSE-OCDE can play again a leading role in this new "re-
form movement", thanks to a very important cultural circumstance: the 
promotion of the PISA initiative, already so influential in many countries as 
concerns the change of local curricula and standards in order to meet the 
challenge of behaving well in that comparative assessment. Indeed PISA is 
not a neutral test to assess the 15-years olds students’ competencies; gradu-
ally it becomes a reference for a universal reform of the teaching of mathe-
matics, thanks to a more and more coherent, systematic and explicit framing 
of PISA test in a discourse on mathematical competences needed in today 
globalized society.  

PISA stresses the role of mathematical literacy as a central goal in 
mathematics education, because it improves the life chances of most stu-
dents, and justifies why mathematics is essential to describe, explain and 
predict the world.   According to PISA,  “mathematical literacy is an indi-
vidual’s capacity to formulate, employ, and interpret mathematics in a varie-
ty of contexts. It includes reasoning mathematically and using mathematical 
concepts, procedures, facts, and tools to describe, explain, and predict phe-
nomena. It assists individuals to recognise the role that mathematics plays in 
the world and to make the well-founded judgments and decisions needed by 
constructive, engaged and reflective citizens.” 
(see: http://www.oecd-ilibrary.org/education/pisa-2012-assessment-and-
analytical-framework_9789264190511-en). In their last publication (PISA 
2012 Results: 

Creative Problem Solving Students’ skills in tackling real-life prob-
lems, Volume V) they elaborate further this concept and speak of an “inno-
vative concept of “literacy”, which refers to students’ capacity to apply 
knowledge and skills in key subjects, and to analyse, reason and communi-
cate effectively as they identify, interpret and solve problems in a variety of 
situations;” (p.20). 

However, the failure of the New Mathematics reform suggests reflect-
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ing on the requirements for a new curriculum, suitable to escape the causes 
of the complete, or partial, rejection of the New Mathematics reform in so 
many countries. 

In particular, a reform movement should take into account: 
I) the existence of different epistemological and cultural positions concern-
ing mathematics and its relevance in the culture (the New Mathematics re-
form was refused by several outstanding mathematicians in the world for 
incompatibility of epistemological and cultural positions); 
II) the possible, cultural distance of the proposed reform from the mathe-
matical culture of the different countries (as an example of the importance 
of this issue, we can consider how in Italy the leading position of Dieudonné 
on geometry, so relevant in the design of the "new geometry", was in con-
trast not only with the positions of many mathematicians, but also with a 
widespread tradition in school of relevance for figural aspects, intuitive vis-
ual geometry, synthetic methods; another example concerns the difficulties 
met by the Modern Mathematics movement in the UK, due to the different 
cultural orientation of the teaching of mathematics in that country); 
III) the relationships with the culture and the personal contributions brought 
by the students in the classroom, so relevant to avoid the students' alienation 
from their cultural environment and to allow students to engage in learning 
in a productive way. 

A consequence of these reflections is that the communities of research-
ers, teachers and policy-makers must be aware that defining mathematical 
literacy raises a lot of issues, both from a scientific and from a cultural point 
of view. The word literacy itself is slippery not only linguistically but also 
epistemologically and politically: as someone pointed out (Jablonka, 2003, 
p. 77), trying to translate it into different languages is always a difficult, 
sometimes an impossible task; and also in the literature one finds more than 
one definition and many changes during the years.  This is clearly shown in 
the review paper about this topic written by Mogens Niss and Eva Jablonka 
in the Encyclopedy of Mathematical Education. For example, it is there ar-
gued that ML is “a socially and culturally embedded practice, and …[its] 
conceptions … vary with respect to the culture and values of the stakehold-
ers who promote it”. Moreover in that paper it is summarized a review of 
literature made by Jablonka (2003, pp. 75-102), which “identifies five agen-
das on which conceptions of mathematical literacy are based. These are: 
developing human capital (exemplified by the conception used in the 
OECD-PISA), maintaining cultural identity, pursuing social change, creat-
ing environmental awareness, and evaluating mathematical applications” 
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(Niss & Jablonka, ibid.): the differences in approach are directly linked with 
the goals that are pursued in mathematics education in individual countries.  

Also the PISA definition of ML has changed in time and the current 
one is the most known because of its important testing studies; but no one 
can say that tomorrow it will not change again (e.g. see the fresh elaboration 
pointed out above). And in many national frameworks there are different 
formulations, according to their cultural traditions. Moreover, if one consid-
er the concrete items of PISA, this wide definition is somewhat reduced, as 
it is natural when one has to constrain it into items to which the students (at 
the age of 15 years) are asked to answer in a few minutes.  A typical exam-
ple is the notion of mathematical proof, which was practically absent up to 
20091 and starts appearing in the last items.  
 

It is clear that today (much more than sixty years ago!) a partial unifica-
tion of standards for mathematics teaching all over the world is necessary, 
in order to enable citizens to acquire a common mathematical toolkit to deal 
with technology, quantitative and graphical information provided by media, 
problem solving and decision making in the workplace and in ordinary life. 
Also keeping the worldwide experience of the New Mathematics reform in-
to account, the crucial issues to be dealt with in order to avoid the dangers 
of cultural refusal of the reform, and of cultural alienation and of loss of cul-
tural richness if it not refused, are: 
- the cultural and epistemological openness of the reform movement; 
- the space left to cultural differences in the elaboration of the national 
standards and in the related educational aims; 
- the space ensured to the dialogue with the students' cultural experience and 
personal contribution in the teaching and learning of mathematics; 
- the development of teachers' and students' awareness about the multiplicity 
of the mathematical experience (from mathematical games to modelling of 
social and natural phenomena – the last PISA documents define also a fi-
nancial literacy; from the construction of new algorithms, to the discovery 
of new properties). 

For all these reasons it is important that teachers have clear such a land-
scape and keep a critical approach in designing their programs and tasks for 
the students. A typical touchstone for this issue is the introduction of activi-
ties using new technologies and if/how these relate with proving activities. 

																																																								
1 Organisation for Economic Cooperation and Development, (1999). Measuring Student 
Knowledge and Skills: A new Framework for Assessment. Paris: OECD.  
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Here it is easy losing one’s way and going behind fresh proposals only be-
cause these are or seem new, without submitting them to “the court of rea-
son”, namely forgetting to check their validity with a careful cultural, epis-
temological, and cognitive analysis.  In fact, every activity in the classroom 
is shaped by these three components and the results one gets strongly de-
pend on a combination of them, which vary with circumstances.  For exam-
ple it is easy to find statements, which speak of the death of proof because 
of the introduction of computers in mathematical practice, hence pushing 
towards its elimination from mathematical activities.  

I wish to discuss exactly such issues, but instead of presenting only the-
oretical reflections I prefer to illustrate them introducing some concrete ex-
amples from teaching experiences I coached in my country. In these the 
three components have been carefully taken in consideration both in the 
process of designing the tasks and during the development of the teaching 
activities in the classrooms.  

My aim is to contribute in this way to the debate about the theme of the 
2014 Hellenic Mathematical Society Congress “Challenges and 
Perspectives of Mathematical Research and Education in the 
internationalized and Network Era”. 
  

Tools and proving activities in mathematics 
As recalled above, in the PISA definition of mathematical literacy we 

find the capability of “using […] tools to describe, explain, and predict phe-
nomena”.  In fact many national curricula at all grades suggest involving 
students in the use of (concrete or virtual) tools to model phenomena and to 
enter into mathematical ideas. This is not a novelty at all: the links between 
mathematics, natural sciences and technology, as well as the role of basing 
mathematics teaching on intuitive and empirical stances are in the fore-
ground from the early documents of the International Commission on Math-
ematical Instruction (Bartolini Bussi et al., 2010; Ruthven, 2008; see also 
Smith, 1913). This represented and still represents a foundational theme for 
ICMI: for example, the role of new technologies in mathematics education 
have been the focus of two ICMI Studies within the last 30 years and the In-
ternational Community of Teachers of Mathematical Modeling and Applica-
tions (ICTMA, http://www.ictma.net/) has been an ICMI affiliated study 
group since 2003 (see http://www.icmihistory.unito.it/ictma.php#9).  

“In mathematics education, the availability of Information and Com-
munication Technologies (ICT) has changed the landscape, including the 
belief that digital objects can substitute for the references to the concrete 
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world where we live” (Bartolini Bussi et al., 2010, p. 20; see also the web-
site http://nlvm.usu.edu/en/nav/vLibrary.html). However, these changes in 
the landscape do not mean that we have to throw away all the past: we 
should risk throwing the baby out with the bathwater. In other words, mod-
elling and applications can be pursued within “an approach that does not 
neglect, but rather emphasizes, the cultural aspects of mathematics, going 
back to the prominent founders of modern mathematics and taking ad-
vantages of the ICT support” (ibid.). This program is widely present in 
many researches all over the world (for a summary see: Bartolini et al., 
2010). My claim is that in order to design suitable learning situations in the 
classroom, where manipulative materials and instruments can be used to 
support learning, it is necessary carefully investigating the cultural, episte-
mological, and cognitive roots of mathematical concepts (Tall, 1989; Boero 
& Guala, 2008). This investigation will clarify how manipulative materials, 
instruments and ICT, suitably combined together in real and virtual envi-
ronments, can help students to grasp those concepts, basing learning on 
what today, grounding on fresh research results (see Hall & Nemirovski, 
2012), is called an embodied approach to mathematics learning. This was 
also present in the old documents of early ICMI (see: Ruthven, 2008) and in 
other coeval researches (e.g. in Enriques, 1906-1914), generally supported 
more by pure speculations than by scientific research or empirical evidence.  

Using instruments in mathematics classes immediately poses a prob-
lem: how do they link with the rigorous formal aspects of the discipline, in 
particular with the teaching of proof? Answering this question in a proper 
way is crucial in order to avoid misunderstandings, some of which are dif-
fuse in several research articles: they are at the origin of a sort of comedy of 
errors about proof, which I think absolutely necessary to avoid.   

 
In these last twenty years there have been heated discussions in mathe-

matics and mathematics education that have called into question the role of 
proof. In the nineties, a number of recent developments in mathematical 
practice, most of them reflecting in some way the growing use of comput-
ers, caused some mathematicians and others to call into question the contin-
uing importance of proof or indeed to announce its imminent death (Horgan, 
1993). One of the developments that prompted Horgan's announcement was 
the use of computers to create or validate enormously long proofs, such as 
that of the four-colour theorem by Appel and Haken, or of the solution to 
the party problem by Radziszowski and McKay.   
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These speculatiions had strong consequences on some curricula: in fact thay 
caused a serious turn away from proof: 

“Over the past thirty years or so proof has been relegated to a less prominent 
role in the secondary mathematics curriculum in North America.  
This has come about in part because many mathematics educators have been 
influenced by certain developments in mathematics and in mathematics edu-
cation to believe that proof is no longer central to mathematical theory and 
practice and that its use in the classroom will not promote learning in any 
case.  
As a result many appear to have sought relief from the effort of teaching 
proof by avoiding it altogether. 
… 
The influence of these developments in mathematics has been strongly rein-
forced by the claims of some mathematics educators, inspired in part by the 
work of Lakatos, that deductive proof is not central to mathematical discov-
ery, that mathematics is fallible in any case, and that proof is an authoritarian 
affront to modern social values and even hinders learning among certain cul-
tural groups.” (G. Hanna, 1996) 

For example, in 1989 NCTM Standards proof is explicitly de-
emphasized. They cite the difficulty of teaching and learning to do proofs, 
underlining that that: 

- the amount of time proof takes up, which is out of proportion to its 
benefit;  

- the fact that proof is really unnecessary for the majority of students, 
including many of those who are college-bound;  

- proof’s tendency to convey a picture of a static subject in which the 
students simply re-hash geometrical facts which have been known 
for 2500 years. 

By the time the Standards was published (1989) by the National Coun-
cil of Teachers of Mathematics (NCTM) in the United States, the concept of 
proof had almost disappeared from the curriculum (Greeno, 1994) or shrunk 
to a meaningless ritual (Wu, 1996).  

This de-emphasis on proof in the 1989 version of the Standards created 
a tension within the document. The 2000 version of the Standards amelio-
rated this tension: moving away from the standard idea of proof, as a purely 
formal object they made explicit fresh functions of proof that should feature 
its teaching in the school, and stated goals of treating and teaching mathe-
matics “as reasoning” and “as communication.”  

This revised outlook on proof is, no doubt, a response to a great deal of 
literature generated in the decade after the publication of the first Standards 
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document. This body of work sprang up partly in explicit defence of proof 
(e.g. Epp, 1994; Greeno, 1994; Hanna, 2000), and partly to support and fill 
in the NCTM’s overall picture of what mathematics education should be. In 
light of that research, the NCTM was able to revise and hone its aims. But 
even the 2000 Standards are rather vague about just what the value of proof 
is. 

Assurance of truth is only one of proof’s roles in mathematics, in the 
classroom or in professional practice. We should note that presenting justi-
fication as the sole reason to do proof has a few weaknesses, and some ar-
gue that because of these weaknesses, there is no need to teach proof in 
schools. For example: as it turns out, most students are not as convinced by 
a rigorous proof as they are by a number of examples or “empirical” evi-
dence. 

They may be happy to take a teacher’s—or Euclid’s—word for the truth 
of the Pythagorean theorem or by their own investigation of examples.  
Another weakness is that if students are presented with a picture of proof 
which makes it seem as though proof’s value lies in confirming facts, they 
may easily be turned off. 

Proving things we already know to be true, they are likely to see no 
point in the exercise of proving.  

The reply to this objection is twofold; there are so to say, ethical argu-
ments. First, of course it doesn’t matter that they’re convinced by empirical 
arguments; they shouldn’t be, and part of the point of education is to teach 
them not to be. They should value rationality over authority. Second, stu-
dents can be led astray from intuition and perceived patterns. But there are 
also more concrete arguments: proofs can become the essential part of 
mathematical activities in the classroom, provided they become an integrat-
ed process in the process of discovering mathematical concepts and truths: a 
classroom climate can be created so that the students themselves bocome 
the mathematical authority. They can argue about problems and solutions, 
bringing reasons to bear on the problem, and accepting a proof only when 
they themselves are convinced by it. In a word, teachers can create a class-
room climate, according to which students enters into what I call the logic of 
inquiry, which will be made explicit below. 
When proof is introduced in such a fashion, its value in the classroom is 
quite apparent: students learn to rely on arguments and reasoning rather than 
authority, they make use of their factual knowledge, and they come to a 
deeper understanding of the way mathematical facts are related. Experi-
mental and theoretical features will not be seen any longer as contrasting but 
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as complementing components of processes that coach students to investi-
gate, conjecture, and prove. 

The manifesto of this approach is featured by the following passwords: 
- Finding if 
- Establishing that 
- Ascertaining why 
- Settling why not 
- Investigating what if 

They can guide the following steps in students’ processes: 
- if you can prove, 
- then you can explain, 
- which means you have active metacognitive processes, 
- so you can solve problems, 
- and therefore you understand mathematics. 

These steps can be enormously facilitated by the use of tools and par-
ticularly of ICT: in fact old and new technologies − from the old rule and 
compass to nowadays i-phones − allow a crucial mediating role for the in-
troduction of mathematical concepts and for triggering and supporting the 
steps of the logic of inquiry listed above. 
 

Using instruments introduces an “experimental” dimension into math-
ematics:  

“Experimental mathematics is the use of a computer to run computations —
sometimes no more than trial-and-error tests— to look for patterns, to identi-
fy particular numbers and sequences, to gather evidence in support of specif-
ic mathematical assertions that may themselves arise by computational 
means, including search. Like contemporary chemists —and before them the 
alchemists of old— who mix various substances together in a crucible and 
heat them to a high temperature to see what happens, today’s experimental 
mathematicians put a hopefully potent mix of numbers, formulas, and algo-
rithms into a computer in the hope that something of interest emerges.”  
(Borwein & Devlin, 2008, p. 1) 

For an amazing example see also the discussion in the Devlin’s angle:  
http://www.maa.org/devlin/. 

It is so generated a productive dynamic tension between the empirical 
nature of activities with instruments, which encompasses perceptual and 
operational components and the deductive nature of mathematics, which en-
tails a rigorous and sophisticated formalization. From the one side, there is a 
strong historical and epistemological ground for such an approach: in fact, 
from straight-edge and compass to a variety of computational and drawing 
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tools, throughout history instruments have been deeply intertwined with the 
genesis and development of abstract concepts and ideas in mathematics 
(Ruthven, 2008). From the other side, the current great diffusion of ICT in 
all aspects of everyday life pushes towards a massive use of such tools in 
the school. The learning landscape is deeply and rapidly changing because 
of them: sometimes it seems that digital objects can substitute for the refer-
ences to the concrete world where we live, which in fact is a questionable 
and delicate issue. I will show the pedagogical possibilities offered by the 
tension between these two aspects with some emblematic examples taken 
from teaching experiments I coached in Italy. 
The first two show how a concrete instrument can help to digging into deep 
mathematics ideas.  
 

The second part of the talk will show examples where ICT are used to 
face elementary geometry problems in the first years of secondary school: 
specifically I will show two different uses of Dynamical Geometry Software 
(DGS) in the classroom, depending on the available technology in the 
school. In fact, the evolution of technology makes possible different practic-
es, specifically related to the way users can interact with the screen: from 
the drag and drop actions with the mouse to the tap, drag, and flick with 
one or more fingers on the screen of multi-touch devices and from the one-
to-one interactions of the former to the multiple simultaneous interactions 
that the latter makes possible (Park et al., 2011). These different technologi-
cal features allow designing different tasks, which can change the cognitive 
processes of students and deeply modify their mathematical inquiries. The 
main result of such changes consists in a different and possibly better ap-
proach to proving activities in the classroom. Roughly speaking, as we have 
had a first shift and improving passing from paper and pencil environments 
to DGS with drag and drop activities (e.g. Cabri géomètre, Sketchpad, etc.: 
Arzarello et al., 2012), now we have a further shift and improvement with 
the transition to multi-touch environments (e.g. Geometric Constructor, 
SketchPad Explorer, Sketchometry, etc.: Arzarello et al., 2014) and to the 
variety of simultaneous fingers’ actions they allow. In the talk I will under-
line analogies and differences between the two, discussing the advantages 
that each of them make possible.  
 

Digging into the concept of space with instruments  
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The geometry of the Greeks was essentially a science of figures; with 
Riemann it became a "science of space". Poincaré went even further; he 
showed that it is the movement to create the concept of space:  

“un être immobile n'aurait jamais pu acquérir la notion d'espace puisque, ne 
pouvant corriger par ses mouvements les effets des changements des objets 
extérieurs, il n'aurait eu aucune raison de les distinguer des changements 
d'état » [Poincaré, 1902, p. 78] ... « localiser un objet en un point quelconque 
signifie se représenter le mouvement (c'est-à-dire les sensations musculaires 
qui les accompagnent et qui n'ont aucun caractère géométrique) qu'il faut 
faire pour l'atteindre.” (Poincaré, 1905, p. 67). 

For Poincaré, it is the presence of the body, especially our body, and of 
movements, our movements, to generate the notion of space. For Poincaré, 
as for Riemann and unlike Kant, there is no a priori geometric theory of the 
world. Instead, this is built from the material world, even though our « sen-
sations musculaires ... n'ont pas de nature géométrique ». 

Today, advances in mathematics and logic, on the one hand, and in neu-
roscience and cognitive science, on the other hand, allow us to deal with the 
problem of the relationship between the geometry and the material world 
with more accuracy and to understand why certain choices are meaningful. 

As a result, the ideas of Poincaré, but also of others, such as F. En-
riques, H. Weyl, J. Piaget have a scientific basis more actual than ever. This 
issue is proved by several studies: for example, from researches conducted 
in recent years by the group Gèomètrie et Cognition at the École Normale 
Supérieure in Paris, coordinated by G. Longo, J.L. Petitot and B. Teissier. 
They illustrate the possibility and nature of approaching geometry (and 
mathematics in general) according to a genetic stance. For example, studies 
of A. Berthoz, a distinguished physiologist at the College de France, who 
actively contributes to the group, highlight that when one catches a ball, 
she/he realizes the multi-sensory integration of her/his different reference 
systems (Berthoz, 1997, p.90), which can "simulate" the space of percep-
tion. What we call the position, velocity and acceleration of the ball is rep-
resented in the various systems of representation of the retina to the arm 
muscles. This is where comes from our "geometric intelligence" as human 
beings. It is built as a network of encodings and/or of analogic representa-
tions, which are obtained through the practices of our actions in the world. It 
is the invariance of these representations and encodings to generate the in-
variance of our conscious representations, such as those of language 
(Gallese and Lakoff, 2005), and finally the space of the most invariant rep-
resentations: those of mathematics. 
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It is important to consider these studies in order to designe suitable 
learning trajectories for geometry. In fact, its epistemological foundation re-
veals its deep cognitive roots (D. Tall, 1989): this is what H. Weyl called 
sufficient conditions for the emergence of a theory, namely those conditions 
which require exactly this theory and make it possible. For this reason, the 
geometry must be addressed in the same context according to which we act 
in the world: indeed, the objectivity of geometric conceptualization derives 
from its own constituent processes. 

It is therefore necessary to develop a teaching method based both on the 
epistemological basis of the discipline, as well as on the cognitive aspects of 
its learning. 

In fact, we can distinguish two modes of learning (Antinucci, 2001): the 
symbolic-reconstructive and the sensory-motor way. 
In a nutshell, the symbolic reconstructive way: 

 is based primarily on the interpretation and exchange of symbols (language, 
mathematics, logic); 

 reconstructes in the mind the objects and their meaning through mental rep-
resentations from the symbols themselves; 

 is the most sophisticated and evolved way, through which we learn; 
 its work takes place entirely in the mind and exchanges with the outside 

world are mediated by linguistic symbols; 
 is conscious and very tiring. 
 The sensory-motor way instead: 
 takes place in a continuous exchange of perceptual inputs and motor out-

puts with the outside; 
 often occurs at an unconscious level, so it is a very less tiring work. 

The knowledge that comes from the symbolic reconstruction is always 
and only verbally expressible and does not occur spontaneously. What 
comes from the perceptual-motor way tends to be internalized and contextu-
alized in a spontaneous manner. Thus, the human beings take it, whenever it 
is possible. 

The sensory-motor approach must be considered when designing teach-
ing situations: in fact the students, when exposed to such situations, can 
spontaneously develope ideas, making sense of them, basing exactly on this 
approach. This means that we need to introduce students to the cognitive 
and cultural roots of concepts (Tall, 1989; Guala & Boero, 2008) in an ap-
propriate manner. It is the responsibility of the teacher to push this personal 
feelings, spontaneously produced by the students, towards the scientific 
meaning of concepts, supporting them towards the symbolic reconstructive 
path. To get this aim, appropriate tools and materials can be used. 
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It is interesting noticing that traditional mathematics instruction tends to 
be transmissive and based almost exclusively on a symbolic reconstructive 
method. On the contrary, the didactic use of various technological tools (not 
just the computer), internet, etc.. tends to produce a perceptual and motor 
learning, opposite to what happens using just books. 

The slogan of this teaching method that inspires my presentation is the 
following quotation from Simon Papert (1980): "We learn best by doing, we 
learn even better, provided we connect our doing to a discussion and a re-
flection on what we did". 

The "psychological genesis" of geometric concepts (and mathematical 
ones in general) is a problem that can not be avoided in the school. A care-
ful selection of experiences, from which we can start our interventions, is 
essential. They must be consistent with the concepts to teach both from a 
cognitive and a cultural point of view. Any educational project for geometry 
therefore requires a substantial critical analysis of its fundamental concepts. 
I will show what I mean with an example, which is fundamental for geome-
try: the notion of a straight line. In Euclid's Elements (Def. 4) we find the 
following definition: 

Εὐθεῖα γραμμή ἐστιν, ἥτις ἐξ ἴσου τοῖς ἐφ᾿ ἑαυτῆς σημείοις κεῖται  
[A straight line is “a line that lies evenly with the points on itself”, 

translation of Heath, 1956]. 
Texts in modern elementary geometry (e.g. Hilbert, 1899), as we know, 

do not give any explicit definition of straight line, since its meaning is con-
veyed implicitly by the axioms: they distill its intuitive sense in a formal 
system (which is typical of a symbolic reconstruction). Often this seems 
meaningless to students. Also the modern approach to geometry using linear 
algebra gives similar results (Dorier, 1997). 

What experiences can really make sense and be understandable for our 
students? 

Euclid seems to refer to the concept of symmetry. Experiences related 
to this idea can consist in folding the paper: whatever way you fold a sheet 
of paper, you always get a (part of) a straight line. You can either use a 
"visual" approach, following the idea of Enriques that projective geometry 
is linked to visual sensations. Another approach is to ask how to draw (a 
part of) a straight line: a ruler is fine, but the question arises whether the rul-
er is "right" or “wrong”. Here, you can use a "mechanical" control (follow-
ing Lobachevsky): we make two identical copies of the ruler and put each of 
them exactly on the top of another in all possible pairs: if all the three pairs 
fit, it is sure that we have a right ruler. 
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Basically, if one makes a critical analysis of the concept of straightright 
line, she or he finds the following cognitive and cultural roots: 

a) symmetry; 
b) walking straight on; 
c) the shortest line. 

We note that all three aspects are useful when one feels immersed in an 
unknown space and tries to understand how she/he can produce a straight 
line. In fact,  the three aspects can produce a perceptual motor learning. 

The idea is not new: Enriques (1906, § 11) points out that, in order to 
introduce the curvature of a surface "Gauss put forward a suggestive argu-
ment, which was subsequently taken over by Helmholtz and Clifford, and 
usually goes under the name of the first of these two philosophers. Imagine 
the existence of small animals on a surface, which are free to move by 
crawling on it. We equip these imaginary beings of spatial intuition, which 
can help them to direct their movements in the surface forming their own 
space. Two similar animals, one of which moves in a plane, the other over 
an area slightly curved, could also be driven by one and the same geometric 
intuition, namely imagining their own space like a plan". 

Translated in another way, if I imagine to be a small animal, how can I 
imagine to produce a straight line? Walking stright on (idea b). What does 
that mean? I could actually be on a curved surface, and have no perception 
of it. Then I have to move my feet ideally drawing a line where my feet are 
arranged symmetrically with respect to this (idea a), and I have not to  curve 
(idea b), nor making my way longer (idea c). Using the language of D. Tall 
(1989), it is the cognitive root of the concept of geodesic. However the root 
is not only cognitive. 

There are several tools that have been historically used to generate 
straight lines: ropes stretched by the “Arpenodaptes” (= ropes stretchers) of 
ancient Egypt; the articulated mechanisms of Watt and of Peaucellier; fold-
ing sheets of paper. These are not only sensory-motor activities: the inter-
twining with the symbolic and reconstructive component is experienced and 
constantly stimulated by them. And this activity entails not only a cognitive 
behaviour, consistent with our biological being; it entails also cultural as-
pects of us as social beings. Indeed, the practices mentioned above have a 
cultural significance that the historical-critical analysis reveals (Radford, 
2003; Guala & Boero, 2008). 

In researches pursued in these last years in Italy my research team has 
designed teaching experiments for an approach to geometry in secondary 
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school based on these pedagogical and epistemological principles. I will 
present two of them. 

The first concerns the introduction of the notion of geodesic as a basic 
concept of geometry introducing it from a variety of perspectives (cognitive, 
epistemological and pedagogical) and within different rich geometric envi-
ronments: sphere, cone, cylinder, plan and finally (a little less simple) pseu-
do-sphere and using an instrument, the so called South-seeking chariot (fig. 
1), coming from the Chinese culture (Santander, 1992), which embodies 
important theorems of geometry (essentially the Gauss-Bonnet theorem) 
through the use of a differential gear, a mechanical device crucial for allow-
ing cars to steer without going outside the roadway and today massively 
present in each SUV. I will show how it can be used in the last years of sec-
ondary school to help students to think about the geometry of the universe 
and the notion of curvature of a surface. 

 
Figure 1. The South-seeking chariot (指南车, Zhĭ nán jū) 

 
The second concerns an approach to the notion of the area of a surface 

as a "swept area": the project is developed from the ideas of Kepler about 
the nature of planets rotation around the sun (first and second law) and ar-
rives even to calculate the area of irregular surfaces. Another key instrument 
will be used, the planimeter (fig. 2), to approach the notion of area in the 
school: it embodies the Guass divergence theorem in dimension 2, and 
shows the possibility of using old technology intertwined with ICT to make 
students enter again into important mathematical ideas (Arzarello & Man-
zone, 2013). 
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Figure 2. The Amsler planimeter 

In all these cases, the use of appropriate materials and tools can help 
students making the transition from intuitive concepts to their more formal 
aspects. 

Instruments such as those presented here, which force us to question 
what it means to "go straight" in a context different from the ordinary Eu-
clidean plane, or to deal with the notion of area in a manner different from 
the usual one, can push students to consider some classically “immutable” 
truths from different and unusual points of view. This approach can engen-
dre a critical attitude in students and encourage them to bring all truths in 
front of the “reason’s tribunal”, so following a well known suggestion by E. 
Kant (2008). 
 

From drag and drop with the mouse to finger manipulations 
on multi touch devices: how ICT practices can foster mathemati-
cal inquires 

In the second part of the talk I will sketch how the dynamic tension em-
pirical-deductive regulates the actions of students who are asked to solve 
geometrical problems using Dynamic Geometry Software (DGS) to make 
explorations, formulate conjectures, and prove them. 

I will do that presenting some short video clips from the classroom life, 
where the use of new technologies in proving activities makes the dynamic 
tension palpable. A careful analysis of students’ procedures while using 
DGS will allow me to introduce and discuss some theoretical frameworks 
that explain how that tension can be used to design suitable didactical situa-
tions. Within these, students can learn and internalize specific practices, 
which become psychological tools (Vygotsky, 1978, p. 52 ff;  Kozulin, 
1998) for supporting their transition from the empirical to the theoretical 
side of mathematics. Such processes are strongly marked by the complex in-
teractions between inductive, abductive and deductive modalities in their 
productions. 
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Specifically, I will illustrate how the evolution of technology made 

available different practices, specifically related to the way users can inter-
act with the screen: from the drag and drop actions with the mouse to the 
tap, drag, and flick with one or more fingers on the screen of multi-touch 
devices and from the one-to-one interactions of the former to the multiple 
simultaneous interactions that the latter makes possible (Park et al., 2011). 
These different technological features allow designing different tasks, which 
can change the cognitive processes of students and deeply modify their 
mathematical inquiries. The main result of such changes consists in a differ-
ent and possibly better approach to proving activities in the classroom. 
Roughly speaking, as we have had a first shift and improving passing from 
paper and pencil environments to DGS with drag and drop activities (e.g. 
Cabri géomètre, Sketchpad, etc.), now we have a further shift and improve-
ment with the transition to multi-touch environments (e.g. Geometric Con-
structor, SketchPad Explorer, etc.) and to the variety of simultaneous fin-
gers’ actions they allow (Arzarello et al., 2014a). In the talk I will underline 
analogies and differences between the two, discussing the advantages that 
each of them make possible.  
 

As it is well known, DGS makes available many geometric construc-
tions using the buttons of the toolbar; but what makes DGS so interesting 
compared to the classic world of paper and pencil figures, is not only the 
construction facility but also the direct manipulation of its figures, con-
ceived in terms of the embedded logic system of Euclidean geometry (La-
borde & Straesser, 1990; Straesser 2001), namely the relational aspects be-
tween the built figures. DGS figures possess an intrinsic logic, as a result of 
their construction, placing the elements of a figure in a hierarchy of relation-
ships that corresponds to the procedure of its construction according to the 
chosen tools and in a corresponding hierarchy of properties. 

This relationship is made evident in the “dragging” mode: it preserves 
the intrinsic logic of the DGS figures, that is the logic of their construction. 
The DGS figure is the complex of these elements, incorporating various re-
lationships, which can be differently referred to the definitions and theorems 
of geometry. The presence of the dragging mode introduces in the DGS en-
vironment a specific criterion of validation for the solution of the construc-
tion problems: a solution is valid if and only if the figure on the screen is 
stable under the dragging test. Thus, solving construction problems in DGS 
means not only accepting all the facilities of the software but also accepting 
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a logic system within which to make sense of them. 
The DGS’s intrinsic relation to Euclidean geometry makes it possible to 

interpret the control ‘by dragging’ as corresponding to theoretical control 
‘by proof and definition’ within the system of Euclidean Geometry. In other 
words, there is a correspondence between the world of DGS constructions 
and the theoretical world of Euclidean Geometry. 

The analysis of dragging modalities allows entering into cognitive pro-
cesses of students while solving geometric open problems (Arzarello et al., 
1998; Antonini, & Mariotti, 2009; Baccaglini-Frank, 2010; Arzarello & Sa-
bena, 2011). In the talk I will illustrate how suitably designed tasks can help 
students to face and possibly to overcome the obstacles between their em-
pirical mathematical tasks and the discipline’s theoretical nature. When in-
tegrated in the teaching of proofs, DGS triggers a network of interactive ac-
tivities among different components that can be categorised at two different 
epistemological levels: 

(1) The convincing linguistic logical arguments that explain WHY ac-
cording to the specific theory of reference; 
(2) The artefact-dependent convincing arguments that explain WHY ac-
cording to the mathematical experimentation facilitated by an artefact. 

Approaching proof in school consists in promoting a network of inter-
active activities in order to connect these different components.  

I will illustrate this point discussing how the analysis of dragging mo-
dalities can give reason of the transition from empirical to theoretical 
strands in students action and productions, while solving geometrical prob-
lems within DGS environments. I will show that in this case the notion of 
abduction is a major analysis tool for the researcher. Abduction is a way of 
reasoning pointed out by Peirce, who observed that abductive reasoning is 
essential for every human inquiry, because it is intertwined both with per-
ception and with the general process of invention: abduction becomes part 
of the process of inquiry along with induction and deduction. For example, 
abductive processes can support interactions between (1) and (2) compo-
nents above, namely the transition to proof within experimental mathemat-
ics, a transition with novel and specific features compared to the transition 
to proof within more traditional approaches. Hence the distance between ar-
guments and formal proofs (Balacheff, 1999; Pedemonte, 2007) produced 
by students can diminish because of the use of technologies according to a 
precise pedagogical design.  

One of the deepest results of the cognitive and epistemic analysis of 
students behaviours while solving problems within a DGS environment is 
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that it shows the structure of their processes of inquiry and the dynamics of 
the transition from the empirical to the theoretic strand of their arguments. 
This has important consequences for the task design (for this issue see ICMI 
Study 22 forthcoming volume): I will sketch some examples from Arzarello 
et al. (1998, 2002) and Baccaglini-Frank & Mariotti (2010).     
 

The evolution of technology, and particularly the actions allowed by 
multi-touch devices, allow deepening further the aspects (1) and (2) above 
and their mutual links. It is so possible designing fresh tasks, which support 
the transition from the empirical to the theoretical side of geometrical prop-
erties investigated within DGS.  

In the second part of my talk I will exemplify them, basing from teach-
ing experiments with multitouch devices made in Italy and Brasil, using 
DGS software like Geometric Constructor (designed by Yasuyuki Iijima at 
Aichi University of Education2), SketchPad Explorer3 and Sketchometry4 
(Arzarello et al., 2013, 2014a, 2014b). The new technology, allows having 
more than one subject simultaneously operating on the screen of a tablet us-
ing as many fingers as they wishes: this facility, not possible within the 
mouse click-and-drag modality of DGS, makes it possible to design tasks 
where geometrical properties are introduced in a problematic way according 
to a game theoretical transposition. I will illustrate it with an example: the 
property “two circles in a plane intersect if and only if the sum of their radi-
uses lengths is lesser or equal to the distance of their centres” becomes the 
following (full-information) two-players game on a tablet (Fig. 3), which 
students must solve. 
  

																																																								
2	http://souran.aichi-edu.ac.jp/profile/en.7RRZ6p1fkRx0afMM47vMnA==.html	
3	https://itunes.apple.com/en/app/sketchpad-explorer/id452811793?mt=8	
4	http://www.sketchometry.org/	
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Rules of the game:  
• 2 players Z and Y 
• player Z controls the radius of cir-

cumference E through the endpoints 
of the segment AB; player Y controls 
the radius of circumference F through 
the endpoints of segment CD 

 Y’s goal is to ‘catch’ Z; Z’s goal is to run 
away. 

Figure 3. A game within multitouch environments 
 

We transform so mathematics investigations into game theoretical in-
vestigations: this design has at least two advantages. First, students are more 
engaged in the activity: the game theoretical formulation is more appealing 
than a task like ‘explore and prove’, even if in DGS environments: interac-
tions between the players are more ‘natural’. Second, and more important, 
the game theoretical transposition of geometrical problems introduces stu-
dents into what I call the Interrogative Model of Inquiry. It is based on the 
logical researches of J.Hintikka (1998), who conceptualized inquiry in the 
sense of investigation, or search for truth, namely inquiry in the sense of a 
process of questioning, according to the well-known Socratic approach (for 
a modern example in the classroom see:  

http://www.corndancer.com/tunes/tunes_print/soccirc.pdf). 
Students, while solving the game-theoretical situations, ask pertinent 

questions to themselves or to their game-mates in order to elaborate suitable 
strategies, which allow them to “win the game”. Such strategies consent 
them to discover, validate and possibly proof geometrical theorems. Stu-
dents are so introduced into what I call the logic of inquiry cycle, which I 
will describe in the talk. Suitable task designs with tablets allow its effective 
instrumentation (Verillon-Rabardel, 1995; Rabardel, 2002; Trouche, 2005): 
as the dragging test is one of the most remarkable educational products of 
DGS with click and drag practices, the activation of the Interrogative Model 
of Inquiry is another very useful product made possible by DGS within mul-
ti-touch devices. 

 
Discussion 
In the paper I have discussed four teaching experiments, whose design 

is developed according to a careful cultural, epistemological, and cognitive 
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analysis. I have showed how the main issue consists in elaborating tasks, 
which can satisfy all these three types of analysis. Fulfilling all of them 
shows a methodological proviso, which teaching situations should satisfy in 
order to design adequate didactical tasks. The discussion of the four con-
crete examples introduces a possible way to face the challenges that the “In-
ternationalized and Network Era” poses to mathematics teachers.     

In fact, observing such a proviso has two main didactical consequences 
with respect of the use of tools in the classroom: 

(i) the (possible) introduction of  instruments depends on the devel-
oped analysis and not vice versa;  

(ii) the nature of the mediation is carefully designed as a consequence 
of the analysis.  

More precisely,  
- the introduced instrument must be 

a) consonant with the content to be taught, since its choice has been 
done in accordance with epistemological analysis of such a content; 

b) consonant with the learning processes that it triggers and supports in 
the students, according to the developed cognitive analysis. 

- the teaching situation is adequate to be developed in that classroom with 
that mediating instrument according to a certain didactical design, because 
of  

c) the developed cultural analysis, which makes explicit the intertwin-
ing among the two components a) and b).    

We have shown this way of designing a task in four different situations. 
In two of them the tool is a concrete instrument and manipulating it the stu-
dents can discover its incorporated mathematical knowledge. In the other 
two the tool is a virtual environment, with which the students interact in a 
different way so discovering mathematical properties. 

In all four cases the students are introduced into the logic of inquiry, 
which constitutes the strong cultural feature of their mathematical investiga-
tion, namely accomplishing such tasks as: Finding if, Establishing that, As-
certaining why, Settling why not, Investigating what if. 
 

All these experiences involve both sensory-motor and highly symbolic 
activities: the mediation of the artefact allows intertwining the two so that 
the one can constantly be built on the other. It is worthwhile observing that 
such activities entail not only a cognitive behaviour, consistent with our bio-
logical being, but also cultural aspects of us as social beings. Indeed, the 
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practices mentioned above show a deep intertwining between our cultural 
and cognitive components.  
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Parce que cela ne nous concernerait pas directement a priori, il ne 
faudrait pas oublier que l’éducation est devenue un marché mondial en cette 
deuxième décennie du XXIe siècle. Et en particulier celle qui forme en 
mathématiques et pour tous les niveaux dont celui de la recherche qui n’a 
jamais été aussi riche et multiforme. Il se manifeste un nouvel engouement 
pour les mathématiques, après des années de déclin, et il est vraisemblable 
qu’on le doive à l’action médiatique efficace de quelques jeunes 
mathématiciens titulaires notamment de médailles Fields promoteurs de 
mathématiques étonnamment évolutives et diverses, mais aussi au renom 
quelquefois douteux mais riche d’aventures de mathématiciens dans des 
banques d’affaires1. Aussi l’éducation mathématique est-elle un enjeu dans 
la concurrence manifeste qu’est la globalisation, entre les Etats et au-delà 
peut-être, entre des groupes financiers précisément dits “mutinationaux”, et 
forcément entre des genres de formation, jusqu’à la formation à la 
recherche. Dans le cadre ainsi très largement défini, même si personne 
aujourd’hui après les abominations des “mathématiques nazies” n’ose plus 
trop glorifier telle ou telle mathématique nationale, il faut prendre 
conscience que l’affirmation, non discutée, d’une “mathématique 
internationale” comporte des risques. Je voudrais justement les discuter, 
d’autant que le Net peut paraître soutenir l’idée qu’existerait une 

																																																								
1 Cette atmosphère est assez bien décrite dans un film récent réalisé par Olivier Peyon, 
Comment j’ai détesté les math,  disponible en dvd. 
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mathématique internationale uniforme, c’est-à-dire lisse et sans 
changements, donc une seule école qui dise la norme à tous les niveaux, les 
figeant même dans l’immobilité. Il sufiit de mentionner la formation russe, 
issue du monde soviétique, pour se convaincre qu’autre chose est en jeu. Ici 
je voudrais en discuter en utilisant des moyens d’histoire. Pourquoi? Je crois 
que ce sont les risques d’uniformité des “mathématiques modernes” des 
années 1960 qui ont entraîné des réactions dont on se remet mal. Mon 
propos ici n’est pas de proposer des remèdes, mais il est que pour mesurer 
ces effets de réaction, l’histoire me paraît particulièrement utile, ne serait-ce 
que pour comprendre l’état même que nous vivons aujourd’hui.   

Je me souviens en effet de revendications de différences, et ainsi à 
l’extrême, d’avoir entendu un “terroriste” français affirmer que la raison de 
son échec scolaire tenait à ce que les mathématiques qu’on lui avait 
enseignées n’étaient pas les “bonnes”. Il disait préférer celles de l’âge d’or 
du monde de l’Islam. Et qu’importe qu’il ne les connaissait pas plus ! La 
revendication était une différence, et le ressenti d’adaptation nécessaire aux 
mentalités et aux valeurs d’une société. On a aussi entendu, il n’y a pas si 
longtemps et avant même la crise des subprimes, des étudiants et des 
enseignants en économie fustiger des mathématiques “ à la française” . Car 
elles viendraient par leur embarras théorique cacher une défense du 
libéralisme sans frein. Sous la neutralité apparente d’un aspect structurel, 
donc irréel selon ces critiques, puisque ne prenant en compte que les 
“aspects quantitatifs”. Cette dernière critique retrouve une démarche 
antimathématique toujours à l’œuvre et dans toutes les sociétés, en tout cas 
déjà portée par Aristote contre Platon. Ce qui témoigne, aujourd’hui, d’une 
méconnaissance profonde des mathématiques pratiquées et enseignées, et en 
particulier des probabilités qui n’en posent pas moins des questions 
fondamentales quant à notre conception du monde. Mais n’y a-t-il pas des 
dérives singulières dans l’emploi médiatique des outils statistiques, dont les 
enseignants ont du mal à prévenir les mauvais effets ?  La contradiction 
épistémologique est que d’autres, sinon les mêmes, jettent le mépris sur les 
mathématiques financières en ce qu’elles apprécient trop bien les 
comportements réels des investisseurs professionnels, au point de savoir 
créer la même panique que les bourses à l’ancienne qui étaient dénuées 
d’ordinateurs et d’experts mathématiciens.  
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Ce contexte bizarre quoique tout actuel que je voulais rappeler me 
permet d’introduire une intéressante lettre publiée dans The Guardian du 5 
mai 2014 demandant la suspension des notations “nationales” tous les trois 
ans du Program of International Student Assessment (PISA), donc 
concernant directement l’enseignement des mathématiques.   

En matière de politique de l'éducation, PISA, avec son cycle d'évaluation de 

trois ans, a provoqué un déplacement de l'attention vers des solutions à court 

terme, conçues pour aider rapidement un pays à grimper dans le classement, 

en dépit de recherches qui montrent que les changements durables dans la 

pratique éducative prennent des décennies pour se concrétiser, et non 

quelques années. Par exemple, nous savons que le statut des enseignants et le 

prestige de la profession enseignante, ont une forte influence sur la qualité de 

l'enseignement, mais ce statut et ce prestige varient fortement selon les 

cultures et ne sont pas facilement influencés par une politique à court terme. 

[...] Le nouveau régime PISA, avec son cycle continu de test global, nuit à 

nos enfants, appauvrit nos salles de classe car il implique inévitablement des 

batteries de plus en plus longues de tests à choix multiples, plus de leçons 

vendues en ligne dûment écrites et scénarisées, et moins d'autonomie pour les 

enseignants. De cette façon, PISA a encore augmenté dans les écoles le 

niveau de stress déjà élevé, ce qui met en danger le bien-être des élèves et des 

enseignants2. 

 
Cette lettre réunit les aspects assez disparates que je viens de 

mentionner : l’international et les cultures nationales, le court et le long 
terme dans l’éducation mathématique, les enjeux financiers de la 
concurrence des système éducatifs, la restriction supposée des 

																																																								
2 In education policy, PISA, with its three year assessment cycle, has caused a shift of 
attention to short-term fixes designed to help a country quickly climb the rankings, despite 
research showing that enduring changes in education practice take decades, not a few years, 
to come to fruition. For example, we know that the status of teachers and the prestige of 
teaching as a profession have a strong	influence on the quality of instruction, but that status 
varies strongly across cultures and is not easily influenced by short-term policy.[…] The 
new PISA regime, with its continuous cycle of global testing harms our children and 
impoverishes our classrooms, as it inevitably involves more and longer batteries of  
multiple-choice testing, more scripted “vendor”-made lessons, and less autonomy for 
teachers. In this way PISA has further increased the already high stress in schools, which 
endangers the wellbeing of students and teachers.	
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mathématiques au seul quantitatif mesurable ignorant bien des aspects de 
l’humain, et la domination de l’information non contrôlée des réseaux. Cette 
citation s’inscrit aussi dans les réactions “naturelles” des médias dans 
chaque pays, promptes à comptabiliser les médailles Fields nationales au 
mépris d’une conception internationale affichée de la recherche, oubliant de 
préciser à quoi tiennent des “écoles nationales”, voire des “styles”, au plus 
haut niveau de la recherche mathématique, comme à celui des 
enseignements. Les Olympiades, à un autre niveau, procèdent de même.  

 
Sur toutes ces questions, je voudrais prendre le temps de la réflexion. Et 

je remercie vivement la Société hellenique de mathématiques de son 
invitation,  car elle me donne cette occasion que je n’aurais pas cherché 
seul, à la fois en tant que mathématicien spécialisé en analyse fonctionnelle, 
en tant qu’historien des sciences mathématiques, et en tant qu’enseignant de 
mathématiques, même si ce fut seulement à l’Université. Je crois que cette 
triple familiarité, et je ne veux pas parler d’expertise, permet de mieux 
appréhender l’idée même des changements que généralement nous ne 
percevons pas comme répartis aussi bien dans la science que dans sa 
diffusion par l’enseignement scolaire, et qui proviennent aussi de 
l’imprégnation aux mathématiques dans la vie sociale dont témoigne le Net. 
Les changements ne sont pas de même nature, et justement je voudrais, par 
l’histoire, manifester des temps de réformes et des temps de réactions.  
 

Les changements dans l’enseignement des mathématiques peuvent 
être aussi révolutionnaires que dans les mathématiques elles-mêmes 
Si la didactique des mathématiques naquit en France dans les années 

1960, grâce à Guy Brousseau3 en bénéficiant notamment des réflexions du 
Genevois Jean Piaget4, le but était d’envisager précisément les conditions de 
la mise en place de ce qui était présenté comme une révolution. La nature 

																																																								
3 Nicolas Balachef, Martin Cooper, Rosamund Sutherland, (éd.), Théorie des situations di-
dactiques, 1970-1990. Hommage à Guy Brousseau, La pensée sauvage, Grenoble, 1998.  
4 Il convient de signaler le rôle qu’a eu le livre de Jean Piaget dans la collection la Pléiade 
voulue par Raymond Queneau, Logique et connaissance scientifique, Paris, Gallimard, 
1976, juxtaposant une épistémologie des mathématiques fondée sur les structures et la con-
ception génétique d’appréhension de ces structures selon les âges de l’enfant de Jean Pia-
get. 
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profondément politique de celle-ci, politique au sens aristotélicien 
généralisé de gouvernance des affaires publiques, dont aujourd’hui 
l’éducation, ne limite en rien la juste prétention de scientificité de la 
didactique. Cette discipline accompagnait indissolublement un mouvement 
pédagogico-scientifique désigné du nom de “mathématiques modernes”, 
faisant un net appel au sens positiviste du progrès, à la volonté de passage à 
l’ère post-industrielle, et au sens d’un inéluctable changement auquel la 
querelle des Anciens et des Modernes donnait une lointaine mais active 
référence. Malheureusement, à ce discours politique qui ne colle pas à 
l’expression anglaise de New math, était en quelque sorte opposé un contenu 
qui paraissait découpé au sein d’un monde idéal et a-historique, toujours 
appelé mathématiques. Dans l’intention de lui donner un nouvel ordre, sans 
plus. Il s’agissait de travailler sur les structures, avec l’idée forte que les 
structures les plus fondamentales devaient venir en premier, donc étaient 
élémentaires au sens pédagogique cette fois. Cela voulait dire que la 
géométrie affine passait avant la géométrie métrique dans l’enseignement du 
collège,  mais aussi que la topologie générale devait venir avant l’analyse 
des équations différentielles et des équations aux dérivées partielles dans 
l’enseignement universitaire, ou encore que la logique formelle devait 
passer avant tout exposé algorithmique. Le nouvel ordre n’était pas un 
choix, mais un impératif. Le mot d’ordre simpliste “à bas Euclide” 
symbolisa cette révolution, pourtant déconnectée de l’enjeu industriel et 
menée par les seuls mathématiciens dans une forme d’autisme aux autres 
sciences notamment, et peut-être aussi aux restructurations de leur science 
elle-même.  
 
  En chaussant les lunettes de l’historien, tant pour relativiser que pour 
spécifier, je voudrais faire prendre conscience des enjeux de tout changement 
dans les mathématiques, sans vouloir assurer qu’ils s’accompagnent toujours 
du type de révolution provoquée par les “mathématiques modernes”, ni bien sûr 
qu’ils entraînent quasiment toujours les effets de réaction. Ce sont en tout cas 
ces effets qui me préoccupent ici. De sorte que si j’évoque la “réforme des 
mathématiques”5 du XVIIe siècle et pour éviter une trop longue histoire, ce sera  

																																																								
5 L’expression figure chez de nombreux auteurs du XVIIe siècle, même chez Thomas 
Hobbes, un Anglais comme toujours sensible aux effets de la tradition.  
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pour constater la naissance du livre que nous considérons à tort comme ayant 
de tout temps existé : le cours écrit de mathématiques. L’expression est toujours 
utilisée, mais avec le sens aujourd’hui d’un manuel. Ce “cours” fut plutôt le 
récit par les mathématiciens eux-mêmes de ce qu’ils voulaient changer. Ne 
peut-on dire qu’il correspond aux “leçons vendues en ligne”, discutées dans la 
citation par laquelle j’ai commencé ? Le “Cursus mathematicus/Cours 
mathematique”, premier ouvrage au monde à prendre un tel titre est dû à Pierre 
Hérigone en 1634: il atteindra six volumes huit ans plus tard. Le cours est 
bilingue, donc saute la barrière du latin qui était la langue réservée des 
universités ; le cours se veut aussi un accompagnement possible pour les 
“autodidactes”, jusqu’à ranger sous ce nom ceux que les mathématiques 
universitaires ne satisfaisaient pas. A elle seule cette suggestion d’un public 
large change la donne mathématique. Le cours ne prétend pourtant pas 
contraindre un ordre de lecture, afin que “chacun puisse avoir séparément la 
partie qu’il jugera lui être le plus nécessaire”, quoique retenant d’Euclide qu’il 
faille mettre en premier, mais au sein de chaque volume, “les parties 
nécessaires à l’intelligence de celles qui sont aux suivants”6. Cette versatilité en 
elle-même est encore un changement. Il ne sera pas définitif ! Il me suffit de 
commenter le contenu des cinq premiers livres pour que l’on perçoive la 
révolution sur le plan institutionnel, et je donne à voir cinq pages de titres pour 
les différents volumes, car elles explicitent le contenu (ill. 1 à 5).  

 

																																																								
6 Pierre Hérigone, Cursus mathematicus/Cours mathematique, Paris, 1634, tome I, Prolé-
gomènes. 
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Page de titre du premier volume du Cours de mathématiques de Pierre Hérigone en 1634. Les 
éléments d’Euclide sont traités par notes, comme on le verra plus loin, et suivis par des textes 

généralement ignorés des cours universitaires de cette époque. La théorie de Viète vient en dernier 
donnant le développement de sin nx et cos nx en sin x et cos x. 
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Page de titre du deuxième volume du Cours de mathématiques de Pierre Hérigone en 1634. Le calcul 
ecclésiastique est celui du calendrier, et l’on voit l’apparition de l’algèbre, avec indication de la 

méthode d’analyse. 
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Page de titre du troisième volume du Cours de mathématiques de Pierre Hérigone en 1634. Les tables 

numériques viennent avant la géométrie pratique et les textes sur la mécanique. 
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Page de titre du quatrième volume du Cours de mathématiques de Pierre Hérigone en 1634. 
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Page de titre du cinquième volume du Cours de mathématiques de Pierre Hérigone en 1637, 
trois ans après les quatre précédents. Un dernier volume paraîtra quelques années plus tard. 
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Est détruit le robuste quadrivium universitaire, limité à l’arithmétique et 
à la géométrie selon Euclide, à la sphère selon Ptolémée et à la théorie des 
proportions propre à la musique, qui étaient les bases du savoir depuis 
Boèce au moins. Voici en effet qu’après les Eléments d’Euclide, sans gêne 
aucune, Hérigone ajoute des choses reconstituées d’Apollonius sur les 
problèmes des lieux, donc une préparation à ce qui deviendra la géométrie 
analytique avec Descartes et Fermat, et l’expression polynomiale des sinus 
et cosinus d’un multiple d’un angle à partir des mêmes fonctions de cet 
angle. C’est une formule mathématique qui fait jouer le développement du 
binôme, mais sans que l’on puisse alors expliquer pourquoi. Ce résultat 
provenait d’un travail de Viète publié en 1615 seulement par Anderson. 
Vingt ans plus tard, Hérigone l’insérait en ce premier volume7, malgré son 
apparente complication, et surtout malgré son manque de lien avec le reste 
des mathématiques ! Personne alors n’avait l’idée des formules d’Euler qui 
firent ce lien, et apportèrent une autre révolution au siècle suivant, d’abord 
cantonnée dans des mathématiques très spécialisées8. Le second volume 
débute par l’arithmétique pratique, et il fournit des données sur le calendrier, 
en quelque sorte une actualité puisque le calendrier grégorien avait été établi 
en 1582 et ne convainquait toujours pas les pays protestants, ni les pays 
orthodoxes d’ailleurs. Cette arithmétique est suivie par l’algèbre, et c’est 
une grande nouveauté pour ce qui se présentait comme un programme 
d’études encyclopédiques. Aux volumes suivants apparaissent les 
logarithmes (dont la première publication, tables et théorie, remontait à 
1614 seulement), les tables trigonométriques, la gnomonique, etc. Le 
mouvement numérique, largement absent des textes antérieurs mais 
caractéristique de la révolution marchande, est donc remarquablement 
représenté, de sorte qu’il n’y a aucune distinction faite entre des 
																																																								
7 L’algèbre posait un problème d’insertion, bien plus que la trigonométrie qui se coulait na-
turellement dans les Sphériques, ou les logarithmes qui trouvaient place plus ou moins na-
turelle dans l’évolution de la théorie des proportions. L’algèbre posait aussi une question de 
culture nationale, en rompant avec l’uniformité européenne du quadrivium, forcé par la pe-
regrinatio academica, celle des étudiants comme celle des professeurs, uniformité qu’a dé-
crite L.W.B. Brockliss en 1996 dans son article « Curricula » pour le volume publié à 
Cambridge sur A History of Universities in Europe,1500-1800, dirigé par H. de Ryder-
Symoens. Il y avait de fait plusieurs algèbres, outre celles du monde arabe, celle des cos-
siques, celle des algébristes italiens du XVIe siècle. L’algèbre polynomiale de Descartes a 
tout balayé. 
8 Je résume par une formule qui n’est toujours pas au programme des lycées :  

cosnx  isinnx  (cosx isin x)n
. La force de persuasion d’un d’Alembert fut insuffi-

sante pour faire accepter cette formule en physique.  
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mathématiques pures et des mathématiques qui seraient seulement utiles. 
Pas plus qu’entre les mathématiques pour les collèges et les mathématiques 
pour les professionnels. La trigonométrie sphérique est traitée avec les 
fonctions de la trigonométrie plane, indispensable en navigation qui porte 
les Européens sur toute la surface océanique du globe. La “réforme” de 
Pierre Hérigone se résume symboliquement dans l’emploi du mot 
“mathématiques” ; il désigne concrètement un ensemble et non une seule 
voie linéaire à la manière des Eléments d’Euclide. Le mot « réforme », au 
XVIIe siècle, ne pouvait qu’avoir comme connotation la Réforme religieuse 
du siècle précédent, qui avait durablement divisé l’Europe, mais aussi 
favorisé l’idée d’une « république des lettres » et d’une solidarité dans 
laquelle purent s’insérer les tenants de la révolution scientifique. Comment 
penser à une possible Contre–Réforme ? 

Si c’est en raison de la place donnée à l’algèbre qu’Hérigone dut 
inventer un tout nouvel ordre laissant la liberté au lecteur, il ne fut pas suivi 
et on peut justement parler d’une réaction, précisément dans le genre du 
cours, puisque le second cours publié, le Cursus mathematicus du jésuite 
Kaspar Schott en 1661, plaçait l’algèbre à la toute fin de l’ouvrage (ill. 6). 
Tout en ayant fait comprendre, de façon baroque, que cette finalité rendait 
vain tout le projet ! Dans les collèges jésuites, on préféra s’en tenir aux seuls 
Eléments d’Euclide, édulcorés en quelque sorte par omission du livre 10, et 
d’ailleurs en général des livres arithmétiques (7 à 9). Je rappelle que les 13 
livres d’Euclide portèrent longtemps le seul titre d’éléments (sans que l’on 
spécifie de quelle science ils étaient les éléments), puis au XVIIe siècle, 
brusquement, et à la suite d’un professeur que l’on considère aisément 
comme un « réactionnaire », Clavius, on parla pour le même ouvrage 
seulement des « Eléments de géométrie »9. Le mot qui nous paraît si 
familier avait aussi pour fonction de gommer la présence de l’algèbre. 

																																																								
9 Voir Jean Dhombres, Les savoirs mathématiques et leurs pratiques culturelles, Paris, 
Hermann, à paraître.  
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Ill. 6. Figure extraite du frontispice du Cours de Schott en 1661, exhibant par des figures cette fois les 
différentes disciplines mathématiques, les plus à jour en tout cas, puisque l’on voit les trajectoires 
elliptiques de planètes. L’algèbre est de fait reléguée en dernier dans cet ouvrage, donc n’y joue 

pratiquement pas de rôle. 

 
La révolution de Hérigone fut pourtant bien perçue par quelques 

enseignants, mais ils eurent alors à se justifier d’être “modernes”. Le mot 
sous-entendait une perte de rigueur, contre laquelle bien sûr ces enseignants 
devaient s’expliquer. Nous sommes donc à fronts renversés par rapport aux 
mathématiques modernes ! Et voilà qu’intervinrent, en contradiction avec le 
genre des Eléments d’Euclide, la nécessité ressentie par les mathématiciens 
de dire l’utilité de leur science par rapport aux autres sciences et non par 
rapport à la seule philosophie. De sorte que le XVIIe siècle vit la floraison 
moins de cours d’algèbre que de discours sur l’algèbre. Celui de John 
Wallis en 1685, A Treatise of Algebra both historical and practical shewing 
the original, progres, and advancement thereof, from time to time, and by 
what steps it hath attained to the heigth it is now, traduit en latin quelques 
années plus tard comme pour mieux le faire entrer dans la pratique 
universitaire, présente un titre positiviste avant la lettre. Mais si 
l’historienne Jacqueline A. Stedall a judicieusement  intitulé son ouvrage, A 
Discourse Concerning Algebra, dans sa justification de la gloire donnée à 
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Harriot aux dépens de Descartes, ou encore par le sous-titre donné à son 
ouvrage, English algebra to 1685, elle manque assurément un mouvement 
en réseau bien plus largement européen. Elle opère, mais après John Wallis, 
une captation de type nationaliste, pour ce qui était en fait un mouvement de 
réforme. Ce qui est d’autant plus étrange que ce n’est pas l’algèbre anglaise 
qui a fait l’histoire ! Le Traité d’algèbre de Michel Rolle en 1690 fut le 
premier sans doute à éliminer ce genre de discours sur l’algèbre. Pour 
proposer l’organisation d’une discipline, qui naturellement incorporait bien 
des aspects d’analyse, notamment le théorème de Rolle pour l’étude des 
variations des fonctions. La méthode de Rolle fut poursuivie avec 
nonchalance par Newton dans son livre le plus souvent édité, parce que livre 
d’enseignement, l’Arithmetica universalis, un livre qui justement ne porte 
pas le nom d’algèbre. 

 
La nouveauté n’en était pas moins dans l’ordre de la pensée : la conduite 

analytique du raisonnement devenait la garante du progrès, et en quelque sorte 
on pourrait lire le Discours de la méthode de Descartes en 1637 comme un 
dépassement des discours d’algèbre. Une image me fascine quant à 
l’enseignement : c’est celle d’une thèse de la toute fin du XVIIe siècle. C’est un 
exercice donné à des jeunes gens, en l’occurrence le travail d’un professionnel 
de la marine n’en suivant pas moins les cours des jésuites. On est bien dans 
l’esprit du Cours d’Hérigone, et loin de celui des “mathématiques modernes”. 
Alors même que la modernisation de l’enseignement était indéniable. On voit 
sur l’image une formule d’algèbre (c’est en fait une citation de Descartes, et 
allusion aussi bien à la proportion dorée comme on peut le constater) dans un 
lieu scolaire (manifesté par des putti) pour dire la possibilité de gouverner la 
construction navale10. Ce qui est une propagande injustifiée à cette date, avant 
le Traité du navire et de ses mouvemens de Pierre Bouguer de 1746 ou la 
Scientia Navalis de Leonhard Euler de 1749 où le Calcul différentiel et intégral 
permettait enfin de traiter le problème de la stabilité ou du mouvement du 
navire. Sur ce dessin, le triangle didactique cher à bien des théoriciens est 
représenté avec trois composantes. Deux sont usuelles : les putti qui 
symbolisent le lieu scolaire, et les dessins et formules qui symbolisent le savoir 
théorique de l’enseignement de type nouveau. Mais le troisième est inédit, 
puisqu’il s’agit des applications, et sur cette image on voit même des ouvriers 
qui travaillent sur les lisses du navire en construction. On voit aussi la trace 

																																																								
10 Cette gravure se trouve dans des thèses passée au séminaire de Toulon, et conservées à la 
Bibliothèque municipale de Lyon (BM, ) 
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parabolique à la Galilée des boulets de canon. Le corps professoral, le troisième 
sommet usuel du triangle didactique, a disparu ! Cette thèse manifeste donc une 
réaction à la réaction du cours réduit au seul Euclide, formaté par Clavius. Si 
l’intérêt considérable du mouvement intellectuel à l’origine de notions comme 
celle de triangle didactique a été la prise en compte de l’acte d’enseignement 
des mathématiques, jusque dans ses aspects contractuels11 avec comme 
raccourci langagier la transposition didactique12, il apparaît que cet acte tient 
aussi aux circonstances historiques et épistémologiques, et notamment à 
l’imaginaire d’une société, sans doute en l’occurrence façonné par Descartes, 
qui pensait que l’on peut opérer beaucoup par les mathématiques, à condition 
que celles-ci ne soient pas tournées vers elles-mêmes.  

 
Forcément des esprits se sont opposés à l’algèbre, et le témoignage de 

Blaise Pascal est ici majeur, qui évite l’algèbre alors que celle-ci lui aurait 
permis bien davantage dans ses constructions infinitésimales et de calcul 
intégral. Pour les enseignants, la difficulté était de laisser l’algèbre s’infilter 
dans le quadrivium, car elle prenait facilement un aspect totalitaire, se faufilant 
partout et détruisant les distinctions de disciplines auxquelles tenaient ces 
enseignants. Formidablement, l’invention du Calcul, différentiel et intégral, 
allait permettre donner une place  à l’algèbre comme connaissance en 
prolégomènes, établie en vue des mathématiques dites sublimes, et aussi bien 
de leurs applications à la science navale par exemple13. Par ce mouvement de 
mise en préliminaires, mais de façon inattendue, l’élémentaire devint 
complètement cloisonné14 : il avait sa vie propre, et forcément celle-ci devenait 

																																																								
11 La notion très intéressante de contrat didactique correspond à la mort du cours répété 
parce que c’est ainsi, dont Lucienne Felix se moque avec une rare puissance dans ses mé-
moires publiées par L’Harmattan en 2005.  
12 Yves Chevallard, La transposition didactique. Du savoir savant au savoir enseigné, La 
pensée sauvage, Grenoble, 2e édition, 1991.  
13 Il me semble que l’on pourrait expliciter cette forme de lutte en faveur de l’algèbre en 
historicisant le reproche souvent fait au début du Calcul, avec le besoin de tout rapporter à 
la géométrie. Ce que l’algébriste André Weil manifestait en disant qu’il fallut l’extirper de 
la « gangue géométrique » (Article Calcul infinitésimal dans l’Histoire des mathématiques 
de Nicolas Bourbaki). 
14 Un deuxième exemple de révolution, que je traite au galop, est celui de la construction 
des nombres réels, inventée par Dedekind aussi bien que par Cantor. L’essentiel sans aucun 
doute est le procédé diagonal, permettant de distinguer le continu dans R et le dénomblable 
dans Q, mais aussi la possibilité de montrer que R est unique à un isomorphisme près de 
corps valué totalement ordonné complet. Ce qui fut fait par David Hilbert dans les 
Grundlagen der Geometrie de 1899. Dès lors, tout était prêt pour la définition du mètre 
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celle du collège, et non l’université. Dans ce cadre, bien des collèges se fixèrent 
sur les seuls Eléments d’Euclide, devenus symptomatiquement Eléments de 
géométrie. C’était éviter l’analytique, et en forgeant une “mathématique 
internationale”, alors dite jésuite en référence aux collèges de cette Compagnie, 
répartis dans le monde jusqu’en Chine ou en Amérique latine. Elle réduisait les 
mathématiques à un savoir assez étroit, mais ciselé dans ses détails, avec un 
accent particulier sur la géométrie. A tel point que l’on refusa d’utiliser la 
trignométrie pour la construction des cadrans solaires – l’objet le plus visible de 
l’influence mathématique dans une cité européenne à cette époque – au profit 
d’une construction géométrique, certes très jolie15. La considérer comme une 
réaction n’est pas la dénigrer, mais faire prendre conscience des choix, jusqu’à 
celui de l’esthétisme16. 

 

																																																																																																																																													
souple de géométrie affine de la classe de quatrième dans les premières années de la 
réforme des mathématiques modernes vers 1970.  
15 Jean Dhombres, What images from the seventeenth century in the European cities may 
tell about the visibility of the mathematical sciences including astrology, in Vittoria Feola 
(éd.), Antiquarianism and Science in Early Modern Urban Networks, Sciences et Tech-
niques en Perspective, vol. 16, fasc. 2, 2014, pp. 158-181.  
16 Certains évitèrent l’algèbre par le biais des indivisibles. En  témoigne le remarquable 
livre d’Ignace-Gaston Pardies qui fut traduit jusqu’en mandchou pour l’information de 
Kang Xi. 
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Ill. 7. Frontispice d’une thèse soutenue à Toulon, avec apparition (une première pour une gravure) 

d’une formule algébrique. Elle est en fait tirée de la Géométrie de Descartes et proche aussi bien du 
nombre d’or. 
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Ill. 8. Page de titre de la thèse soutenue à Toulon, et publiée sous forme de livre 
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La révolution ratée des symboles pour le raisonnement 
 

 
Ill. 9. Le théorème de Pythagore chez Pierre Hérigone. 
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Ill. 10. Les propositions 47 et 48 au livre I dans l’editio princeps de 1533, soit le théorème de 
Pythagore et sa réciproque 

 
Je n’en ai pas fini avec le Cours de Pierre Hérigone, car il donne aussi à 

réfléchir sur la façon dont on peut procéder pour modifier l’enseignement. 
Je ais prendre pour m’expliquer le cas du théorème de Pythagore, ou plutôt 
la proposition 47 du premier livre des « Eléments d’Euclide », telle qu’elle 
est « écrite » par Pierre Hérigone dans Cursus mathematicus/Cours 
mathématique (ill. 9). L’imprimeur Henry le Gras n’a pas pu faire tenir le 
théorème sur une seule page, et du coup, comme le donne à voir le montage 
ci-dessus, n’a pas respecté l’alignement sur la gauche en passant à la page 
suivante. 17 Le résultat est suffisamment célèbre pour que l’on n’ait aucun 

																																																								
17 Jean Dhombres, La preuve mathématique en tant qu’elle est épreuve de mémoire, in Ra-
fael Mandressi (dir.), La preuve, PUF, Paris, 2009, pp. 59-84 ; Jean Dhombres, Sur un texte 
d'Euler relatif à une équation fonctionnelle : archaïsmes, pédagogie et style d'écriture, 
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mal à la suivre, alors même que peut surprendre l’écriture ici fournie. On ne 
peut pas la dire algébrique. Elle donne donc à réfléchir (voir par comparai-
comparaison ill. 10 et la démonstration dans la première édition en grec en 
1533).  

La figure s’impose distinctement dans cette page qui paraît 
d’organisation moins claire que la figure, puisqu’apparaissent quatre 
colonnes assez différentes, après l’énoncé bilingue du théorème dont on 
apprécie le balancement rythmique, évitant le pédant vocabulaire de 
l’hypoténuse : l’aire du carré BCED est la somme des aires des carrés BFGA 
et AHIC. Il faut cependant un dictionnaire pour décrypter le signe égal, ici 
donné par 22, deux 2 séparés par une barre verticale qui joue à la manière 
du pivot d’une balance, dont la première intervention est à la ligne qui suit 
Req. . demonstr. à la quatrième colonne. Un analogue de notre signe égal, 
avec deux lignes parallèles, apparaît quelques lignes plus tôt dans le même 
texte, mais il signifie le parallélisme justement des droites AM, BD et CE, et 
du coup on peut s’interroger, en lisant Hérigone aujourd’hui, sur les raisons 
qui ont fait plus tard adopter le signe égal des parallèles, avec un possible 
primat donné à la géométrie. Aucun signe égal n’était utilisé par Euclide, 
qui n’en avait pas moins la notion d’égalité portant sur des grandeurs, 
comme des aires, des longueurs, des angles, etc. Hérigone invente donc plus 
qu’une symbolisation : il fait intervenir un mode de pensée, avec l’égalité 
figurée en tant que relation ayant des propriétés que l’on reconnaît 
aujourd’hui sous le nom de relations d’équivalence. Pour mieux en faire 
voir la portée, je les donne avec la notation d’Hérigone (réflexivité a22a, 
symétrie a22b donne b22a, et transitivité, a22b et b22c donnent a22c). 
Alors que notre signe égal banalise par le sens acquis de l’algèbre. Mais 
justement cette banalisation n’est-elle pas le résultat lointain d’un 
mouvement lancé par Hérigone ? Auquel cas son 22 serait un signe avant-
coureur !  

L’écriture est de même nature que la notation avec le parallélisme qui 
nous paraît bien plus naturelle et riche. Hérigone entendait singulariser la 
relation d’égalité portant sur des mesures de grandeurs, et son choix de 22  
signifie le maintien d’une spécificité pour les proportions que par ailleurs 
l’algèbre tendait à diminuer. De même, Hérigone « note » la proportion, A 
est à B comme C est à D, à partir du milieu de la partie de droite, avec 

																																																																																																																																													
Sciences et Techniques en perspective, vol. 8, 1985, pp. 1-55 ; Jean Dhombres, De 
l’écriture des mathématiques en tant que technique de l’intellect, in Eric Guichard (dir.), 
Ecritures : Sur les traces de Jack Goody, Presses de l’ENSSIB, Lyon, 2012, pp. 157-198. 
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introduction de la lettre  (pour proportion sans doute) et on constate qu’il 
n’y a pas exhibition de l’algèbre que nous connaissons, mais un jeu qui 
individualise précisément le rapport dans l’agencement de la proportion, 
sans aller pourtant jusqu’à une égalité de rapports. Or, indépendamment de 
la volonté peut-on dire de Pierre Hérigone, son signe 22 tendait vers une 
conception algébrique. A la même époque, Harriot faisait en algèbre 
l’assimilation avec la géométrie en donnant presque notre signe égal. 

Descartes écrira trois ans plus tard , déformation de æ, pour désigner en 

latin une égalité qu’il situait aussi bien en algèbre, ou plutôt en fondement 
de sa théorie des équations. C’est ainsi constater que Descartes abrégeait 
seulement l’écriture dans le but de mettre en avant une indéniable 
nouveauté, là où Hérigone donnait une explication sous forme d’un 
graphème. Tous les deux, en proposant une notation alors inhabituelle, 
signalent un sens nouveau ; par ailleurs les deux notations ont aujourd’hui 
disparu dan un grand et fréquent mouvement d’élagage. En quel sens 
toutefois peut-on parler d’échec pour Hérigone ?  

C’est qu’au delà d’une distinction entre un carré (  ) sans point et un 
carré suivi d’un point qui préfigure le sens de fonction comme .bc 
indiquant la puissance d’ordre 2, l’écriture d’Hérigone est dérangeante par 
une prétention de réduction du raisonnement mathématique.  Chaque ligne 
du texte, au sens très matériel d’une certaine famille de mots placés 
horizontalement dans une même colonne, doit être une phrase complète ;  
elle est une étape de la démonstration, dès lors repérable en tant qu’unité, et 
repérable par des références à des propriétés précédentes (généralement 
euclidiennes). Cette spatialisation logique que l’on peut aussi décrire 
comme une succession ordonnée d’atomes horizontaux d’écriture, ou encore 
des abrégés sténographiques d’une phrase complète, est une contrainte 
extraordinaire. Elle implique que toutes les idées mathématiques doivent 
pouvoir se décomposer en unités de tailles équivalentes. La disposition en 
lignes séparées par des colonnes – quatre ici – est une forme de la 
spatialisation de l’écriture mathématique, et on a avantage à parler plus 
précisément d’un dispositif18. Il ne sera pas maintenu, ce qui ne signifie pas 
que leçon n’en sera pas tirée.  
 

																																																								
18 Je ne suis pas sûr qu’on gagne autre chose qu’un effet de mode en qualifiant ce dispositif 
de « rhétorique ». Avec le seul mot dispositif, il me paraît utile de bénéficier de l’allusion 
voilée à la disposition spatiale, aussi éloignée du genre publicitaire que du bric-à-brac, ou 
même du style, et lui donner ainsi la signification d’un mode induit de lecture. 
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La naissance du calcul polynomial ou le geste des formules 
algébriques 
La méthode des coefficients indéterminés vaut aujourd’hui comme 

recherche numérique et elle paraît l’exemple le plus élémentaire d’une 
modélisation par la détermination de paramètres à partir de données 
expérimentales en vue d’établir une loi de la nature19. Comme exemple 
suffisamment explicite de cette méthode, d’Alembert proposait la résolution 
d’une équation différentielle linéaire du premier ordre, 

dy
by P

dx
  , 

où P désigne un polynôme du second degré, et b est une constante réelle 
quelconque. Sans aucunement s’intéresser à l’équation homogène associée, 
il résolvait Q’+bQ = P avec un polynôme Q posé a priori comme étant du 
second degré, avec des coefficients justement indéterminés, et c’est ce Q 
qu’il appelait « quantité ». Il conformait donc la solution. Il notait, en 
conservant de Descartes le fameux xx au lieu de la puissance d’ordre 2 :  

Q = A+B+Cxx 
Comme la dérivation diminue d’un degré la puissance, le système 

linéaire à trois équations en A, B et C est triangulaire non dégénéré, donc 
résoluble, donnant A, B et C explicitement à partir des coefficients du 
polynôme connu P. En ce sens la méthode des coefficients indéterminés est 
devenue le paradigme de la formulation mathématique par adaptation à 
l’empirisme phénoménal ou expérimental. Ce n’est pourtant pas de cette 
manière qu’elle fut présentée par son indéniable inventeur, Descartes, en 
1637. Alors même qu’il ne s’adressait pas à un public de mathématiciens, 
mais voulait aider au gouvernement de chaque esprit par la seule raison. 
L’Encyclopédie, sous la plume de d’Alembert, restait bien succincte en son 
entrée « Méthode »  en ce qui concerne du moins les mathématiques :  

 
La route que l’on doit suivre pour résoudre un problème. 20 

N’était pas énoncé un impératif sous la forme : « il faut suivre ». Mais 
l’article défini « la » induit que la « route » est unique. Chez Descartes avec 
cette méthode des coefficients indéterminés, ce qui est unique (mais à n 
variables) est le polynôme unitaire de degré n, apparaissant comme un 
																																																								
19 Pour que l’on saisisse l’adaptation de la méthode à la pratique expérimentale, sinon à la 
réalité, il suffit de mentionner que c’est par la méthode des coefficients indéterminés que 
Fourier a découvert les coefficients éponymes. Voir Jean Dhombres, Jean-Bernard Robert, 
Joseph Fourier, créateur de la physique mathématique, Paris, Belin, 1992. 
20 Entrée méthode, pour les mathématiques ; repris dans l’Encyclopédie méthodique.  
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incontournable de sa postérité, alors que la méthode elle-même avait 
d’autres effets possibles, comme le commentateur de Descartes pour les 
collèges en 1730 l’indiquait suffisamment21. D’Alembert précisait toutefois 
que le mot méthode ne s’appliquait que lorsque plusieurs questions se 
trouvaient  résolues par la même procédure. Ce qui serait une bonne lecture 
du commentaire « en passant » que donne Descartes de sa méthode ! Mais 
d’Alembert aboutissait à ce monstre épistémologique, pourtant familier, 
d’une qualification de « méthodes générales ». Il est soumis à la rhétorique 
qui les oppose aux « méthodes bornées » ! Seuls les enseignants, et non les 
mathématiciens chercheurs, acceptent de présenter des méthodes qu’ils 
savent « bornées : c’est au fond cela qui fait l’intérêt du programme d’une 
seule année scolaire, où le « polynôme vectoriel » peut trouver sa place.  
 Mais je donne directement du texte de Descartes une « équation » du 
sixième degré en y, la seconde équation écrit-il au livre II de la Géométrie à 
propos d’une courbe bien particulière à laquelle il s’agit de construire une 
tangente, et dont la nature importe peu pour mon propos22. Ce problème dit 
géométrique de la tangente à cette courbe phénoménale est réduit à celui, 
algébrique, de dire l’existence d’une racine double pour une équation. 
Descartes s’en expliqua aussi, mais là encore mon but est de suivre la 
démonstration en ce qu’elle porte sur des formes23.  

																																																								
21 Claude Rabuel, Commentaires sur la Géométrie de M. Descartes, Marcellin Duplain, 
Lyon, 1730. 
22  La construction d’une tangente à un cercle est un des morceaux de bravoure de toute 
description de la mathématique cartésienne. Voir Vincent Jullien, La Géométrie de Des-
cartes, Paris, PUF, 1998, et l’édition récente de la géométrie par André Warusfel. 
23 Extrait de l’édition originale de 1637 de la Géométrie de Descartes, (p. 348). Se trouve 
dans les Œuvres de Descartes, t. VI, p. 420.  
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Ill. 12. Extrait de la Géométrie de Descartes, un essai annexé au Discours de la méthode. 
 

Il y a à voir la disposition spatiale d’un polynôme en y, à repérer des 
paramètres b, c, ou d et deux autres consonnes s et v, que je dirai inconnues 
pour rester avec le vocabulaire de Descartes et ne pas utiliser trop vite la 
notion de ultérieure de variable. On voit dans cet extrait entrer une autre 
lettre e, qui joue un rôle de variable réelle trop souvent passé sous silence, et 
quatre lettres encore : f, g, h et k qui sont celles mêmes de la méthode des 
coefficients indéterminés. Pour le vocabulaire, l’expression ici écrite 
« équation » de Descartes n’implique pas l’égalité à zéro d’une forme 
algébrique : la forme polynomiale elle-même est aussi dite une équation24. 
Descartes savait très bien mettre l’égalité à zéro lorsque ceci s’avérait 
nécessaire dans son exposé.  

																																																								
24  En parlant de « somme qui se produit », Descartes pensait le polynôme comme objet 
ayant une forme, mais aussi comme quantité que je décris comme de nature vectorielle 
(« polynôme vectoriel »). 
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La dernière phrase de ce texte surprend, et inquiète : il est dit qu’il y a autant 
d’équations que d’inconnues, en tout cas que d’inconnues que l’on est 
obligé de supposer. L’inquiétude est celle de quiconque a fait un peu 
d’algèbre, et sait qu’une telle comptabilité, nombre d’équations et nombre 
d’inconnues, n’est jamais un critère de résolution, même avec des équations 
linéaires. J’ai recensé ci-dessous les équations en jeu. Ces équations, au 
nombre de six a priori, correspondent à l’identification des deux polynômes 
unitaires du sixième degré. Cette identification est  le résultat du produit 
polynomial de y2 – 2ey + e2 par le polynôme général unitaire du quatrième 
degré.  

 

 
Se pose la question de savoir quelles sont les inconnues « qu’on est 

obligé de supposer ». Une première réponse serait de dire que ces inconnues 
sont les quatre coefficients, f, g2, h3 et k4, que l’on qualifiera d’indéterminés, 
ceux qui font le polynôme général du quatrième degré. Descartes prévient 
cette pensée, puisqu’il dit que le nombre des inconnues est 6, et non 4, 
correspondant aux 6 équations. Le lecteur doit donc se souvenir des 
quantités v et s, qui entrent dans la première équation écrite et qui ne suivent 
pas dans l’alphabet les b, c et d. Ces quantités v et s sont des inconnues, 
auxquelles viennent s’ajouter alors les quatre coefficients f, g2, h3 et k4. 
Plane néanmoins un doute dans ce décompte sur le rôle de ce que je ne veux 
pas d’emblée appeler la variable e, puisque justement c’est cette qualité de 
variable que la méthode est aussi chargée de faire comprendre. On doit 
admettre que cette attitude de doute est celle souhaitée chez son lecteur par 
Descartes : il l’oblige à toujours être au clair des objectifs du calcul à un 
moment déterminé de ce calcul, précisément quant à la stratégie de l’ordre 
qui règle le calcul. C’est une option de didactique ! J’en souligne 
volontairement l’expression pour m’étonner de ne pas voir des attitudes 
semblables d’aujourd’hui, en vue d’un tel apprentissage. Mais n’est-ce pas 
parce qu’on dissocie le calcul de la méthode ! 
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Présentement, l’ordre est dans la vision de six inconnues parce qu’il y a 
six équations, et on oublie provisoirement e, car c’est une quantité connue. 
J’écris ces six équations, et en passant prend conscience qu’avoir choisi des 
puissances comme g2, h3 et k4, est une aide dans la disposition des calculs. 
On peut en effet vérifier qu’un terme n’est pas à sa place ! Argument in 
absentia, le visuel sert de repère du faux, dont la discrimination est jugée 
par Descartes comme essentielle. La nouvelle abréviation fait ressortir, au 
moyen d’alignements verticaux, les coefficients indéterminés que je note 
avec des majuscules F = f, G = g2, H = h3 et K = k4, sans les membres de 
droite qui sont des constantes. 

  -2e +     F 
      e2 – 2eF +      G 
               e2F – 2eG +     H 
                          e2G – 2eH +    K 
                                      e2H – 2eK 
                                                   e2K 

 
Descartes poursuit en introduisant la prescription essentielle de sa 

méthode : « démêler par ordre ». Cet ordre commence par celui des seuls 
quatre coefficients. 

Mais, pour demesler par ordre ces equations & trouuer 
enfin la quantité v, qui est la seule dont on a besoin, & a 
l’occasion de laquelle on cherche les autres ; il faut, 
premierement, par le second terme chercher f, la 
premiere des 
quantités inconnuës de la derniere somme ; & on trouue 

f   2e – 2b. 
Puis, par le dernier [terme], il faut chercher k, la 
derniere des quantités inconnuës de la mesme somme ; 
& on trouue 

      

Puis, par le troisiesme terme, il faut chercher g, la 
seconde quantité, & on a 

gg   3ee – 4be – 2cd + bb + dd. 
Puis, par le penultiesme, il faut chercher h, la 
penultiesme quantité, qui est  

     

Et ainsi il faudroit continuer, suiuant ce mesme ordre, 
iusques a la dernière, s’il y en auoit dauantage en cete 
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somme ; car c’est chose qu’on peut tousiours faire en 
mesme façon. 
 Puis, par le terme qui suit en ce mesme ordre, qui est 
icy le quatriesme, il faut chercher la quantité v, & on a 
 
     

 
où mettant y au lieu d’e, qui lui est esgal, on a 

 
pour la ligne25 AP. 

Ill. 13. Autre extrait de la géométrie de Descartes 
 

Cet extrait suffit pour répondre à la question de la preuve. Non pas la 
preuve de la méthode des tangentes toute entière, ni la preuve de la 
méthode des coefficients indéterminés reposant sur l’identification des 
coefficients des polynômes. La preuve est passée à l’ordre de 
résolubilité26 des six équations, avec six inconnues. Pourquoi le faire 
ici ? Pourquoi scinder le discours de Descartes ? C’est que lui-même 
invite à cette réflexion, en venant de dire que « c’est chose qu’on peut 
toujours faire en même façon »27. La preuve est celle de Descartes avec 
la généralité indiquée de la résolution au-delà du sixième degré, ce que 
nous identifions à une résolution en cascade par alternance28. Bref, c’est 
la forme qui domine, la forme sous laquelle un problème algébrique se 

																																																								
25		 Ce	mot	de	«	ligne	»	AP	exige,	pour	être	compris,	de	revenir	à	la	signification	de	la	
première	équation,	et	d’une	courbe.	Je	n’en	ai	pas	besoin	pour	la	présente	discussion.	
D’ailleurs	Descartes	 lui‐même	se	contente	d’un	dessin.	Celle‐ci	 clôt	 la	discussion	sur	
l’équation	par	laquelle	a	commencé	notre	entrée	dans	le	texte	de	Descartes.	
26	Le mot de résolubilité n’est pas admis par des dictionnaires français, solvabilité étant 
préféré, mais je le préfère parce que faisant paire avec le mot résolution.		
27		 La Géométrie, p.421, et ici dans la citation fournie.	
28 Le lecteur moderne a tout de suite visualisé la méthode pour ces quatre coefficients, 
puisque ceux-ci apparaissent dans le système linéaire de six équations donné ci-dessus, et 
en fait deux systèmes linéaires triangulaires. L’expression cascade, comme l’expression 
triangulaire que j’ai utilisée, sont mal choisies, car anachroniques, l’algèbre linéaire n’étant 
pas faite chez Descartes. Il faudrait dire une double cascade (d’une part avec F, G et H, 
d’autre part en inversant l’ordre avec K, H et G), ou encore la forme crois-
sante/décroissante, comme dans le célèbre poème Les Djinns des Orientales de Victor Hu-
go. À condition de voir que dans les équations n’interviennent ni l’inconnue v, ni 
l’inconnue s, à l’exception des membres de droite des équations linéaires à trois des quatre 
lettres F, G, H et K, ni la lettre e qui est pour le moment une constante parmi d’autres.  	
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présente pour pouvoir être résolu. La forme en accordéon du système li-
linéaire est liée à la multiplication par un polynôme de degré 2. Il y a une 
rhétorique de correspondance de deux ordres, de deux autres ordres, 
l’ordre des quantités (les coefficients indéterminés), et l’ordre des 
équations tel que l’a déterminé la méthode d’identification des 
coefficients des puissances décroissantes, ou ordre des termes. La 
correspondance est langagière : par la pénultième (ou avant dernière 
équation), il faut chercher la pénultième (ou avant dernière quantité). 
Mais Descartes prend soin de casser cette correspondance, puisque dès le 
départ il indique qu’il faut « premièrement », par le « second terme » 
chercher la « première » des quantités de la « dernière somme ». Il 
ajoutera que par le « troisième terme » il faut chercher la « seconde 
quantité ». L’emploi du « il faut », et non pas « il est clair », ou « on 
voit », est une indication que le nouvel ordre, l’écriture des équations 
dans un ordre autre que celui provenant des puissances décroissantes, 
requiert un parcours algébrique de la forme des équations.  

La question de généralité soulevée est de savoir si ce nouvel ordre des 
équations, ou cette forme, suffit à la résolution particulière, en vue de la 
détermination des coefficients indéterminés, indépendamment du degré de 
la forme polynomiale de départ. Descartes assure : « on peut toujours faire 
en même façon ». Il a raison pour trouver les racines doubles. Omet-il de 
dire pourquoi ? On peut aisément dire cette raison avec les mots de 
Descartes : intervient la forme du polynôme de degré 6 obtenu par 
multiplication du polynôme y2 – 2ey + e2 par le polynôme « feint »29, ou 
général, y4 + fy3 + g2y2 + h3y + k4. Cette multiplication, à la manière dont 
Descartes la conduit (commençant par le polynôme de second degré), 
impose que pour chaque coefficient au plus trois des lettres f, g2, h3 et k4 
(visualisées ici par F, G, H, K) interviendront linéairement, et qu’au début 
(première équation, degré 5 ou deuxième terme) comme à la fin (dernière 
équation, degré 0, troisième terme) une seule des lettres interviendra. Puis 
pour la deuxième équation (degré 4, troisième terme) comme l’avant 
dernière équation (degré 1, sixième terme), deux seulement des lettres 
seront liées. La forme des équations qui dit leur résolubilité, à condition de 
bien ordonner, résulte de la nature de la multiplication polynomiale, donc du 
« polynôme algébrique » : trois termes sont au plus en jeu parce qu’il y a 
trois termes dans un polynôme de degré 2. 

																																																								
29	L’expression	d’équation	«	feinte	»	est	de	tabuel,	dans	son	Commentaire	à	la	Géomé‐
trie	de	Descartes.	
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S’il y a une rhétorique fallacieuse de l’ordre dans cet extrait de la 
Géométrie de Descartes, on la trouve juste ici, avec cet ordre de la 
résolubilité passant de la résolubilité des coefficients indéterminés à celle de 
l’inconnue v. Comme s’il s’agissait du même ordre ! Par contre, la 
rhétorique de l’ordre avec premier/dernier, etc., par son décalage, indique 
bien les attentions à prendre, et la non automaticité du calcul. Il est 
prévisible si l’on ordonne convenablement.  
 C’est pourtant là que la méthode de Descartes manque sa preuve 
générale. Avec la possibilité même d’écrire une courbe algébrique P(x,y) = 
0 sur la forme résolue y = f(x). « On ne laisse pas de pouvoir toujours avoir 
une telle équation » annonçait-il quelques pages plus tôt30. Cette affirmation 
est fausse. Le calcul différentiel seul montre qu’il est possible, et seulement 
localement, d’exprimer y = f(x), à condition d’accepter pour f, non pas un 
polynôme, mais une série entière. Telle est la formule de Taylor-Young31. 
Le succès de la méthode polynomiale de Descartes n’est pas garanti pour 
toutes les courbes algébriques, et ce n’est pas seulement une question de 
complication, mais tient à la nature même des courbes algébriques qu’il 
croyait suffisamment simple, alors qu’elle possède par certains côtés le 
même aspect non fini des courbes transcendantes, ou mécaniques dirait 
Descartes. A moins de penser que Descartes se trompe en supposant la 
forme fonctionnelle dans tous les cas, il ne peut raisonner que sur des 
exemples. Il sort au moins deux généralités de sa démarche sur le problème 
des tangentes. La première déjà dite est relative à l’ordre : c’est l’écriture 
polynomiale générale suivant les puissances décroissantes avec des 
coefficients généraux. La reconnaissance de la généralité des coefficients, et 
donc de la forme polynomiale, a été postulée par le degré 4, mais est 
devenue une réalité par la résolution même des coefficients en jeu, qui sont 
effectivement déterminés. La seconde généralité, liée à la précédente, tient à 
ce e qui intervient dans toutes les formules donnant les coefficients  
indéterminés. La signification de e est d’être un nombre réel quelconque : 
une abscisse. Car est ainsi fixé le point courant sur la courbe en lequel on 
veut calculer une tangente. C’est aussi une variable d’algèbre qui peut être 
mise à la place de y, précisément par la mise en facteur du carré de (y-e). On 

																																																								
30			Géométrie,	p.	416.	

31 C’est l’écriture f (x  a)  f (x) af '(x) 
a2

2!
f ' '(x) ...

an

n!
f n (x)  d’une fonc-

tion suffisamment régulière f , qui a finalement détrôné la formule du binôme de sa place 
centrale en analyse algébrique deuxième manière.  
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passe de la lettre algébrique muette du polynôme à la valeur réelle de la 
géométrie des courbes. Il y a deux constatations. D’une part, il ne fait plus 
de doute que les coefficients d’un polynôme ne soient des nombres réels, et 
pas seulement des rationnels. L’ontologie du réel est passée au 
polynôme par la réalité analytique d’une courbe, qui est l’œuvre de 
Descartes et qui tient lieu de forme phénoménale, sans seulement être une 
représentation ou une traduction en une autre langue. La substitution de la 
variable y en e, une conversion qui est partie prenante de la méthode de 
calcul, génère précisément le « polynôme fonctionnel », c’est-à-dire du 
polynôme an tant que fonction d’une variable.  

Se présente ainsi un aspect épistémologiquement singulier de cette 
écriture dans la mesure où la pensée adopte des formes de ce qu’elle est 
censée donner à penser, en l’occurrence l’espace, ou l’étendue comme 
écrivait Descartes. Ce dernier utilisera aussi bien la spatialisation pour une 
forme algébrique, avec le choix d’une double écriture horizontale et 
verticale des polynômes ; elle sera maintenue assez longtemps. Avec cette 
spatialisation de l’écriture polynomiale, on ne peut pas dire qu’il s’agisse 
seulement d’une convention au sens où il n’y aurait aucune explication à 
trouver dans le moyen graphique utilisé. La spatialisation fait usage d’une 
« analogie », qui n’est pas entée sur le sens mathématique des proportions, 
mais reprend le geste du calcul d’un polynôme où l’on regarde de droite à 
gauche, par exemple lorsque l’on développe un produit croisé de 
coefficients comme (a+b)(c+d), qui se déploie spatialement alors que la 
lecture des puissances successives de l’indéterminée est linéaire, de gauche 
à droite. C’est ce que j’appelle le geste de la formule. 

Au contraire, le symbole de l’égalité pour Hérigone, 22, est 
simplement emblématique en ce qu’il rappelle la balance. Mais on retrouve 
l’une des affirmations les plus anciennes de la pédagogie de l’algèbre, avec 
le fait de « l’équilibre des deux membres » de l’équation, comme des poids 
qui, retirés car gommés d’un côté du signe, doivent être également retirés de 
l’autre côté, ce qui fait précisément intervenir le signe moins. Ai-je besoin 
d’insister sur ce qu’il y a d’invention dans cette pensée du négatif, après ce 
que Kant en a dit qui souhaitait son introduction dans les raisonnements 
philosophiques ? On rencontre ainsi une des plus belles questions de 
l’histoire des mathématiques en ce qu’elle peut aider à comprendre le 
fonctionnement de l’esprit humain dans sa réflexion collective : faut-il voir 
l’invention du signe moins dans l’allusion algébrique à des comptes 
commerciaux à équilibrer ou dans la pensée qui reste spatiale de la balance ? 
Je ne prétends pas trancher, mais je suis sûr, quand il y a un choix 
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didactique pour l’une ou l’autre option, que cela répond à d’autres critères 
que des critères mathématiques. Je voudrais donc poursuivre sur de tels 
choix, à partir de problèmes particuliers et n’étant plus à la mode.  
 

La modes de certains problèmes : l’inscription d’un carré dans un 
triangle 
	

				 	
 

Ill. 14 et 15. Extraits de la planche XV des figures de Samuel Marolois, dans l’édition par 
Albert Girard en 1651 du Traité, et practique de Géometrie, et premièrement de l’usage du 

compas. 
 

Le problème qui consiste à inscrire un carré dans un triangle est 
envisagé par l’auteur d’une géométrie qualifiée de pratique, affublée 
pourtant du nom de traité. Sans doute parce que les gestes techniques y sont 
justifiés. Le mathématicien professionnel qu’est Samuel Marolois - 
l’adjectif professionnel étant seulement mis pour dire qu’il ne s’agit pas 
d’un universitaire - sera « corrigé » en 1628 par un autre professionnel 
Albert Girard. Il fut le traducteur et commentateur en français de Simon 
Stevin, l’introducteur en Europe de l’écriture décimale illimitée. Les deux 
auteurs ne disent pas les origines du problème, ce qui ne veut pas du tout 
dire qu’ils ne les connaissent pas. Il est certain qu’un simple regard jeté sur 
les deux figures du bas de la planche (ill. 14 et 15 ) établit que la situation 
exploitée est celle de la similitude géométrique. Si elle fait fond sur la 
figuration la plus simple de deux triangles dont deux côtés sont parallèles, 
forme dite de Thalès, on voit bien plus. La construction dans la première 
figure numérotée 147 du carré cherché FGIJ dans le triangle ABC s’obtient 
par similitude du carré  ACED, le centre de similitude étant O. Joue aussi 
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bien dans la seconde figure le carré qui contient le numéro 148, les lettres 
des sommets n’étant pas toutes lisibles en raison de la pliure du livre, mais 
aussi bien le carré GDLI. La première similitude est une homothétie (de 
centre O, milieu de AC) suivie d’une rotation autour du même point d’un 
angle plat32 (symétrie par rapport à ce point 0), mais ce sont deux simples 
homothéties (de centre B ou A) pour les deux cas de la deuxième figure.  

 
Qui pourrait, s’il n’avait déjà fait l’exercice, penser que cette preuve 

peut donner lieu à une formule intéressante ? En appelant h (= BD) la 
hauteur issue de B du triangle ABC (fig. 147 de l’ill. 14), et b la longueur 
delà base AC de ce triangle, on dispose pourtant de la longueur du côté HI 
du carré, noté par x, selon 
	

(1)	 	 	 	 	 	
hb

x
h b




	

		
Cette	 expression	 est	 immédiate	 lorsqu’on	 la	 déduit	 non	 pas	 de	 la	
similitude	 géométrique	 qui	 a	 servi	 de	 construction,	 mais	 de	 deux	
similitudes	 de	 centres	 distincts,	 autrement	 dit	 de	 deux	 configurations	

différentes	 de	 Thalès.	 Puisque	 l’on	 a	
x HB

b AB
 	 de	 la	 similitude	 des	

triangles	BHJ	et	BAC,	et	
x AH

h AB
 	par	similitude	des	autres	triangles	ABF	

et	ABD.	De	sorte	qu’en	ajoutant,	
x x HB AH AH HB AB

1
b h AB AB AB AB


      	,	

ce	qui	par	une	autre	opération		,	donne	(1)	à	partir	de	
1 hb

1 1 h. b
h b




.	La	

formule	(1)	indique	en	particulier	les	rôles	symétriques	de	h	et	b,	mais	
suggère	aussi	une	autre	construction,	à	partir	du	constat	que	2x	est	en	
fait	 la	 moyenne	 harmonique	 de	 h	 et	 b	:	 il	 suffit	 de	 construire	 une	
longueur	au‐delà	de	C	et	sur	le	prolongement	de	AC	une	longueur	CZ=	h,	
pour	 en	 traçant	 de	 C	 une	 parallèle	 à	 ZB	 obtenir	 le	 point	 H	 comme	
intersection	avec	AB.	

																																																								
32 Je ne peux pas envisager chez ces géomètres la présence d’une homothétie qui aurait un 
rapport négatif.  
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	 La	liberté	même	du	carré	de	départ	dans	la	deuxième	figure,	est	un	
gage	 que	 la	 démonstration	 figurée	 est	 vraiment	 une	 preuve	 par	
composition,	ou	en	synthèse	comme	on	disait	encore.	Sans	donc	qu’il	y	
ait	besoin	de	supposer	 le	problème	d’abord	résolu	et	de	 faire	analyse.	
La	similitude	joue	à	plein		par	une	propriété	de	conservation	:	un	carré	
est	 transformé	en	un	 autre	 carré,	 et	 la	 conservation	d’un	 «	intérieur	»	
ou	 d’une	 inscription	 du	 carré	 dans	 le	 triangle	 se	 voit	 aussi	 bien	 en	
supposant	 non	 obtus	 les	 angle	 à	 la	 base.	 La	 similitude	 comme	
transformation	 géométrique	 est	 précisément	 celle	 qui	 évite	 l‘analyse,	
laquelle	 requiert	 de	 supposer	 le	 problème	 résolu.	 Dans	 la	 première	
figure	 facilitée	 par	 la	 propriété	 d’un	 triangle	 équilatéral,	 la	 similitude	
pourrait	se	réduire	à	celle	disons	plus	classique	des	seuls	triangles	HFO	
et	 ECO.	 Dans	 la	 seconde	 figure,	 la	 similitude	 se	 voit	 au	 sens	 	 d’une	
transformation	 géométrique	 qui	 est	 l’homothétie	 de	 centre	 E	 qui	
produit	 à	 partir	 du	 carré	 EGDI	 le	 quadrilatère	 nécessairement	 carré	
KLIH.	La	deuxième	figure,	et	je	devrais	dire	la	deuxième	démonstration	
figurée,	 est	 	 un	 apport	 de	 Girard	 à	 la	 première	 figure	 qui	 est	 due	 à	
Marolois33	:	 Girard	 s’explique.	 Ce	 qui	 prouve	 suffisamment	 que	 le	
problème	 posé	 l’a	 été	 pour	 susciter	 la	 réflexion,	 et	 éventuellement	
établir	 une	 critique	 sur	 les	 méthodes	 précédemment	 utilisées.	 C’est	
sans	 aucun	 doute	 un	 des	 avantages	 du	 recours	 à	 l’histoire	 que	 de	
rappeler	que	 les	mathématiques	ne	 sont	pas	 science	de	 recettes,	mais	
aussi	bien	engagement	critique	sur	la	nature	des	preuves	fournies.																	

 
L’aspect anachronique de la présentation que je viens de faire est-il 

gênant ? Dans la mesure où tant d’historiens prétendent qu’il faille attendre 
																																																								
33 Le traité de Marolois paraît avec ses Opera mathematica ou Œuvres complètes ,  avec 
des dessins de Vredemann de Vries ("Opera mathematica", ou Oeuvres mathématiques 
traictans de géométrie, perspective, architecture et fortification, par Samuel Marolois, 
ausquels sont ajoints les fondements de la perspective et architecture, de J. Vredm. Vriese, 
augmentée et corrigée en divers endroicts par le mesme auteur, Hagae-Comitis : ex off. H. 
Hondii, In-fol. oblong, pl. et front. gr., 1615-16) ; Girard le reprend en 1628-29 (Oeuvres 
mathématiques de Samuel Marolois, traitant de la géométrie et fortification, réduites en 
meilleur ordre et corrigées d'un nombre infini de fautes écoulées aux impressions précé-
dentes : la géométrie par Théodore Verbeeck,... et la fortification par François Van Scho-
ten,... ,Amsterdam : G. J. Caesius, 1628, 2 parties en 1 vol. in-4° , fig. et pl.). Une seconde 
édition du traité a lieu en 1651 : "Opera mathematica", ou Oeuvres mathématiques traictans 
de géométrie, perspective, architecture et fortification, par Samuel Marolois, de nouveau 
reveue, augmentée et corrigée par Albert Girard,  Amsterdam : J. Janssen, 1651, 2 vol. in-
fol., pl. et frontisp. gr.  
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le XIXe siècle, sinon même Felix Klein et la fin de ce même siècle, pour 
concevoir des transformations géométriques en tant qu’opérant dans 
l’espace et donc sur des figures entières en conservant précisément certaines 
propriétés. Ce n’est pas parce qu’il y a eu changement de conception 
générale sur la géométrie qu’il faut en déduire que plus tôt on ne percevait 
pas le rôle de la similitude, un peu comme si les mathématiciens d’autrefois 
ne pouvaient comprendre que le niveau du programme qu’on leur assigne ! 
Reste plutôt la question de savoir pourquoi cette preuve du XVIIe siècle, 
préfigurée par des démonstrations arabes du même genre, resta enfouie dans 
une géométrie pratique qui perdait peu à peu toute actualité à se fixer sur les 
seules méthodes géométriques. 
 
    Marolois ne donne d’ailleurs pas la formule (1), qui pourrait aisément 
s’interpréter en terme de moyenne arithmétique. Le respect de la théorie des 
proportions requiert d’autres formulations, par exemple celle indiquant que 
x est la quatrième proportionnelle de h, h+b, et b, ou encore celle de b, h+b 
et h. Mais dites ainsi, quoique suggérant d’autres constructions 
géométriques, ce sont autant de formules de type algébrique qui sont 
seulement écrites avec des proportions en place des équations de type 
polynomial34.Toute différente est l’attitude du mathématicien qui a  donné 
son nom à l’algèbre. Car dans le kitābu 'l-mukhta�ar fī �isābi 'l-jabr wa'l-
muqābalah (Abrégé de calcul par la restauration et la comparaison), celui 
que j’écrirai simplement al-Khawarizmi s’était servi à titre méthodologique 
du problème du carré dans le triangle. Pour précisément faire jouer une 
notation algébrique, et notamment indiquer une voie qui conduise à la 
formule (1). Chez al-Khawarizmi, la résolution consistait à distinguer la 
« chose », ou côté du carré inscrit cherché, de ce carré même (mal). 
Forcément, compte tenu de la mise en algèbre, le problème devait être 
supposé résolu, et si l’enjeu de l’analyse était un calcul d’aires, qui 
contraignait donc à faire intervenir le carré de la « chose », l’objectif était 
l’obtention d’une équation. L’étonnant, et d’abord imprévisible résultat, est 
que ce carré disparaisse dans les calculs algébriques menés. Lorsqu’on écrit 
effectivement comme équation à résoudre l’égalité de l’aire du grand 
triangle à la somme des aires des trois triangles à laquelle on ajoute l’aire du 
carré, l’aire du triangle du haut retranche un terme en moitié du carré, et en 

																																																								
34 Jean Dhombres, Sull’invenzione delle formule matematiche e delle identità delle notevo-
li, Bolletino dei docenti di matematica, 66, Mai 2013, p. 9-28.  
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fait de même la somme des aires des deux triangles du bas. Ce qui com-
compense exactement le terme en  provenant du carré géométrique35.  

 
Si l’on constate qu’en faisant usage du théorème de Pythagore la 

méthode d’al-Khawarizmi est basée sur l’application des aires, une méthode 
dont l’origine est jugée bien antérieure à celle d’Euclide, on ne peut que 
reconnaître à l’écriture algébrique l’avantage de donner à voir la disparition 
du terme carré, et peut-être même de la  prévoir. Ce n’est pourtant pas que la 
présence d’un terme carré éventuel serait  a priori une gêne pour le calcul 
proprement algébrique, mais en l’occurrence, sa disparition est un moyen 
pédagogique. Les commentateurs insistent à juste titre sur le fait qu’al-
Khawarizmi joue l’algèbre au sens précis où son programme est d’atteindre 
une équation : il inaugure le genre algébro-géométrique, et le problème du 
carré inscrit le met en évidence.   

 
Faut-il attribuer plus à la formule ? Si c’est bien Descartes qui fit 

apprendre à systématiquement prévoir la réduction d’une équation, et aussi 
bien que l’on trouve anormal de résoudre par un terme carré ce qui ne 
dépasse pas le premier degré pour l’inconnue choisie qui est ici x, il ne s’est 
exprimé qu’en 1637. Avec Descartes l’algèbre n’était plus la simple 
obtention d’une équation, mais jeu sur une structure, celle de l’algèbre 
polynomiale qui n’est qu’une toute petite partie du calcul. Il y a en plus la 
méthode des coefficients indéterminés. On peut deviner que, dans une 
tradition cartésienne, et pour le problème d’inscription du carré dans un 
triangle, on ait abandonné la méthode d’application des aires, pour en venir 
à une méthode épistémologiquement mieux adaptée. Serait-ce celle donnée 

																																																								
35 Si l’aire du triangle du haut est évidemment 1

2 x(h  x), pour la somme des aires des 
deux triangles du bas, il est utile de faire intervenir deux inconnues de plus, y et z , liées 
certes par la relation b+y+z= b, et de vérifier ce que j’écris lourdement, mais comme tout 
débutant en algèbre doit faire.  

x x x
(b (x z)) (b (x y)) (2b (x z) (x y)

2 2 2
x x x

(2b 2x (z y)) (2(b x) (b x)) (b x)
2 2 2

         

         
 

On voit alors bien la simplification opérée : 

2 1
2

x x
(b h) (b x) x bh

2 2
      ,  

soit  
hx+bh= bh.  

x2
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par Héron d’Alexandrie ? Pourquoi pas, mais même en ce cas, rien ne per-
permettrait de considérer le « retour » à un auteur antique comme une 
réaction. Car la formule dit au plus une dépendance fonctionnelle de type 
homographique en chacune des variables b ou h.  

 
Dans les dessins arabes sur le problème, le triangle est isocèle. Mais la 

symétrie de b et h devient une évidence si le triangle choisi est rectangle. 
Cette figure du triangle rectangle intervient comme une figure de base dans 
le livre classique chinois des Neuf chapitres sur les procédés 
mathématiques. Mais si les exemples y sont donnés sous forme 
arithmétique, on s’aperçoit que la méthode utilisée est celle des aires, à la 
façon de al-Khawarizmi et non des proportions. Il n’y a pas d’explication 
algébrique, quand bien même la voie choisie consiste à supposer le 
problème résolu.  

	
	

Illustration	16.	Explication	et	figure	pour	le	problème	9.	29	des	Neuf	chapitres,	dans	la	
version	de	Yang	Hui	en	1261,	reproduit	en	1993.		

	
Ce problème se trouve dans le neuvième rouleau des Neuf chapitres sur 

les procédures mathématiques, avec les commentaires anciens de Liu Hui, 
un livre portant sur la base (gou) et la hauteur (gu) d’un triangle rectangle et 
lié à ce qui sert d’image fondamentale.  

 
On somme la base et la hauteur, ce qui fait le diviseur, Base et hauteur sont 
multipliées l’une par l’autre, ce qui fait le dividende, Et en effectuant la 
division du dividende par le diviseur, on obtient le côté du carré.  
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Par contre, le commentaire indique précisément que l’on doit faire une 

supposition pour entreprendre le calcul, ce qui est préciser la position 
d’analyse. Je donne alors la version de ce problème sous la forme due à 
Yang Hui en 1261 dans son Xiangjie jiuzhang suanfa (Explication détaillée 
des procédures de calcul en neuf chapitres), où l’on voit le jeu sur un 
décompte des aires, avec utilisation de couleurs (ici seulement noir et 
blanc), selon un procédé assez fréquent qui remplace les notations36.    

 
Soit base 6 bu37 hauteur 12 bu, combien fait le côté du carré inscrit ?  

L’explication du problème (jie ti) se fait avec des petits carrés entiers (ill. 
19).  

La surface blanche du carré inscrit 16 et les surfaces noires inscrites 
16 sont égales. Les deux (triangles) blancs grands et petit et les deux 
noirs sont égaux. 

 
Je termine ce voyage autour de l’inscription d’un carré dans un triangle 

avec un auteur, John Leslie, avec un exposé qu’il donna en 1821, dans un 
Cours de mathématiques, se voulant aussi une introduction à la philosophie 
naturelle. Il suffit de lire pour comprendre que la situation est celle de la 
similitude, à la façon dont Marolois l’abordait, et avant Klein. Mais l’auteur 
écossais s’acharne à défendre deux opérations distinctes, l’analyse et la 
synthèse, dans la mesure où, par réaction, il ne veut pas parler d’algèbre en 
géométrie38. Voilà une mathématique des classes bien dogmatique. Et 
comme telle sujette au ridicule. Mais, doit-on condamner ce jeu s’il n’est 
que destiné à apprendre une discipline du raisonnement ? 
 
 

																																																								
36	詳解九章算法 xiangjie jiuzhang suanfa (Explication détaillée des procédés decalcul en 

neuf chapitres), 楊輝 Yang Hui, 1261. Cité d'après une réimpression dans Zhongguo 

kexue jishu dianji tonghui 中國科學技術典籍通匯,  Henan jiaoyu chubanshe, 1993, vol. 1, 

p.   981. 
37	On	peut	traduire	bu	par	un	pas.	
38 John Leslie, Geometrical analysis an geometry of curves, in A Course of Mathematics, 
W. &C. Tait, Edinburgh, 1821, vol. 2, pp. 15-16.  
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Révolutionner les habitudes culturelles 
Je passe justement à la question des jeux, puisque m’y introduit la 

remarque précédente sur le travail de Leslie. Jusqu’au début du XVIIIe 
siècle, le jeu mathématique, c’est-à-dire une activité ludique pour laquelle 
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des stéréotypes mathématiques sont engagés (nombres, numérations et 
énumérations, équations, combinaisons de situations), se caractérise par 
une fixité de type algébrique sur des questions de caractère arithmétique. 
Fait référence le plus souvent un calcul modulo un nombre, et on pourrait 
peut-être dire que la preuve par neuf est typique du jeu disponible. Un 
exemple parmi tant d’autres consiste à demander d’écrire deux nombres en 
utilisant tous les chiffres entre 0 et 9 une fois seulement, d’additionner et 
d’effacer un des chiffres dans le résultat. Le meneur de jeu est capable de 
dire le nombre qui a été effacé, aussitôt qu’on lui présente ce qui reste39. 
Voici un autre jeu dit de société. On demande de choisir de tête un nombre 
à trois chiffres, et celui qui a fait ce choix doit, sans rien dire de ses 
résultats, doubler le chiffre des centaines et ajouter 5, puis au résultat 
ajouter le chiffre des dizaines et multiplier par 10, enfin ajouter le chiffre 
des unités : il prononce le résultat. Le meneur du jeu n’a qu’à soustraire 
250 pour pouvoir énoncer le nombre qui fut effectivement choisi40. Une 
formule algébrique, lorsque le choix abc  a été fait, résume  le geste du 
meneur. 

 
100a + 10b +c= [(2a+5)5+b]10+c-250. 

 
Et saute aux yeux de qui sait un rien d’algèbre la convention même de 

l’écriture décimale, qui est de nos jours enseignée bien avant l’algèbre, et 
ce depuis la Révolution française. Pourquoi n’est-elle pas appelée ”jeu” la 
parole qui consisterait à dire : ”multiplie le chiffre des centaines par 100, 
celui des dizaines par 10 et ajoute le chiffre des unités. Tu auras le nombre 
cherché” ? C’est, qu’ainsi présenté, le soi-disant jeu coïncide avec 
l’explication du décimal que retient l’enseignement.  

 
L’enseignant d’aujourd’hui sait que le décimal n’est en rien naturel, 

mais il sait que son rôle de maître est de le faire passer pour tel. Il sait que 
le décimal est venu à l’esprit des mathématiciens arabes au terme d’une 
algèbre polynomiale bien maîtrisée, alors que le décimal est désormais 
rangé dans l’arithmétique et dans un élémentaire du calcul 41. Le jeu de 

																																																								
39 Je suis bien incapable de faire l’histoire de ce jeu, ou plutôt de dire quand apparaît ce tour 
particulier. A-t-il été inventé au XVIIe siècle, alors que Pascal expliquait des questions nu-
mériques en se servant de l’analogie de l’heure, donc en faisant un calcul modulo 12 ? 
40 Ce jeu est attesté à la fin du XVIe siècle, lorsque Simon Stevin signale l’avantage de la 
numération décimale, et ce qu’elle change aussi bien pour la conception du nombre.  
41 L’origine savante du système décimal a-t-elle jamais été occultée ? 
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société ci-dessus expliqué n’a donc pas un avantage dirimant sur 
l’enseignement usuel, et il apporte une complication algébrique. Elle est 
jugée mathématiquement inutile.  

 
C’est bien le summum de la mathématique euclidienne présentée dans 

ces jeux, et ils ne sont pas du tout attestés dans une pratique de classe. La 
géométrie euclidienne est absente dans l’immense majorité des cas, alors 
qu’elle faisait le fond de l’enseignement des mathématiques. De tels jeux 
ont-ils pu manifester une innovation bien antérieure, et qui est celle de 
l’algèbre ? On le justifierait par les anecdotes qui font trouver l’âge d’un 
mathématicien au terme de la résolution d’une équation. Je ne connais guère 
d’histoire des mathématiques qui ne reprenne la vieille histoire grecque 
donnant l’âge de Diophante sous forme de rébus, ou plutôt disposant 
l’histoire sous forme additive de sorte que la mise en algèbre soit 
automatique. Le récit lui-même n’est pas jeu, mais enseignement : l’enfance 
de Diophante dura le sixième de sa vie, et la barbe ne lui vint qu’après un 
autre douzième de sa vie, alors il se maria un septième de sa vie plus tard, et 
un fils lui vint cinq années plus tard, dont le temps de vie fut la moitié 
exacte de celle du père, qui survécut quatre années à son fils (
1

6
x 

1

12
x 

1

7
x 5

1

2
x  4  x ). Je me demande si la résolution purement 

arithmétique de la devinette n’était pas au fond celle attendue, à savoir 
trouver un plus petit commun multiple aux dénominateurs mentionnés au 
cours du récit,  6, 12, 7, et 2, soit 84, et vérification qu’avec 84 on disposait 
de la solution. L’algèbre apporte la vérification qu’il ne peut y avoir aucun 
autre âge pour Diophante. Mais le seul fait de raconter avec des indications 
précises, signale dans un cadre d’enseignement que la réponse est possible, 
unique, parce que toutes les indications sont pertinentes et qu’il n’en 
manque aucune. Prendre la résolution de la devinette comme un jeu 
empêcherait de comprendre pourquoi la résolution est effectivement 
possible en suivant strictement toutes les données de l’énoncé. Ceci est 
l’opinion que je me fais pour expliquer l’absence de jeux vraiment 
algébriques dans les jeux dits classiques.  

 
Que l’innovation qu’est l’algèbre puisse avoir été connue du public par 

les jeux, reste une question historique et elle attend une étude plus précise ; 
non pas un développement nouveau sur l’origine de l’algèbre, car c’est un 
des thèmes les plus courus de l’histoire des mathématiques, mais l’étude de 
la forme de sa diffusion dans l’enseignement, et la reconnaissance par la 
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culture que l’algèbre apportait une nouvelle forme de pensée que l’on pou-
pouvait jouer.  

 

 
 

Ill. 17. Une leçon de géométrie analytique de Descartes dans un cadre mondain. 
 

Ce qui fait vraiment histoire pour le moment, c’est qu’à partir du XVIIe 
siècle, toute mathématique nouvelle n’entraîna pas composition de 
nouveaux jeux (algèbre des polynômes, logarithmes, géométrie des courbes, 
enveloppes, caustiques, méthodes infinitésimales ensuite, calcul différentiel 
et intégral plus tard). Du point de vue de l‘historien, la richesse d’un 
répertoire de jeux anciens tient plus à l’habillage rhétorique, et à la 
présentation du jeu qui renseigne sur des habitudes sociales ou des 
représentations, et très peu au substrat mathématique. Aujourd’hui, tout a 
changé en ce que les jeux mathématiques utilisent bien plus de disciplines 
mathématiques, et qu’une discipline mathématique même est née avec la 
théorie mathématique des jeux42. C’est cette discipline, avec sa recherche 

																																																								
42 Il me semble que dans leur grande majorité les jeux mathématiques actuellement connus 
ne soient pas antérieurs au XIXe siècle, et Sam Loyd paraît un fondateur. Son successeur, 
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des stratégies gagnantes, qui a fait entrer les jeux mathématiques dans 
l’enseignement ; on peut aussi penser que des jeux mathématiques indépen-
indépendants de l’enseignement ont pu, au XIXe siècle, conduire à cette 
discipline. Il me semble qu’en tout cas c’est avec le XIXe siècle que peut 
commencer une histoire proprement mathématique des jeux mathématiques.  

Puis-je alors considérer comme un jeu le problème dit des trois cercles, 
qui avait été splendidement reconstruit en 1600 par Viète selon une 
progression successive de problèmes et par une remarquable utilisation de la 
similitude. Dans un livre perdu, Apollonius avait expliqué comment trouver, 
trois cercles étant donnés dans un plan, un cercle qui leur soit tangent à tous 
les trois. Surprend la sincérité avec laquelle Descartes le traite, car bien loin 
de faire valoir le calcul algébrique avant toute autre chose, et concédant 
qu’il lui suffit d’avoir compris le niveau algébrique que le problème 
requiert, il donne d’abord à voir une fausse bonne piste. 

Mais ce chemin me semble conduire à tant de multiplications superflues que 
je ne voudrais pas entreprendre de les démêler en trois mois. 43  

 
Descartes réfléchit à haute voix à l’intention de son illustre élève, la 

princesse Elisabeth, fille de Frédéric V, ce roi de Bohème d’un hiver. Et 
manifeste l’avantage a priori de la géométrie  repérée par des axes 
orthogonaux.  

J’observe toujours, en cherchant une question de géométrie, que les lignes 
dont je me sers pour la trouver, soient parallèles, ou s’entrecoupent à angles 
droits, le plus qu’il est possible ; et je ne considère point d’autres théorèmes, 
sinon que les côtés des triangles semblables ont semblable proportion entre 
eux, et que, dans les triangles rectangles, le carré de la base est égal aux 
carrés des côtés. 44 

Il indique que son analyse n’est pas sans fin, qu’elle permet justement de 
« ne plus passer outre ». Car suffit la considération du degré du problème 
considéré, ici deux, donc d’établir que le problème géométrique, lorsque 
possible, est résoluble à la règle et au compas. Du moins si on se réfère à 
l’ordre qu’il a su établir dans sa Géométrie.  

Enfin, retournant à l’une des trois premières équations, et au lieu d’y ou de z 
mettant les quantités qui leur sont égales, et les carrés de ces quantités pour yy 

																																																																																																																																													
Edouard Lucas, dans ses Récréations mathématiques (Paris, 2e édition, Gauthier-Villars, 2 
vol. 1891), présente les jeux nouveaux sous une forme d’explications par des théorèmes, et 
crée véritablement le genre du jeu mathématique comme enseignement.   
43Lettre de Descartes à la princesse Elisabeth, novembre 1643, Œuvres de Descartes, tome 
IV, p. 39, orthographe modernisée. Référée par Lettre à Elisabeth. 
44 Lettre à Elisabeth, p. 38. 
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et zz, on trouve une équation où il n’y a que x et xx inconnus ; de façon que le 
problème est plan, et qu’il n’est plus besoin de passer outre. 45 

 
Descartes succombe quasiment toujours à son esprit indépendant et 

altier, pour indiquer sur le champ que c’est la géométrie elle-même qui est 
un jeu, et non l’algèbre qui conduit la solution    

que le surplus, qui consiste à chercher la construction et la démonstration par 
les propositions d’Euclide, en cachant le procédé de l’Algèbre, n’est qu’un 
amusement pour les petits géomètres, qui ne requiert pas beaucoup d’esprit ni 
de science. 46 

 
Newton répondra vingt quatre ans plus tard au premier livre de son 

opus magnum, les Principia mathematica philosophiae naturalis, et 
directement sur le problème des trois cercles, en montrant sa possible 
résolution à la règle et au compas, n’utilisant pas les opérations de l’algèbre 
et ses équations. Car Newton réduit la construction à des droites associées 
géométriquement à des hyperboles. Il ne se sert que des proportions, par 
exemple pour représenter une droite, justement là où Descartes les 
remplaçait par des équations polynomiales. Cet exemple est sans doute le 
plus beau lieu où ait pu se discuter le rôle des proportions dans la pensée. 
Comme Descartes, Newton dans son « Arithmétique universelle » publiée 
en 1707 seulement, et donnant une autre construction du problème des trois 
cercles, exagère radicalement sa position.  

Une équation est, en général, l’expression d’un calcul arithmétique, où l’on 
prononce que quelques quantités sont égales à d’autres. Une équation ne peut 
être géométrique qu’autant que les quantités qu’elle contient sont 
géométriques, telles que lignes, surfaces, solides ou proportions. C’est par 
une innovation des modernes qu’on y a fait entrer des multiplications, des 
divisions, et d’autres calculs de cette espèce ; et cette innovation n’est pas 
heureuse ; elle répugne aux premiers principes de la science. 47 

 
Ici, il m’importe d’analyser précisément la façon de travailler de 

Descartes avec la méthode des coordonnées pour le problème des trois 
cercles, dont je dois rappeler qu’elle ne nous est connue que par ce qu’il en 
donne à lire dans ses lettres à Elisabeth. Mais il m’a semblé qu’à l’encontre 
de tant de commentateurs, je ferai mieux comprendre l’originalité de 

																																																								
45 Lettre à Elisabeth, p. 42. 
46 Lettre à Elisabeth, p.  
47	Isaac	Newton,	Arithmétique	universelle,	trad..	fr.	Noël	Beaudeux,	Paris,	1802.			
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Descartes, jusque dans sa portée didactique, en donnant en premier la façon 
de Newton dans les Principia.  

 
Ill. 18 et 19. Figure donnée par Newton au livre I des Principia, en justification du lemme 
XVI, dans une section consacrée au rôle joué par les foyers dans le travail sur les courbes 
coniques (éd. originale, p. 67).  Figure utilisée par Descartes dans sa correspondance avec 

la princesse Elisabeth pour le problème avec trois cercles deux à deux tangents. 
 
Je repère par la figure donnée par Descartes, supposant tout comme 

Newton le problème résolu, et exploitant la situation des trois cercles 
donnés, de centres respectifs	A, B et C et dont il est pratique d’appeler a, b, 
et c les rayons respectif. L’objectif devant être d’exprimer à partir de ces 
données le centre D du quatrième cercle et de son rayon que Descartes note 
x à la suite de ce que lui proposait la princesse. On voit aussitôt les relations 
AD= x+a, BD= x+b et CD= x+c, du moins dans la configuration envisagée 
pour les tangences dites extérieures des cercles, mais pouvant être adaptées 
en donnant un signe aux rayons. Newton fait disparaître x, omet les 
questions de signe, en exprimant que D est sur l’hyperbole de foyers A et B, 
dont le grand axe est la différence entre le plus grand et le plus petit des 
rayons a et b. Il s’évite d’avoir à décider s’il s’agit de BD-AD ou de AD – 
BD. Naturellement, par permutation circulaire, interviennent aussi bien deux 
autres hyperboles. L’idée est de remplacer ces courbes par des droites, en 
l’occurrence leurs directrices. De façon précise, sa figure (ill. 18) qui pose Z 
en place de D, introduit le point P sur AB, et en pointillés la directrice de 
l’hyperbole (courbe dessinée selon ZM), venant orthogonalement en P, et le 
point Q sur AC, donnant de même la directrice posée orthogonale à AC. Ces 
deux directrices se coupent en T.  Ce sont les proportions, en utilisant 
l’excentricité (donnée par le rapport de MN à AB), qui font que P, Q et T 
sont effectivement constructibles à la règle et au compas. Le point Z est 
effectivement repéré par orthogonalité, à partir des projections R et S sur 
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chacune des directrices, et une fois encore les proportions sont utilisées pour 
établir que le rapport  de ZR à ZS est connu à partir des seules données du 
problèmes, ce qui en quelque sorte sert d’équation à la droite issue de T sur 
laquelle se trouve Z. Il reste à déduire la longueur ZT à partir de ces seules 
données, ce qui dépend seulement des proportions dans les triangles. Du 
moins si l’on y est habitué, plus facile peut-être si l’on y met de la 
trigonométrie, ce que Newton ne fait pas. L’affaire est faite aux yeux de 
Newton, qui fait une référence à la reconstitution du problème d’Apollonius, 
mais pas plus que Descartes ne donne une construction explicite. Sa règle 
d’intelligibilité est la simplicité des proportions, explicitant aussi bien des 
longueurs (ainsi de la longueur TZ) que des directions (la droite TZ).  

 
Descartes a pour règle d’intelligibilité les équations, mais précisément 

celles-ci ne viennent pas n’importe comment, et on doit prévoir leur 
intervention pour acquérir a plus grande simplicité, qui n’est pas un 
affichage, mais une recherche. Sans doute contraint par la princesse, qui 
veut travailler avec le seul rayon x, Descartes donne d’abord une leçon de 
calcul, et justement prend appui sur une formule des Metrica de Héron 
d’Alexandrie, donnant l’aire d’un cercle en fonction des trois côtés. Car 
l’équation dès lors la plus naturelle, provenant de la vieille méthode 
d’application des aires,  est celle qui résulte de l’addition des aires des trois 
triangles ADB, DBC, DCA, égale à l’aire de ABC, ces aires étant ainsi 
directement exprimables à partir des données.  On trouvera bien sûr une 
équation portant sur x, mais son degré ne signifie rien, car il faudra 
supprimer bien des racines carrées, et donc beaucoup multiplier. Tel est le 
sens de son premier avertissement.  

 
Dès lors, il propose véritablement la méthode des coordonnées en 

rappelant qu’il est judicieux d’introduire d’autres inconnues que x, comme 
la position de D. Sitôt dit, sitôt fait, et Descartes pose DG= z et DF= y ; il a 
donc pris le risque d’une rupture de symétrie du rôle des trois cercles, en 
prenant pour axes orthogonaux la hauteur issue de A sur la base AC, fixant 
donc des valeurs de repérage comme AE= d,  BE = e, CE= f.  La figure (ill. 
19) est remarquablement explicite. A ces trois inconnues, il faut au moins 
trois équations. Il paraît naturel d’utiliser le théorème de Pythagore sous sa 
forme algébrique, même s’il fait jouer des carrés, mais encore convient-il de 
choisir les bons triangles. Evidemment ils doivent contenir DA, DB et DC, 
de sorte que ADF, BDC et DCF s’imposent ; surtout des relations de 
symétrie entre les carrés de z et y doivent a priori permettre des 
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simplifications dans le traitement ultérieur des équations. Tel est le jeu de la 
prévision cartésienne.  

a2  2ax  x 2  d2  2dz  z2 y 2

b2  2bx  x 2  e2  2ez  y 2 z2

c 2  2cx  x 2  f 2  2 fz  z2 y 2

	

Tout est joué si l’on respecte cette fois l’ordre de résolution de 
Descartes, puisqu’en soustrayant la première de la troisième, on explicitera 
z, d’ailleurs sous une forme affine en x à laquelle Descartes a habitué son 
fidèle lecteur de la géométrie et en soustrayant la première et la seconde on 
explicitera y, tenant compte de l’expression précédente de z, donc ayant 
encore une forme affine en x. Si l’on reporte ces valeurs dans une 
quelconque des équations, vient évidemment une équation du second degré 
en x. C’est alors qu’il énonce non sans soulagement : « il n’est plus besoin 
de passer outre ». Et fustige cette fois, non les géomètres opiniâtres qui 
recèlent leurs méthodes, mais bien les calculateurs qui n’ont plus à en avoir 

Car le reste ne sert point pour cultiver ou recréer l’esprit, mais seulement 
pour exercer la patience de quelque calculateur laborieux.48 

 
Notre temps en juge autrement qui témoigne d’un « théorème du cercle 

de Descartes »49. Car ce dernier n’en propose pas moins le calcul à la 
princesse, lui suggérant toutefois une simplification des données, en 
supposant tangents deux à deux les trois cercles de départ. Il conserve 
assurément le repérage orthogonal avec la hauteur. Le calcul moderne, qui 
tient mieux compte des signes selon la nature des tangences, écrit deux 
relations dont on ne dénigrera aujourd’hui, ni la simplicité, ni l’inefficacité, 
ni bien sûr l’élégance.  

2
1
a2 

1
b2 

1
c 2 

1
x 2









1
a


1
b


1
c


1
x









2

.	

	
Newton	n’a	pas	obtenu	de	résultat	de	cette	sorte,	etreprochera	en	

quelque	 sorte	à	Descartes	d’utiliser	 le	 théorème	de	Pythagore	 sous	 sa	
forme	 algébrique,	 celle	 issue	 comme	 nous	 l’avons	 dit	 d’une	
interprétation	de	 l’avant	 dernière	 proposition	du	 livre	 I	 des	Eléments	

																																																								
48 Lettre à Elisabeth, p.  
49 C’est l’expression de D. Pedoe, On  a theorem of geometry, The American Mathematical 
Monthly, 1967, p. 627 ; reprise par Coxeter dans the American Mathematical Society 
l’année suivante (p. 5).  
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d’Euclide,	en	n’allant	pas	à	ce	qui	fait	la	«	bonne	»	interprétation,	qui	est	
celle	 du	 livre	 VI,	 avec	 la	 théorie	 des	 proportions	 et	 les	 triangles	
semblables.	 Quoiqu’on	 pense	 de	 tels	 arguments,	 Descartes	 a	
certainement	 réfléchi	 à	 ce	 jeu	 sur	 les	 proportions.	 Il	maintenait,	 nous	
l’avons	lu,	l’usage	du	théorème	de	Thalès,	alors	même	que	la	réduction	
à	des	équations	faisait	disparaître	les	manipulations	des	proportions.	Et	
restant	 dans	 l’ordre	 algébrique	 des	 calculs,	 il	 a	 trouvé	 une	 très	 jolie	
défense	 dans	 l’idée	 d’homogénéité	 avec	 l’écriture	 polynomiale,	 bref	
jouant	la	cohabitation	entre	les	données	et	les	variables,	ou	inconnues.	
Ce	qui	se	traduit	par	une	écriture	comme	aaax	ou	bbxx	pour	les	termes	
intervenant	dans	un	polynôme	du	quatrième	degré	:	cette	homogénéité	
devient	un	moyen	de	vérification	de	la	qualité	du	calcul.	Dans	sa	lettre	à	
Elisabeth,	Descartes	insiste	:		

Il	 est	 bon	aussi	 alors	d’observer	que	 les	 quantités	qu’on	dénomme	par	
les	 lettres,	aient	semblable	rapport	 les	unes	aux	autres,	 le	plus	qu’il	est	
possible	;	 cela	 rend	 le	 théorème	 plus	 beau	 et	 plus	 court	 pour	 ce	 qui	 s	
‘énonce	de	l’une	de	ces	quantités	s’énonce	en	même	façon	des	autres,	et	
empêche	 qu’on	 ne	 puisse	 faillir	 au	 calcul,	 pour	 ce	 que	 les	 lettres	 qui	
signifient	 des	 quantités	 qui	 ont	 même	 rapport,	 s’y	 doivent	 trouver	
distribuées	 en	 même	 façon	;	 et	 quand	 cela	 manque,	 on	 reconnaît	 son	
erreur.50		

 
Conclusion 
En conclusion, je ne veux pas répéter le jeu des réactions. Partant d’un 

autre constat, celui d’une révolution de nature culturelle qui sous-tendait le 
projet des “mathématiques modernes” : c’était celle de l’éducation de masse 
pour laquelle on pensait que la remise en ordre des mathématiques 
empêcherait les seuls “héritiers” de benéficier du support familial et du 
pouvoir symbolique de la connaissance à l’ancienne des propriétés dans le 
triangle, des démonstrations par polaires réciproques en géométrie, ou des 
identités remarquables, etc. Il fallait donc présenter les mathématiques 
comme une métaphysique, presque un a priori de la pensée. Parce que porté 
par les politiques et les enseignants de mathématiques, ce mouvement 
français s’accompagna de la création institutionnelle des Irems, ces 
organismes qui heurtaient de plein fouet le monde universitaire par 
l’alliance toujours incongrue, quoique encore syndicalement et donc 
politiquement révendiquée, des diverses strates de l’enseignement de la 
Maternelle à l’Université, donc incluant la recherche, dérangeant aussi bien 

																																																								
50 Lettre à Elisabeth, p.  
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l’Association des professeurs de mathématiques de l’enseignement public 
(APMEP), qui eut la force pourtant de le soutenir grâce à des hommes 
comme Gilbert Walusinski51. Il devait quand même y avoir une 
contradiction entre une autarcie de la discipline pour des raisons de fond, et 
la pratique professorale dans les classes qui fait que la mathématique n’est 
pas seule enseignée. Je suis sûr qu’il y aurait une histoire voisine, mais sans 
doute différente en Grèce. Mais quoiqu’il en soit, je sais que c’est bien par 
crainte de ne pas avoir suffisamment de relais auprès des enseignants de 
mathématiques que Stevin n’imposa pas sa réforme décimale, avec sa file de 
chiffres séparés par une virgule, le jeu des millièmes ou des milliers, 
apparue assez soudainement en Europe à la fin du XVIe siècle dans La 
disme. Le petit livre parut en 1585 à Leyde52, porteur aussi bien de la 
numération binaire illimitée dont jouent nos ordinateurs. 

 
Rares, très rares sont les chercheurs tels Marcel Granet pour la Chine 

ancienne, qui ont su exprimer le jeu numérique et combinatoire, donc 
mathématique, dans l’expression des mythes dominants d’une civilisation53. 
Et on n’a peut-être pas fait pour l’Europe l’analyse culturelle du rôle de la 
fraction, s’opposant au décimal. Qu’ajoute-t-on quand, à la manière de 
Fernand Braudel, on dit la réforme décimale favorisée par le mouvement du 
très long terme de la quantification et de la pratique bancaire ? La difficulté 
est certes que les deux rythmes, celui de l’invention mathématique et celui 
de la marchandisation, ne battent pas à l’unisson : le décimal, déjà connu 
par exemple dans le monde arabo-musulman à partir de pratiques 
polynomiales, sera par ailleurs mal reçu en Europe par ceux pour qui il 
serait objectivement de la plus grande utilité54, et il faudra une loi en France 
pour l’imposer à tous deux siècles plus tard. C’est la loi du système 

																																																								
51 Son rôle a été mis en valeur par Eric Barbazo dans sa thèse soutenue à l’EHESS en 2009, 
L’APMEP de 1910 à 1970. Voir Eric Barbazo, Pascale Pombourcq, Cent ans d’APMEP, 
brochure de l’APMEP, n° 192, 2010. Des textes plus fouillés en sont issus aujourd’hui. 
Voir aussi un témoignage de l’inspection générale, Pierre Legrand, Dans la  tempête des 
maths modernes, in Jean-Pierre Rioux, Deux cents ans d’inspection générale, Paris, Fayard, 
2002, pp. 287-305. 
52 La Disme, un livre qui est inclus dans L’Arithmétique de Simon Stevin de Bruges, Chris-
tophe Plantin, Leyde, 1585. Le texte a souvent été réédité à l’usage des écoliers. Mais je 
crains qu’il soit d’emblée difficile de le trouver sur le Net.  
53 Marcel Granet, La pensée chinoise, Paris, 1934, réédition Albin Michel, Paris, 1968. 
54  Les rétifs au décimal, alors que les banquiers l’adoptent pour les tables d’intérêt, furent 
d’abord les universitaires (alors même que cela servirait à imposer l’algèbre dont ils savent 
les avantages), mais les astronomes aussi qui gardent le système sexagésimal.  
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métrique décimal, avec sa kyrielle des millimètres ou kilomètres  récitée de-
depuis l’école primaire ; on l’épinglera sous l’adjectif « républicain », 
preuve s’il en est qu’une réforme mathématique joue à tout le moins sur les 
formes de représentation d’une société. A l’époque, celle des Montagnards 
et des Girondins, on pensait que ce système avait quelque valeur morale en 
permettant à tous de juger des quantités, justement, universellement et 
uniformément. La réaction, il faut le rappeler, est dans l’appellation 
anglaise, imperial, pour les measures restées non décimales jusque dans la 
seconde moitié du XXe siècle, et donc symboliquement jusqu’à la fin du 
système impérial des colonies55. Mais ce système de pence, de shillings et 
de pounds, sans parler des crowns, n’a-t-il pas un effet particulier, celui de 
protéger le champ marchand ? Des pédagogues ont alors prétendu qu’il 
incitait les gens à penser mathématiquement par la difficulté même du 
système, en comparaison de la facilité du décimal ! Voilà un exemple même 
de pensée réactionnaire, vraisemblablement nationaliste. Elle n’en mérite 
pas moins l’attention du didacticien et du psychologue. 

 
Par sa volonté d’être scientifique, dans son observation d’une classe ou 

de l’apprentissage des notions mathématiques, la didactique se condamne, 
comme bien des disciplines mathématiques elles-mêmes, à une autarcie. J’ai 
essayé, par des exemples anciens, et tous ne dépassant pas le niveau des 
études secondaires, avec l’algèbre ou la similitude pour le carré inscrit dans 
un triangle, de montrer que les changements, dans les classes comme dans la 
recherche, obéissent aussi à des facteurs extérieurs, que ce soit avec la 
vogue du numérique à l’âge de l’exploitation des grandes découvertes, ou de 
l’apparition du calcul algébrique comme nouvelle forme de logique 
explicative. Le dire ainsi n’est pas prétendre donner la raison sociale ou 
idéologique de ces influences, mais en ne les éludant pas, en évitant 
d’affirmer que les mathématiques sont entièrement autonomes dans leurs 
changements, en parlant même de réactions, de permettre une 
compréhension du mode de fonctionnement des mathématiques et de leur 
enseignement.  

																																																								
55 Jean Dhombres, "Mesure pour mesure, universel contre régional : le système métrique 
comme action révolutionnaire", in A. Jourdan, J. Leerssen, Remous révolutionnaires : Ré-
publique batave, armées françaises, Amsterdam, 1996, pp. 159-199 ; Jean Dhombres, Ré-
sistances et adaptations du monde paysan au système métrique issu de la Révolution : les 
indices d'évolution d'une culture de la quantification, in A. Croix, J. Quéniart (éd.), La cul-
ture paysanne (1750-1830), Annales de Bretagne et des Pays de la Loire, 100, n°4, 1993, 
pp. 427-439. 



HMS i JME, Volume 6. 2014 (79-93) 

Hellenic Mathematical Society 
International Journal for Mathematics in Education 
 
 

 
The Future of Mathematics: 

From the Pure-Applied Debate to Reality 
 
 

Karl Gustafson 
Department of Mathematics 

University of Colorado at Boulder, USA 
 

Abstract 
I will look at Mathematics from Past to Present to Future. As each of us 

has a different and incomplete knowledge of each of those, I will employ the 
so-called case-studies approach, selecting key examples to illustrate and 
from which to learn. The narrative will also include some of my personal 
experiences. I will conclude by advancing a new mathematical ideal: 
TriMathlete. For such mathematical individuals, the future is bright indeed. 
 

1.  Introduction 
This paper is an elaboration of my Keynote lecture for the Hellenic 

Mathematical Society at Veroia, Greece in November 7-9, 2014. I had 
visited Veroia previously in 2011 and 2012 to lecture in the Web Science 
Master Course. I was especially surprised and delighted in 2011 when two 
students on their own initiative organized a private visit to the nearby 
recently uncovered tomb of King Phillip II of Macedonia, father of 
Alexander the Great. It was quite spectacular. One enters the earthen 
tumulus to find a fantastic hidden world of undesecrated golden caskets, 
delicate crowns, and unique tomb wall paintings.   

Greece is the cradle of mathematics and of scientific inquiry. The two 
are not the same, and a tension already present from the beginning continues 
to this day. A central tenet of this paper is that the future is bright for 
mathematicians who can overcome that tension. 

Because the general topic of the future of mathematics is so vast, I will 
rely on a few key “case studies” that have caught my attention over the 
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years to assist in making my points. To bring these to life, some of my own 
experiences will be woven into the narrative. I commit to making every 
effort in this paper to refuse to indulge in rhetoric or submerge the reader in 
philosophy. 

As in my lecture, the following sections we take up in order are: 
Mathematics, the Past, the Present, the Future; The Problem of Dogma 
illustrated by a case study from my own institution; and Conclusions, 
including a proposed new ideal. In this paper I will not discuss my 
recommended solutions to the general institutional problems, although for 
those I do have some potential remedies.   

 
2. Mathematics 
Contemporary philosophers often raise the question: Was mathematics 

created or discovered? Of course this matter goes back at least as far as 
Plato, who would argue in favor of the latter.  A good example is the 1995 
Changeux-Connes debate [1].  I discussed that debate in [2, Section 8] from 
the standpoint of free will versus determinism. Going beyond that issue, I 
concluded, “In sum, neither of the debaters can escape their own limited 
experience base and so their opinions and positions are automatically 
prejudiced.” 

Nonetheless we must establish some guidelines for our words here. I 
shall take Mathematics to include all three of its aspects identified in my 
title, namely: Pure mathematics, Applied mathematics, and Reality 
mathematics. Rather than impose constraining definitions, I prefer to 
differentiate by means of descriptors.  Pure mathematics for example 
connotes definitions, Applied mathematics connotes equations, and Reality 
mathematics connotes science. Another set of descriptors could be, 
respectively, proofs, solutions, and larger societal value. Still another set of 
descriptors could be, respectively, single-disciplinary, inter-disciplinary, 
multi-disciplinary. I will further develop this parsing of mathematics, and 
correspondingly mathematicians, in this paper. You can then choose your 
own sets of differentiating descriptors as you progress through reading. Or 
you can just sit back and consider your colleagues and pretty well place 
each of them with enforced one-bit precision into one of these three classes. 
Of course we could go to second level descriptors and conjunctions and 
endlessly finer Venn diagrams, and then even get lost into semiotics. 

The point, however, is to begin a conversation about the immediate 
future of mathematics and, as a corollary, of mathematicians. To do so, I 
have looked at Mathematics in three historical periods. The Past takes us 
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back to you, the Greeks. The Present I have chosen as encompassing the 
Twentieth Century, up until now. The Future takes us forward into the 
Twenty-first Century. 

 
3.  The Past 
In the Fall of 1980, Carl Sagan presented a thirteen-part television 

series called Cosmos [3], which absolutely captivated the American public. 
That was also the political season that saw Ronald Reagan charm his way 
into the presidency of the United States of America and thereby pave the 
way for his Star Wars initiatives.  It was also the year in which I confronted 
the Mathematics Department at Colorado with its need to revive our 
dormant Ph.D. program in Applied mathematics. 

I still remember Episode 7 of Cosmos: The Backbone of Night. That 
phrase was used by the Kung Bushmen of the Kalahari desert for the Milky 
Way, as their explanation for what holds up the sky. However, most of 
Episode 7 is Sagan’s tale of how scientific inquiry and mathematics 
originated in Greece in the 6th to 4th centuries B.C. You can read Episode 7 
online via a number of sources. 

When this episode first aired on November 7, 1980, I was struck 
memorably by how Sagan presented the issue of the tension that exists 
between abstract thought and scientific technology. He portrayed Theodorus 
as a master engineer, exemplifying the great science of the Ionians. In 
contrast, he portrayed the Pythagoreans and Plato as believers in Nature to 
be seen by pure thought. Sagan then took sides and accused the 
Pythagoreans of using the dodecahedron as a mystical device to advance 
their own political power. He continued further and argued that their 
extinguishing the light of experimental science, coupled with the later 
restricting policies of Christianity, inhibited scientific progress for 2,000 
years, until Kepler and Galileo entered the scene.  

There are many interesting observations in Sagan [3] that give great 
credit to many Greeks for effectively lost original scientific ideas that had to 
be rediscovered or recreated later.  As to the politics, I checked a standard 
reference [4] and did not find any major discrepancies in Sagan’s account. 

Recalling this episode from Cosmos brings to mind a more recent 
article regarding Aristotle. Michael Rowan-Robinson [5] defends Aristotle 
against the attacks nearly 2,000 years later by Galileo and others. As 
everyone in this audience knows, Aristotle was a student of Plato and was 
brought to Macedonia by King Phillip II to tutor the young Alexander. In 
the same year, 336 B.C., that Phillip was assassinated and Alexander 
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became King, Aristotle transferred to Athens and set up the Lyceum.  
Although the Lyceum would ultimately differ from Plato’s Academy, which 
emphasized a rather elite view of knowledge, Aristotle followed the same 
tendencies and looked to metaphysical reasoning to discover Nature’s laws. 

Rowan-Robinson naturally brings his own conditioning and prejudices 
to his findings. He is an astrophysicist. I found his cut “…mathematicians, 
who love to imagine that their ideas represent some underlying reality about 
the universe” quite amusing.  Aristotle is defended for his accounting for a 
real, viscous, frictional, velocity-driven world, whereas Sir Isaac Newton’s 
later contribution was to bring in acceleration. 

The noted physicist Yuval Ne’eman [6] chose to attack the thesis of [5]. 
He argues that the Pythagoreans had already worked out the harmonic 
nature of a vibrating string with fixed ends. He goes on to postulate that as 
the beginning of quantum mechanics. I find that quite a stretch—that 
classical music is quantum mechanics. No matter. Then Ne’eman goes off 
on an attack on the Bible and the Koran. There Sagan [3] would likely agree. 

I found Ne’eman’s take interesting for another reason. By chance (I am 
in the same volume) I was aware of his article [7] in the proceedings of the 
XXII Solvay Conference on Physics held at Delphi. There he attacks both 
irreversibility models in quantum physics and non-unitarity in quantum field 
theory. On the other side, he also again asserts the damage to scientific 
progress caused by the dogmatism of the Christian, Muslim, and Jewish 
religious institutions during the Dark Ages. 

What are we to make of all such argumentations, all such debates? In 
my recent autobiography [8] I formulate a principle that, notwithstanding 
politicians’ standard advice to address only issues, and not motivations, if 
you want to better understand what is really going on in any debate, it is 
indeed useful to discern the underlying motivations, and if necessary, bring 
them to the surface. Among scientists and mathematicians, beneath the 
rhetoric is often a compulsive seeking of recognition for themselves or for 
the scientific persuasion within which they reside. 

Ne’eman has been generally credited with key parts of the standard 
model, but was not included in the Nobel Prize in Physics which went to 
Murray Gell-Mann in 1969. Irreversibility contributed to the Nobel Prize in 
Chemistry for Ilya Prigogine in 1977. Non-unitarity in quantum field theory 
was part of the Nobel Prize in Physics for Steven Chu in 1997. A second 
motivating factor is that Ne’eman’s lifelong work on the standard model, 
with all its symmetries, preconditions his position to be against departures 
from the (mathematical) beauties of unitarity-based physics. 
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We cannot leave Greek mathematics without mentioning Archimedes.  
According to the noted historian E.T.Bell [9], Archimedes was one of the 
three greatest mathematicians of all history, along with Newton and Carl 
Friedrich Gauss much later. There is no need for me here to go into all of 
Archimedes’ contributions to science, engineering, and mathematics. Nor to 
attempt here any detailing of the contributions to physics and mathematics 
of Newton. Nor all of those of Gauss, who is sometimes considered the 
foremost of all mathematicians. 

However, as an amusing and instructive final case study for this section, 
I do wish to refer to an account in Bell’s famous book, notably [9, pages 
238-242] in his chapter on Gauss. Bell states, “Probably all mathematicians 
today regret that Gauss was deflected from his march through the darkness 
(on Fermat’s Last Theorem in number theory) by ‘a couple of clods of dirt 
which we call planets’—his own words—which shone out unexpectedly in 
the night sky and led him astray.” Bell deplores the fact that Gauss found 
more intriguing the problem of computing the approximate orbits of the 
just-discovered dwarf planets Ceres and Pallus. Somehow Bell seems to 
forget his passage just above where he quotes Gauss as saying, “But I 
confess that Fermat’s Theorem as an isolated proposition has very little 
interest for me, because I could easily lay down a multitude of such 
propositions, which one could neither prove nor dispose of.” Bell ignores 
Gauss’s stated opinion that pure mathematics was not important enough to 
deserve continuing support from the Duke of Brunswick. Through his 
results in astronomy, Gauss obtained a permanent professorship in 
Gottingen. Moreover, from that work Gauss gave us the method of least-
squares approximation, from which came the all-important Gaussian bell-
shaped probability distribution. 

Bell was a very prolific research mathematician and writer and clearly a 
romantic, and I admire his great book with its forceful opinions which 
brought alive to several generations the history of mathematics.  But his 
lifelong research interest in number theory surely conditioned and therefore 
influenced his judgments.  Later [9, p547] he similarly disqualifies Henri 
Poincaré for pure mathematical greatness because of his interests in 
mathematical physics. 

I conclude this section by forcing myself, freely acknowledging the 
conscious and unconscious conditioning of my experiences, to select, to 
one-bit precision, representative antiquity Greek mathematicians for my 
three classifications of mathematics. For Pure mathematician I choose 
Pythagoras, e.g. for his emphasis on proof; Theodorus as Applied 
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mathematician, e.g. for his engineering inventions; and Archimedes as 
Reality mathematician for his broad contributions to science as well as to 
mathematics. You do not need to agree with these assignments and you can 
make your own choices as you like. We are all mixed states. 

 
4. The Present 
The dominance in the Greek era of axiomization and proof over 

application and rational experimentation was of course not absolute, and it 
actually dimmed as Christianity overwhelmed that part of the world and 
replaced scientific inquiry with doctrines of religious faith. The Islamic 
culture in its enlightened period brought mathematics along for a while, and 
then in the Sixteenth Century the modern Scientific Revolution could no 
longer be stopped. Most of classical mechanics with its accompanying 
mathematics developed roughly in the period 1600 to 1900. In that sense, 
physics, past and present, if mathematical and directed at important real 
tangible problems of societal need or interest, is an example of Reality 
mathematics. I can count at least 18 of Bell’s [9] 28 men of mathematics 
who were seriously occupied with Reality mathematics of one kind or 
another, usually physics, sometimes probability. One point to be made in 
this paper is that the arenas for fruitful Reality mathematics are these days 
far more plentiful, and growing. 

I will take the Present to begin about 100 years ago with David 
Hilbert’s great address in 1900 to the Paris International Mathematics 
Congress, in which he outlined twenty-three important problems/tasks for 
mathematicians. His sixth problem postulated the axiomization of most 
parts of physics. This address of Hilbert constituted an important revival of 
the importance of axiom and proof in mathematics.  

I have sometimes wondered if Hilbert was partially motivated by his 
frustration in trying to compete with the more intuitive physicists, such as 
Poincaré and Albert Einstein.  

Along came Kurt Gödel and his 1931 proof that, for certain logical 
axiomatics, Hilbert’s demand for internal consistency implies unavoidable 
incompleteness in the propositions that can be treated. Then came Alan 
Turing’s 1936 unpredictability of algorithmic halting time. Gregory 
Chaitin[10] followed with his Omega theorem, which places randomness 
and even subjectiveness at the very foundations of mathematics. See my 
discussion in [2]. 

Following World War II, the Bourbaki [11] blossomed in France with 
their desire to build a monolithic mathematics untainted by any Applied or 
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Reality mathematics. One of my colleagues in South America complained to 
me years ago that the influence of and the young professors sent there by the 
Bourbaki destroyed mathematics in South America for generations.  

Applied mathematics as a profession, beyond the traditional British 
kind of classical mechanics, arrived a little later, especially in the 1960s as a 
result of the advent and rapid development of electronic computers. The 
Cold War also helped, as I recount in [8], where you will find that I think 
the not-much-later evicting of Computer Science from most departments of 
mathematics was one of the great errors of the American mathematical 
community during the 1970s. As a result, mathematicians and others with 
significant interests in computer science had to form their own departments. 
A lot of Applied mathematics and Reality mathematics is being carried out 
in those Computer Science departments these days. At the University of 
Colorado, our Pure and Applied mathematics departments appear to be 
static or shrinking while the Computer Science department continues to 
grow. 

It should be remembered that the great power of the method of rigorous 
mathematical proof was that, in antiquity and much of the Past, it was the 
only way to try to know the truth. We now have much better experimental 
facilities, and enormous computing power for simulation. For example, 
Monte Carlo simulations, although not rigorous proofs, enable a new “way 
of knowing” for many situations for which rigorous analysis is simply not 
feasible. And sometimes, combined with algebra or analysis, computing 
power has been harnessed to actually provide a rigorous proof of an 
otherwise unattainable proposition, by consideration of a large but finite 
number of cases. The solution of the four-color problem is a well-known 
example. 

This brings to mind an incident about twenty years ago when a 
colleague who specialized in mathematical foundations caught me in the 
hall and asked me incredulously ,“Have you read that article by John 
Horgan?” I had not. He was referring to [12], The Death of Proof. Horgan 
had seized upon the completion of the 200-page proof of Fermat’s Last 
Theorem by Andrew Wiles (with the help of others) as a sort of last-gasp of 
Pure mathematics, as it ran against all the other needs of modern 
mathematics for applications and for use with computers in solving real-
world problems. I have just gone back to read [12] and Horgan interviewed 
many noted mathematicians and thereby brought out a lot of information 
and opinions. He is very good at probing until he gets the quotes he wants. 
Carried away with his notoriety gained from [12], he went on to write [13] 
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The End of Science. Perhaps he was inspired by the slightly earlier 1992 
book [14] by Francis Fukuyama, who wrote about the end of everything. 

It is far too easy to be a naysayer. Shortly after Fukuyama’s book [14] 
came out, Professor Ilya Prigogine invited me to lunch one day in Brussels 
and asked me what I thought about it. I quote from my account in [15]. “I 
had read the book and told him I didn’t appreciate anyone, like Fukuyama, 
who claimed to have such ‘final answers’. To which Prigogine replied, not 
only that, but Fukuyama was completely wrong. Rather than society having 
reached some final shape, in fact human history was just beginning. Ninety-
five percent of the world’s population wouldn’t even know what Fukuyama 
was talking about, as their lives still operate on a much more basic level.” 

It seems to me that physics is entering a new era. The new physics, with 
dark matter and dark energy comprising most of the universe, is just 
beginning. We still don’t understand gravity. Quantum mechanics works but 
we do not understand it. The science of our minds is barely underway. Cell 
communication in biology, the role of proteins in regulating our DNA and 
RNA in genetics, the new microbiology of the bacterial component of our 
bodies, all are exciting new fields of science. Both with and beyond its key 
role in algorithmic simulations, mathematics will find many new challenges 
in these arenas.  And also in unexpected arenas. Look at Google: Its 
PageRank algorithm went back to Markov processes and the old numerical 
power algorithm for the computation of the first eigenvector, and created an 
entirely new information industry of great societal and commercial impact. 

Pure mathematics, because of its inherent beauty and intrinsic structure, 
will be with us for a long time.  In a sense, it is art. The pertinent question, it 
seems to me, is whether it should be allowed to continue to dominate the 
politics and hence the make-up of most mathematics departments; and if not, 
how much of it should be funded? 

In the last 100 years Mathematics has become a victim of its success. 
Much of it is now taught and practiced by non-mathematicians in areas from 
engineering to finance and even in the social sciences. Much like the rapid 
recent spreading of the English language over all continents, mathematics 
has become the lingua franca of the scientific world. It is more and more 
regarded as just a fact of life. And it is seen as a tool. There is not much 
interest among the general public in spending large sums pushing ahead on 
very technical mathematical problems for their own sake.  We need English 
teachers and we need Math teachers. That is the public view. 

Here are three selections for representative outstanding Pure, Applied, 
and Reality mathematicians for the Twentieth Century. I will stay with 
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Hilbert for Pure mathematics, especially for his 1900 formulation of his 
versions of it that influenced much of the first half of the century’s 
mathematical preoccupations. Any choice of representative for Applied 
mathematics is more problematic since so many work in their own 
specialized fields. Let me just pick Andrei Kolmogorov for probability and 
other Applied mathematics. I nominate John von Neumann for best Reality 
mathematician, as he went from pure functional analysis to quantum 
mechanics to economics to pioneering computer science. His premature 
death in 1957, perhaps as a result of his exposure to radiation at Los Alamos, 
was certainly unfortunate. One cannot help but wonder to what else might 
he have turned? 

 
5. The Future 
The future for mathematicians is bright. For one thing, it is regarded as 

interesting and remunerative work. Time Magazine is among sources that 
have placed mathematics within the top ten best jobs. One of my colleagues 
told me we were placed first. I did a little checking and found [16] that we 
were placed third in 2011, with median earnings of $98,000 per year. To be 
there, we were combined with Computer Science. Above us were petroleum 
engineers and pharmaceutical scientists. These conclusions were pulled out 
of a study by the Georgetown University Center on Education. The criterion 
seems to have been strictly monetary. 

Further browsing as I checked this propaganda I had been hearing 
brought me to a 2014 Wall Street Journal article [17]. Here, a job-search 
website, CareerCast.com, named mathematician as the best occupation of 
2014. “Math skills unlock a world of career opportunities,” the CareerCast 
publisher states. Statisticians were ranked #3, actuaries #4, and computer 
systems analysts #8.  Mathematics as a field is projected to grow 23 percent 
in the next eight years. And the scoring method that yielded these happy 
outcomes was based upon four attributes: competitiveness, salaries, growth 
potential, and stress factors. Tenured university professors came in #2, but 
at $68,970, with the lowest annual salary of the top-ten rated professions. 

In 1977 a colleague and I looked at the rapidly contracting academic 
market for our own pure mathematics Ph.D.’s and started teaching 
numerical analysis and optimization. In the 1980’s, at the behest of our 
Engineering College, I moved heavily into computational fluid dynamics. 
For five years, 1988-1993, I was the only mathematician in a seven-
department $22 million NSF engineering center at the university devoted to 
optoelectronic and quantum computing. I produced numerous Ph.D.’s in 
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mathematics and the engineering sciences who have had very successful 
careers at Boeing, Lockheed-Martin, Silicon Graphics, U.S. Geological 
Science, Seagate Technologies, in ocean modeling, and in similar industries. 
In the last twenty years I have taught Derivatives and Risk finance and have 
produced two Ph.D.’s for those enterprises. Only a few of my 21 Ph.D.’s 
have gone into academia. 

We started an Actuarial Sciences and Quantitative Finance 
undergraduate certificate program the University about twenty years ago. I 
steer promising undergraduate mathematics students into that program, 
which of course requires that they also take a number of courses from the 
Business School and from the Economics Department.  Invariably these 
students pass one or two of the Actuarial Society exams and are offered 
good jobs. In addition to demonstrated mathematics and finance expertise, 
good people-skills, and a true interest in meeting new professional 
challenges, are also requisite for success in such careers. 

These positive career stories bring into better focus my distinguishing 
of Reality mathematics from just Applied mathematics. Often Applied 
mathematicians remain in one specialty their whole lives. Reality 
mathematics requires more. In particular, you must master at least one 
partner field until you are as good as those who work solely in that field. 
You must become as competitive in Finance as those who are straight from 
Business schools. You must understand aerodynamics better than most 
engineers. You must become one of them. If it be physics, it may take you a 
lifetime.  

One of my colleagues likes to point out that in the 1960’s, when he and 
I obtained our Ph.D.’s in mathematics, there were 300 Ph.D.’s produced 
annually and 500 good tenure-track academic positions in the United States. 
Now there are 1500 Ph.D.’s produced annually and still 500 good tenure-
track positions. Although the number of Applied Ph.D.’s has been increased, 
the production of Pure Ph.D.’s continues unabated. Why is that? 

Part of it is just cloning. Pures produce pures. Another is cost. After all, 
four-year colleges are looking for mathematics teachers and not world-class 
interdisciplinary and multidisciplinary experts. Also, because 
mathematicians have been given a rather unique training in rational and 
critical reasoning, that niche is marketable and they all seem to be valued 
enough to find good jobs somewhere. And I have noticed that most of our 
graduate students are very computer literate. 

At the undergraduate level in the United States, the government 
agencies are pouring money into STEM: Science, Technology, Engineering, 
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and Mathematics. Not waiting on mathematics and education departments, 
engineering schools have jumped in, creating new programs to train future 
high school teachers who will be exposed to all four components of STEM. 
Here is an excerpt from a typical NSF funding solicitation that today came 
in to my email, for an Enriched Doctoral Training in the Mathematical 
Sciences. “The program will support efforts to enrich research training in 
the mathematical sciences at the doctoral level by preparing Ph.D. students 
to recognize and find solutions to mathematical challenges arising in other 
fields and in areas outside today's academic setting.”  

David Mumford and I were both lecturers at two conferences in 
Vietnam in 2005, and I was surprised at learning of his abandoning his work 
in algebraic geometry (for which he was awarded the Field’s Medal) for a 
new career in patterns and vision.  We had many delightful conversations on 
a wide range of mathematical subjects while in Vietnam. In 2011 David 
created a considerable stir with his op-ed [19] with Sol Garfunkel in the 
New York Times. Their point was that the recently imposed nationwide 
federal Common-Core mathematics requirements are forcing all high school 
students to learn lots of algebra and calculus that they will never use—and 
that they would be better served by the mathematics of real life, such as how 
mortgages are priced and what the statistics of medical trials really mean. In 
other words, even at the elementary and lower levels of mathematics 
education, Mumford and Garfunkel are advocating more Applied, and more 
Reality. 

 
6. The Problem of Dogma: A Microcosm Case Study 
Dogma pervades almost every cultural aspect of human society. Such 

was one of the messages of E.O. Wilson’s Pulitzer Prize winning book [20]. 
Also you may look at many of the violent conflicts currently raging or 
simmering in our world and see a problem of dogma at their foundation. 

Here is a microcosm case study with which I have great familiarity: 
Mathematics at my institution, the University of Colorado at Boulder.  I 
could write a book about it, but will not and instead will be brief and I hope 
not without a sense of humor.  

Before turning to that tragicomedy, recall that as I recounted in Section 
3 and as emphasized by Sagan [3], dogma fights were already present in 
ancient Greece at the very beginning. One can read Section 4 as the gradual 
re-emergence of the dogmas of practical mathematics and science, 
temporarily displaced for a very short period in the Twentieth Century by a 
return to a pure philosophical mathematical dogma. But Science in general 
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ignored that counter-trend and exploded in magnificent progress. As a result, 
as I portrayed in Section 5, the future is bright for mathematics in its wider 
scope. I will say a bit more about that in the next section. 

I am a local boy and stayed in Boulder to graduate from the University 
of Colorado in 1958, and I always wanted to get back “home” after 
completing compulsory military service in Washington D.C., a Ph.D. in 
Mathematics from the University of Maryland and postdoctoral work in 
Europe, plus a stint at the University of Minnesota. I finally did so in 1968.  
Back in Boulder, it seemed that the old mathematics dogma fights had been 
overcome by the administration when in 1965 they took the Applied 
department out of the Engineering College and the Pure department out of 
the Arts and Sciences College, combining them into a single Department of 
Mathematics—which was placed in a privileged position under the auspices 
of the Graduate School. Then a whole new cadre of us were hired at a salary 
level significantly above that of the Engineering and Law schools. We 
became a top-25 department and things looked rosy and promising. But it 
soon broke down.  

A quick sketch is the following: For the fifty years before the merger, 
the Applied department had been larger, for it had the larger teaching 
mission, all of the engineering students. After the merger, the Pure 
mathematicians took over, requiring rigor in all courses. Ten recently hired 
younger members of the department were denied tenure because they had 
interests in applications or computer science or mathematical education or 
were otherwise tainted. I remember one, a champion sprinter, was even 
criticized for spending too much time training with the track team. 

In 1970, with Stan Ulam, I and others joint with the Physics department 
created a new Ph.D. in mathematical physics. To oversimplify, this was 
simply not welcome to the Pure mathematician “powers that be”, and they 
quickly blocked any hiring in that field. In 1980, I and others resurrected the 
old Ph.D. in Applied mathematics. This was also unwelcome. In 1990 the 
administration threw up its hands in frustration and split the single 
department back into two separate departments, Pure and Applied. I had to 
choose one, and because I did not believe in the wisdom of the split and 
fought those who wanted to separate the Applied department, I remained in 
the Pure department. You can get just a few more details in my book [8, 
Chapter 6]. Many amusing funny and sad anecdotes are better shared in 
private. 

That brings us to 2014. Looking at these two relatively small and 
growing-weaker departments, both housed in the College of Arts and 
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Sciences, now the administration wants to combine them. Moreover, they 
wish to add a third component, of Statistics and Big Data. Really! Will the 
administration ever apologize to me for ignoring my foresight, or now 
request my help? Will the merger really happen? If so, will it work? Do I 
care?  

 
7. Conclusions and Ideal 
1.  No matter which of Pure, Applied, or Reality mathematics one finds 

oneself within, there must be the component of several years of training in 
mathematical rigor if one is to be called a mathematician. As I state in [8, 
xii]:“There is a substantial, nontrivial, and not widely understood gap 
between the training needed to become a pure mathematician and that of just 
being an engineer or physicist. This gap cannot be fully appreciated by 
applied scientists unless and until they successfully complete the committed 
step of taking several course-years of algebra, topology, measure theory, 
geometry, and real analysis, among others.” 

2. For those mathematicians who can go beyond the essential training 
and also master a completely different field, the future will be bright indeed. 

3. As an ultimate ideal, in the Greek tradition of ideals, I advance the 
new concept of TriMathlete: one who has succeeded in all three of Pure, 
Applied, and Reality mathematics. The analogy is with triathlons. Rather 
than seeking to be the world’s greatest long-distance swimmer, a rather dull 
and monotonous prospect if you think on it, instead you get out of the water 
and into a new competition on your bike; and then even if you are a great 
cyclist, you hop off your bike and enter the final reality of running a 
marathon. As models, we may identify from the far past Archimedes, Gauss 
from the near past, and from the recent present I nominate John Von 
Neumann. One need not become a TriMathlete, but it is a worthy goal to 
hold, and in seeking toward it, both mathematicians and society-at-large will 
benefit deeply. 
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ABSTRACT 

In what society do we estimate that today's students will live, what will they 
face in the future and what disposition will they need to meet the requirements of 
the new era? Can mathematics education play a role in the development of this 
disposition and what goals need to be set, what content and what teaching 
approaches to meet these requirements? Isn’t it critical for researchers, programs’ 
designers and teachers to pursue systematic answers to these questions and bring 
in new advances to the teaching of Mathematics? 
 

INTRODUCTION with many questions  
In his keynote speech in PME38, Luis Radford revoked Aristotle and 

the aims for education he set in Politics (Book Z, pp. 1337a – 1337b): 
…that it must, therefore, be adopted laws for education and that it ought to 
be defined equal  for all, it is clear; which, then, will be the nature of 
education and how should it be provided, it must not escape of our attention 
... indeed, we do not all share the same opinions as to how we must train 
young people, to virtue or to perfect life, nor is it clear whether (education) 
should have the aim to exercise and cultivate the mind or form a moral 
character…1 
What would Aristotle feel realizing that 2350 years later the aims of 

general education (and mathematics included) remain controversial and 
ambiguous; that in Greek classrooms students typically follow programs and 
old fashioned teaching methods exercising them, not for mental and moral 
virtue, but mainly for examination procedures with questionable results 
(Radford, 2014)? 

                                                            
1  Translation from the ancient Greek text. 
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What aims would he invite us to set, what content to propose and what 
approach to adopt so that mathematics education would be linked to the 
demands of the current time, as well as of the time that follows, as 
suggested in his work? What factors determine these aims: the socio-
historical moment, the unknown future, the needs of people, the country, the 
planet, of the historic- social location, of mathematics itself (Skovsmose, 
2006)? 

And how this future will be? In what society we estimate that today's 
children will live? What will be the population growth of this already 
globalized web dominated society, what will be the levels of health and 
feeding, of poverty, of increasing inequality, of conflicts and violence, 
already incredibly multiplied? 

What situations will present students and future citizens encounter and 
what equipment will be need to meet the demands of this society and the 
creation of a better society for themselves and their descendants: to know 
how to learn, to effectively understand the world, to perceive and process 
information, to solve problems, to work systemically and creatively, to 
develop continuous learning, to make estimations, projections, or to adapt to 
changes (Yasukawa, 2010)? 

Can mathematics education play a role in the development of all these 
skills, and if so, what should be its content, methodology and function to 
respond to this role? Can it stimulate the mental power of young people for 
a better understanding of the world and its inequalities? We usually accept 
Mathematics as a global, general, abstract, a- politic, neutral science, how 
could we envision it to serve social justice and quality of life (Gutstein, 
2003)? 

While wondering «What Mathematics for a new era», we are in front of 
immeasurable queries. It’s been a long time that Critical Mathematics 
Education is studying these issues and has produced many interesting 
viewpoints and research results. D’Ambrosio (2008) raises a serious 
concern, arguing that Mathematics is closely involved and influence today's 
global society. Both historically and socially, many of the recent advances in 
technology, industry, military equipment, economy and politics were made 
thanks to mathematical tools; on the other hand, respectively, the needs for 
these fields have supported the ongoing development of Mathematical 
science.  

At the same time mathematics teaching, besides the positive influence 
that can bring in education, can also work inversely, reinforcing inequalities 
and exclusions, preventing understanding, leading to blind obedience, 
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overconfidence in numbers or high authority over knowledge. Mathematics 
is recognized as a high level global way of thinking, but it coexists with 
equally recognized global problems of mankind such as injustice, war, 
environmental problems, survival with dignity and so on. Will these 
universalities be in contradiction or in collaboration, and how this result can 
be accomplished? 

In our days in Greece, as we are looking for ways out of the deadlocks 
we are living in, for a better future, the answers we are seeking in order to 
clarify the ontology, epistemology, methodology and results of 
mathematical education are crucial.  The essential is not about the state 
doings and our expectations, but about our concerns for this situation and 
our willingness to do something as scientists, educators and citizens of this 
country. 

The critical question, therefore, that we set in this presentation is the 
following: how can we let mathematics education remaining for decades 
without substantial changes in the way it works in school and is perceived 
by the society, while around us such imperative changes are taking place? 

 
WHAT GOALS for Mathematics Education?  
Both in Greece and other countries, societies set very high and 

ambitious goals for mathematics education. Recently, responding to social 
demands, the program designers remove contents leading to learning 
without understanding and memorization of rules, and focus on new 
orientation on the basis of activation of students through research and active 
engagement in challenging and interesting mathematical situations. The 
curricula seek to develop high level processing of students’ experiences, to 
enhance problem solving and modeling abilities, analytical- synthetic and 
reflective thinking, etc. (Cyprus, 2010; Canada, 2009; Finland, 2009; 
Scotland, 2007; Massachusetts, 2001). In addition to problem solving 
abilities, programs also encourage other mathematical processes, such as 
communication, reasoning, making connections, representational 
developments and semiotic activity, etc. 

It is argued that mathematics can influence the mental development and 
progress of students and support their accomplishments and social 
interaction because of its nature linking experiences and systems of thinking 
and encouraging functions like self-control, dedication to a project, 
aesthetics, self-confidence, etc. These elements are in the aims of both 
Greek programs of 2003 and 2011 (DEPPS, 2003; New curriculum, 2011) 
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All these confirm that mathematical education shapes a high quality 
framework which, not only requires special adaptations for school 
implementation, but also makes the preparation of mathematics teaching 
particularly complicated. Certainly, research shows that many of these 
objectives can be realized by the help of appropriate mathematical 
instruction, but the distance between research experiments and school 
reality, its content, methodology and  materials remains long (Clements, et 
als, 2013). We can continue to believe or imagine that mathematics teaching 
is able to assist young people’s formation, but the educational practice, both 
globally and locally, still operates with formulations and exclusions, and, 
rather than enhancing students’ understanding, it mainly discourages them 
from approaching Mathematics meaningfully. Thus, it is generally accepted 
that aims leading to these high level results are indispensable for the 
preparation of young students for a New Era, but the accomplishment of 
these results requires careful and systematic design. 

 
What NEW ERA for our students 
A United Nations committee working on a quality education by 2050 

(UN Oprn Working Group, 2014), records a future where the world's 
population will be 9 billion, many planetary boundaries will be diversified, 
global warming will be intensified, the food crisis will also increase, there 
will be more poverty and fragility, rising inequality, conflicts, violence 
health problems in many countries. This admittedly depressing picture, 
presented by the Commission as a framework to help the design of an 
education that could possibly improve it, is visible even from today. What 
will be the new power balance in the world and what will be the position of 
our small country in this uncertain environment? 

The following eras, besides the shocking speed of changes, will include 
(not so new anymore) globalized and complex systems such as web 
network, multimedia, advanced communication and calculations tools, 
virtual realities, online education environments etc.: Sriraman, Roscoe, and 
English, (2010) summarize them in three key axes: systems with 
applications in everyday life, conceptual understanding systems, and 
systems modeling and designing real or conceptual systems. 

They argue that our students will need in the future knowledge 
concerning complex understandings of both actual and conceptual systems, 
as well as of the models they structure them. They will also need skills to 
create new models for situations and phenomena that will occur. At the 
same time, collaboration skills as well as communication and technology 
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abilities will become increasingly necessary. Few would dispute these 
necessities, but how many of us keep wondering (theoretically or 
practically) whether these elements are encountered by the education we 
offer today? 

We all see that the situations and phenomena that surround us are 
gradually becoming more and more complex; we miss a lot of what is 
happening worldwide. Still current citizens require considerable knowledge 
and cognitive structures to understand, for example, how the economy 
works, what is meant by debt, what model of development will reverse this 
situation? Or to investigate thoroughly what is the role of the internet, how 
it works, what will be the investment for its development and what will be 
the future of technology? Respectively, what is the Cern experiment and its 
consequences for the evolution of humanity, or what is happening in the 
environment (natural and anthropogenic), how it operates, and what will be 
the consequences in this field? These are only few of the phenomena that 
form the present and the future of our world. 

In the past, talking about situation problems and models, we referred to 
something rather simplistic, as for example to make an algebraic equation to 
solve a real problem. In the current and future era, all understanding, 
description and interpretation require capturing of models that rely heavily 
(as is the case now) in mathematics, technology and often in physical or 
other related disciplines. These models (just like all mathematical models) 
are complicated, complex, with levels of emerging meanings and concepts 
and increasingly evolving (Lesh, & Sriraman, 2010).  

Let us ask ourselves, though: are all these cognitive structures 
indispensable for an individual to understand the complex phenomena 
surrounding him? Do they mean something for his survival, his health, his 
professional, social and personal life? A few years ago we might still be 
able to answer differently these questions, but the shocking events that took 
place recently make these answers obvious. The way we perceive our world 
leads to decisions and actions for maintaining or changing it. In this 
direction, mathematics play an important role, certainly if its teaching 
highlights the specific nature of mathematical activity and enables young 
people to understand and process situations and phenomena (Smokovse, 
2006). How close is our education to this approach? 

 
What MATHEMATICS EDUCATION for the future?  
It is generally acknowledged that Mathematics is a high-level way of 

processing, development of concepts and procedures, symbolization, 
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instrumentalization, modeling etc. Therefore, it’s argued that mathematics 
education should not seek to the teaching of the products of this process, but 
of the way that produces these products. The accessibility to this way of 
thinking becomes critical for the cognitive development of young people, 
because, historically and epistemologically, it worked and is still working in 
all mechanisms of understanding, designing and changing the world around 
us. 

Attempting to justify the importance of mathematics education and the 
extent to which we should be concerned about the content and teaching of 
mathematics, let’s recall the lecture of  Marshall Stone2 in the seminar, 
organized in France in 1959 by the Organization of European Economic Co-
operation (and late OECD) provoked by ‘Sputnic shock’ (ΟEEC, 1961, 
p.17, in Skovsmose, 2006 ): 

… we are literally compelled by this destiny to reform our mathematical 
instruction as to adapt and strengthen it for its utilitarian role carrying the 
ever heavier burden of the scientific and technological super- structure 
which rest upon it… 
We highlight in these words the special interest attributed to the 

appropriate teaching of mathematics for the economic, political and social 
future of an era. Relevant attempts to change mathematics education 
positively for the future have been historically recorded in critical times: in 
Germany after the war people sought for an education after Auschwitz and 
in N. Africa after Apartheid etc. (Skovsmose, 2006). Thus, what 
mathematics education do we need to prepare our country for a time after 
the crisis? 

As already indicated in the objectives, presented earlier, mathematics 
education turns to the active participation of students in mathematical 
experiences that allow the emergence of processing, problem solving and 
reasoning abilities. How many of them are currently promoted in the 
classroom? How can we create, through education - as Aristotle told us - a 
moral active citizen, when the educational process developed in the 
classroom make him passive receiver reproducing - often without 
understanding - readymade and rather incomprehensible ideas? 

The connection of the students’ experiences with high mathematical 
systems of thought requires the development of a genuine mathematical 
processing, i.e. an activity relevant to mathematical activity within the 
                                                            
2  Ο Marshall Harvey Stone was an important American mathematician, with rich contribution in 
mathematics, but also participation in the research activity of  the American Ministry of War during 
the second world war. Later he continued as professor in the University of Chicago.  
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science. Thus, deepening our reflection about a substantial mathematical 
education, you need to first analyze what is problem solving ability and then 
what is authentic mathematical activity? 
 

MATHEMATICAL ACTICITY 
Many researchers, attempting to explain the elements that describe an 

authentic mathematical processing, study the way in which mathematicians 
work. Schoenfled since 1992 argued that ‘thinking mathematically’ is 
closely related, not only to problem solving, but also to metacognitive 
processing of problem’s solutions (i.e awareness concerning solving process 
and self- regulation). He approached the problem solving process by 
analyzing its stages: reading the problem, analyzing it, exploring for 
solutions, finding solution plans, implementing a plan and verifying the 
result. Research has shown that, while young and inexperienced solvers read 
very quickly the problem they encounter and use all the time searching for a 
solution, which abandon quickly if it doesn’t work, an experienced solver 
focuses on the systematic study and analysis of the problem, the design of a 
plan solution, implement this plan with feedbacks and finally always 
validate the correctness of the solution. These findings helped significantly 
the development of teaching proposals exercising students, from early ages, 
in problem solving abilities, concerning not only arithmetic or mathematical 
but also more general problems (Stacey, 2005).  

Respectively, the study of the elements of a genuine mathematical 
activity could support the design of mathematics education aiming at 
developing this special activity. So, what do we understand as mathematical 
processing?  

In a previous study we collected a number of similar or complementary 
views on the issue (Tzekaki, 2014; Tzekaki, 2011). Some of these 
approaches consider the mathematical activity as a way of modeling to 
address and deal with real situations (Freudenthal, 1983), other as finding 
appropriate solutions for situation-problems (Brousseau, 1997), and others 
as transferring these solutions to a more general framework (Radford, 2006, 
2014). Researchers argue that mathematical meanings derive from 
mathematical connections or the process of symbolization (Noss, et als, 
1997; Ernest, 2006) or more generally, from a dynamic link of situations, 
with signs and concepts (Steinbring, 2005).  

Even different approaches for the same issue, they all converge to the 
position that the students need to reach a way of a high-level thinking and 
processing that involves habits and mental routines. This special processing  
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comprises research for properties and relationships, identification of patterns 
and common structures, analysis and synthesis in parts and unit parts, 
connections, links to language, representations, signs and symbols, 
explanations / justifications, reflections and generalizations, and so on. 

In addition to all above aspects, the study of gifted students revealed 
dimensions of the mathematical way of working that illuminates further the 
study of the phenomenon, adding to mathematical abilities related to what 
was reported previously (finding relations analysis - synthesis, 
representations and explanations), cognitive processes involving 
connections between generalizations, flexibility and creativity, and finally 
hyper-cognitive processes associated with self-dedication to work, 
perseverance and confidence, etc. (Leikin, 2007; Kattou et als., 2012; 
Kontoyianni, 2014). The study of competent persons in Mathematics gives 
us very important information about the skills we seek to develop in 
mathematics education. 

The obvious question coming out of such an analysis is how we can 
develop all this knowledge, abilities and attitudes to our students? And in 
the broader perspective of critical mathematics education, what 
mathematical knowledge is needed by our students in order to keep 
reflecting upon the ways the reality is presented, upon justice, equality and 
exclusion, in an attempt to understand or change it? 
 

WHAT SCHOOL, WHAT CLASSROOR, WHAT Mathematical 
classroom?  
From all the elements presented earlier, it becomes apparent that the 

teaching and learning of mathematics, aiming at supporting a substantial 
students’ development, seeks to cultivate in young people this particular 
human activity with the aforementioned elements, by creating appropriate 
conditions and environments, and not limited to the reproduction of 
concepts and procedures (Frade, et als, 2013). The formation of such a 
framework is certainly not simple endeavor, but it is important to start 
thinking about whether the activity we encouraged in today's classroom has 
the characteristics of an authentic mathematical activity. Or also to start 
searching for content, problems, tasks, situations and environments that will 
allow such a development? And moreover, inversely, to start wondering if 
the content of today’s mathematics teaching and the way we follow lead to 
the exactly opposite consequences? 

For more than at least 50 years researchers agree that substantial 
mathematical students’ development requires their activation upon real 
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questions, problems, unfamiliar situations, games, technology environments 
etc., that can encourage them to make assumptions, to find solutions, to seek 
modeling, to use sources or tools to justify, elaborate and formulate (e.g. 
Freudenthal, 1983; Brousseau, 1997; Radford, 2006; Perry & Dockett, 
2008). Such an education presupposes major changes both in collective and 
individual level; only the strong belief (especially of teachers) that it is 
really helpful for the students and the country can support them. 

European Commissions’ proposals about the quality in education 
(European Commission, 2013) are limited to structural (class size, 
student/teacher ratio, teacher quality and working conditions) and 
procedural changes (teacher - student interaction, appropriate classroom 
practices that encourage students’ involvement, enhance identity, and sense 
of ‘belonging and learning’), while supporting a unitary structure that 
prevents artificial division (elementary, high school, etc.) in front of the 
continuum of human development. 

Getting into the heart of the problem, in a recent speech Radford (2014) 
argues that the way in which the mathematics class works derive from 
prevailing conceptions (and policy pursuits) about the forms of (re) 
production of knowledge, but also about the ways the teacher and students 
should interact (human cooperation). From this approach it becomes clear 
that if our aim is not the reproduction or the individual acquisition of 
knowledge, but the development of the youth, oriented to pedagogical and 
cognitive disposition, operating collectively to address the characteristics of 
the new era, then our conceptions and relevant practices require major 
revisions. 

The traditional transmissive educational model, Radford analyzes, 
perceive knowledge as a product (and wealth) that someone holds and 
someone else should acquire. Even in the progressive educational programs, 
like constructivism, knowledge is still treated as an individual construction 
and personal property, following the logic of private production, i.e. a 
'private property'. Instead he argues that (2014, p. 18): 

… Mathematical knowledge is not something possessible. It is not yours or 
mine. Mathematical knowledge appears as pure potentiality—virtual 
possibilities for mathematical understandings, meanings, and course of 
action. To be materialized, knowledge has to be set into motion through 
teachers’ and students’ labour. 
In his view (and historical- cultural approach) knowledge is a synthesis 

of what people do and process about this doing, which is a dynamic and 
evolving way with action, thought and interaction in the world. In this sense, 
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it cannot be seen as something that one gets and can record or transmit it 
(which gives a completely wrong perception even of the mathematical 
science itself), but as something that is produced and accessed by teachers 
and students in cooperation within appropriate actions and contents, giving 
to Mathematics its precise meaning (Radford, 2006). 
 

CONCLUDING REMARKS 
Summarizing the importance of mathematics education in the new era, 

it is clear that we need to move away from the simplistic and conventional 
approaches, for example, that mathematics is useful, is everywhere and 
necessary for everyday life. We also need to move away from the idea that 
working with mathematical objects (in simple or more advanced form, like 
numbers shapes, equations, functions, etc..) teaches students mathematical 
thinking or finally  that mathematics education alone supports the critical 
thinking of the citizens of the future. 

As Skovsmose (2006) presents in details that depending on the forms, 
mathematics education can encourage good but also bad practices, as 
already mentioned, like blind obedience, exclusion, lack of cooperation, an 
over-reliance on numbers or a development of high power through 
knowledge. Similarly, some elements resembling 'democracy', as unique 
approaches to a solution, or an unique book, a simplification and 
standardization to make some aspect of mathematics understandable could 
not  help but rather exclude and lead to opacity, special distribution 
knowledge and consequently of the power (Yasukawa, 2010).  

The substantial benefit of mathematical education, both in individual 
and in collective level, presupposes an engagement that meets the young 
students’ needs (present and future) and the emergence of the important 
dimensions of mathematics, like multiple approaches, alternative 
assumptions and conclusions, choices and consequences from those choices. 
We should not give to students and society the image that mathematics is a 
set of eternal and undeniable truths, but a science that is continuously 
formed, constructed, could be falsified, be corrected, in an attempt to better 
understand the world (Davis & Hersh, 1991).  

These aspects of mathematics can give the dimensions of critical 
mathematics education and provide new disposition for the unknown future 
that follows. On this issue there has been substantial research and 
experiments (see. Gutstein, 2003), but the design and implementation of 
these elements in all education require radical changes in mentality and re-
training of teachers. In our country these changes are critical because of the 
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particular impasse we face, but it is not known when they would be mature 
in the field of mathematics education. However, we can hope that together 
with the revisions that are gradually taking place in Greek society, a 
substantial mathematical education will arise. 
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Abstract 

The purpose of this study was to investigate how pairs of preschool 
children collaborated productively during their efforts to solve 
mathematical tasks. Fifteen pairs of preschool children (five years old) 
participated in this research. The results revealed three types of 
collaborative actions that allowed the preschool children to arrive at the 
solution of a mathematical task: a) using materials simultaneously, b) 
evaluating their different ways of solving a mathematical problem jointly 
and c) inspecting the different answers to a mathematical problem jointly. 
All the collaborative actions that the preschool children used gave them 
learning opportunities, as they critically examined their proposed solutions 
by repeating, through their actions, each other’s ideas or by confirming 
their answers using alternative methods. The development of collaboration 
from the preschool age could help the children to succeed productive 
collaborations during their future mathematical education.  

Keywords 
preschool education; collaboration; small groups; mathematics 

 
Introduction 
Recently the study of children’s collaboration in mathematics has been 

at the heart of research, as the social dimension of the construction of 
mathematical knowledge plays an essential role in the contemporary 
perspectives of mathematical learning and teaching (e.g. Chronaki & 
Christiansen, 2005; Cobb & Bauersfeld, 1995; Dekker & Elshout-Mohr, 
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1998; Lerman 1998; Sfard 2001). Collaborative learning is not just an 
instructional arrangement that can be used to foster active children’s 
learning, but it is in the essence of the learning processes. According to 
Burton (2002), during collaboration children work together to solve a 
problem as they share “the same disciplinary approaches” (p. 162).  

In mathematics education, many researchers have mentioned that 
collaborative learning allows children to feel responsible both for their own 
learning and that of the other members of the group, the acquisition of 
collaborative skills and the development of problem-solving ability at a 
higher level (e.g. Chaviaris, Kafoussi & Kalavassis, 2007; Cobb, 1995; 
Francisco, 2013; Good, Mulryan & McCaslin, 1992; Martin, Towers & 
Pirie, 2006; McCrone, 2005; Pijls, Dekker & Van Hout-Wolters 2007; 
Stacey & Gooding 1998; Voigt 1995; Weber, Maher, Powell & Lee, 2008). 
Children’s collaboration allows them to check their ideas, listen and refine 
their classmates’ ideas, formulate their thoughts through arguments in order 
to understand better the mathematical concepts and/or procedures.  

Moreover, many researchers investigating children’s collaboration have 
focused on learning contexts concerning small groups of children (usually 
two children). The research has revealed various factors that influence 
children’s mathematical learning, including group composition, their beliefs 
about collaboration in mathematics, their achievement in mathematics or the 
quality of mathematical tasks (e.g. Good et al., 1992; Kafoussi, Chaviaris, & 
Dekker, 2010; Webb, 1989). These findings suggest that productive 
children’s collaboration in small groups for a meaningful learning is hardly 
an easy goal to achieve in a mathematics classroom, as a productive 
collaboration means to succeed a shared goal mutually through a continual 
negotiation of collaborative actions and mathematical meanings. 
Furthermore, little research has been done concerning preschoolers’ 
collaborative learning in mathematics (Tarim, 2009). The aim of this study 
was to investigate how pairs (small groups of two) of preschool children 
collaborated productively during their efforts to solve mathematical tasks.  

 
Theoretical background 
Investigating the circumstances that facilitate children’s collaboration in 

pairs in mathematics in primary education, Cobb (1995) found that when 
two children are working together to find a solution in a mathematical 
problem, they may collaborate directly or indirectly. In the first case, the 
children explicitly coordinate their efforts to solve the problem and they 
make “taken-as-shared” interpretations of it. In the second case, one or both 
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children think aloud while they seem to solve the problem independently. 
By this way, they can capitalize on each other’s comments. According to the 
same researcher, indirect collaboration is frequently more productive than 
direct collaboration which doesn’t usually allow for learning opportunities.  

Martin, Towers and Pirie (2006) have used the notions of interactions 
and coactions in order to describe the ways of children’s collaboration in 
groups. Interactions involve “the process of acting on the ideas of another in 
a reciprocal or complementary way”, whereas coactions refer to the process 
“of acting with the ideas and actions of others in a mutual, joint way” (p. 
156). Both interactions and coactions can be crucial in order to promote 
mathematical understanding (Francisco 2013). 

Moreover, in an effort to gain a deeper understanding of the 
constituting elements of a productive collaboration among children, 
researchers have given emphasis on the notion and the elements of 
argumentation that provide learning opportunities in mathematics 
classrooms (e.g. Francisco, 2013; Krummheuer, 1995; McCrone, 2005; 
Weber et al., 2008). They usually use Toulmin’s model (1969) about 
argumentation, according to which an argument needs: a) a claim, that is an 
assertion of which an individual is trying to convince others, b) data, that is 
some statements on which the conclusion can be based and c) a warrant, that 
is an explanation as a means of legitimizing why the claim supports the 
conclusion. According to Krummheuer (1995), especially in the primary 
education, participants usually try to demonstrate the rationality of their 
methods when they solve a problem through their actions during their 
collaboration. Hence, argumentation is manifested through ways that help 
the participants to demonstrate, implicitly or explicitly, the rationality of the 
action while they are acting. He mentioned that, in the primary education, 
the children’s mathematical statements “carry the significance of acting on 
experientially real mathematical objects” (e.g. counting on fingers) 
(Krummheuer, 1995, p. 236) and these actions convey their process of 
argumentation.  

According to the above, our hypothesis was that the investigation of a 
productive collaboration at the preschool age means to identify the types of 
collaborative actions in which the preschool children engaged in order to 
accept or assess the rationality of their solutions and arrive at the answer of 
a mathematical problem.  

 
Methodology 
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Fifteen preschool children’s pairs (30 children, 17 girls and 13 boys) 
participated in the research that took place in November and December 
2011. The children were five years old and they attended public 
kindergarten schools of the city of Rhodes, in Greece. We observed three 
pairs from five different schools. They volunteered to participate in this 
research and they were asked to solve mathematical problems in pairs. Each 
pair had to solve one task. The tasks were not the same for all the pairs. 
They were designed to cover basic mathematical topics for this age, 
including numbers and operations, measurement and probabilities 
(Clements & Sarama, 2004). The small-group activity lasted about 15 
minutes for each pair and it took place outside the classroom (in the library 
of the kindergarten schools’ buildings). 

All the dialogues during the collaborations of the pairs were tape-
recorded. Data analysis was conducted with the transcripts of tape-
recordings of the children’s small-group activity, as well as with the 
researcher’s hand-scripted observations.  Drawing upon Krummheuer’s 
analysis about argumentation (1995), we first described the data and the 
possible warrants that the preschool children accepted as “taken as shared” 
during their collaboration. These elements allowed us to identify the 
collaborative actions they supported in order to arrive at an acceptable 
solution of the mathematical task.  

The researcher presented the mathematical tasks to the children and 
participated in their discussion by asking for clarifications when needed. 
Concerning fostering children’s collaboration, the only advice that she gave 
to them was that they should solve the proposed mathematical problem 
jointly.  

 
Results 
The analysis of our data revealed three types of collaborative actions 

that helped the preschool children to work together productively and to 
arrive at the solution of a mathematical problem: a) using materials 
simultaneously, b) evaluating their different ways of solving a mathematical 
problem jointly and c) inspecting the different answers to a mathematical 
problem jointly.  In the following we are analyzing examples of the 
preschool children’s collaboration in mathematics identifying the above 
mentioned actions. 

a)using materials simultaneously  
This action is related to the use of the given materials of the task by 

both children. They used the materials simultaneously while they were 
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acting in order to proceed to a conclusion about the solution of the 
mathematical problem. In the following examples, we are analyzing the 
collaborations of two pairs of children. 

Example 1 
The children (two girls, Chara (C) and Ioanna (I)) had to measure the 

side of a square table to help a squirrel to buy a tablecloth for its party. They 
had big and small straws, yellow and green respectively at their disposal. 
They should measure the side of the table by using these two different kinds 
of straws in order to take a decision for the squirrel. The following dialogue 
took place between the children.  
        Utterances Actions 
1 
2a 
2b 
3a 
3b 
4 
5 
6 
7 
8 
9 
 
10 
11 
12 
 
 
13 
14 
 
15 
 
16 
17 
18 
19 
20 

C: Let’s start with the yellow straws. 
Ι: Yes. Yes, with the yellow firstly.  
Ι: Let’s  put them. Do we have to count 
them? 
C: Yes.  
C: 1,2,3,4… Come on, we will do it 
together. 
Ι: 1,2,3,4,5,6. 
C: They are six. Can I put the green ones? 
Ι: Take some of them and I’ll take the rest 
of them.  
C: 1, 2, 3, 4, 5, 6, 7, 8. You have to count 
too. 
Ι: 1, 2, 3, 4, 5, 6, 7, 8. They are eight. 
R:  So, how many yellow straws do you 
need and how many green? 
C: Six yellow and eight green. 
R: Why do you need less yellow than green 
straws?  
C: Because this is smaller (she is looking at 
a green straw) and it is taking up less room. 
Εh; (She is looking at Ioanna) 
Ι: Yes.  
R: What are you going to tell the squirrel in 
order to buy the tablecloth? 
C: It is the same, but this one is smaller (she 
is looking at a green straw). 
R: Do you want to write your answer? 

 
[2] They are putting the 
yellow straws together 
one by one along the 
side of the table. Ioanna 
is putting one straw and 
then Chara is putting 
the other one and this 
process is continuing. 
[6] Ioanna is giving 
some straws to Chara 
and they are putting 
them together in the 
same way that they did 
with the yellow ones. 
 
 
 
 
 
 
 
 
 
 
 
[19] Ioanna is writing 
the symbols of the two 
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I: Yes. 
C: I don’t remember how we write the 
eight. 
Ι: It is two small circles. I’ll show you. 
C: We finished.  

numbers. 

 
The children shared the given materials for the measuring of the side of 

the table and they put them together along the side of the table in order to 
find the result. Moreover, as they tried to find the answer to the problem, 
both children used the counting process. The actions of putting the straws 
together and the repetition of the counting served both as their data and as 
their warrant for their answer. During this process they accepted this 
collaborative action as a legitimate one for their conclusions.  

 
Example 2 
At the second example another pair (two girls, Stella (S) and Evi (E)) 

had to find the distances that the turtles of a forest had to cover in a speed 
contest and to compare them. They had small markers at their disposal. 
Following we are presenting the dialogue that took place between the 
children.  
           Utterances Actions 
1 
2 
3a 
 
3b 
4 
5 
6 
7 
8 
9a 
9b 
10 
 
11 
12 
13a 
13b 

S: Have you understood what we are 
going to do? 
E: No! You? 
S: Yes. We have to help the turtles to 
measure the distances. 
S: 1,2,… 
E: OK. 
S: 1, 2, 3, 4, 5. 
E:  1, 2, 3. 
S: 1, 2. 
E: 1, 2, 3, 4, 5. 
S: Be careful, the markers are slipping.  
S: 3, 4. 
R: So, which of the turtles have to run the 
longest distance? 
S: The first one. 
E: This one (She showed the last one.) 
S: No! The first one. 

[3b] Stella is putting the 
markers along the first 
road and she is counting 
simultaneously.  
[6] Evi is putting the 
markers along the 
second road and she is 
counting 
simultaneously. 
[7] Stella is repeating 
the same action for the 
third road. 
[8] Evi is repeating the 
same action for the 
fourth road. 
[13b] She is counting 
the markers again along 
the last road. 
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14 
15 

S: You measured it in a wrong way. 1, 2, 
3, 4. 
R: And which turtle has to run the 
smallest distance? 
S-E (together): This one (They showed 
the third road). 

 
Stella proposed a concrete way of solution, by counting the markers as 

she was putting them along the length of the road. Evi accepted this process 
as their data. Subsequently, the children measured the different distances 
together, successively. That is, Stella counted the first distance with the 
markers and after that Evi made the same action for the second distance and 
so on. When a child put the markers and counted, the other controlled the 
whole process. This control functioned as a warrant for their measurement 
and helped them to correct the wrong solutions (cf. utterances 8-9, 13b). The 
collaborative action of realizing the measuring of the distances using both 
the markers helped them arrive at their conclusions. 

In both examples the collaborative action of using the materials 
simultaneously seemed to be a fruitful one for the children’s learning. At the 
first example, the children used the materials by putting the straws together 
for the measuring of the length of the table each time. At the second 
example, they divided the task in subtasks and they made the measurements 
with the materials alternatively by checking each other. In both cases, this 
action gave them the opportunity to understand better how to put the 
informal measure units along a distance correctly in order to measure it as 
well as to compare different lengths.  

b) evaluating their different ways of solving a mathematical problem 
jointly  

This collaborative action emerged when the children were engaged in a 
mathematical task and they investigated different ways in order to find the 
answer of the problem, as we can observe in the following example.  

 
Example 3 
Similarly to the first example, the children (two boys, Ilias and John) 

had to measure the side of a square table in order to help a squirrel buy a 
tablecloth for its party. Firstly, they were asked to use their hands and 
secondly cubes in order to make this measurement. The following dialogue 
took place between Ilias (I) and John (J).  
           Utterances Actions 
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1 
2 
3 
4 
5 
 
6 
7 
8 
9 
10 
11 
12 
13 
14a 
14b 
15 
16 
17 
18 
 
19 
20a 
20b 
21 
 
22 
23 
24 
25 
26 
27 
28 
29 
 
30 

J- I (together): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.  
J: They are ten. 
I.: There is another way. 1, 2, 3, 4, 5, 6, 7. 
R: Oh! Why did John find ten and you 
seven? 
I: But John counted in this way (he is 
repeating his own action and then John’s 
action).  
J: Yes! One way or another. 
R: So, how long is the table? 
I: We will do it in this way.  
J: 1, 2, 3, 4, 5, 6, 7. Seven. 
I: Yes, seven. 
J: 1, 2, 3, 4, 5, 6, 7, 8. No, they are eight! 
I: 1, 2, 3, 4, 5, 6, 7, 8. 
R: What happens now? Seven or eight? 
J: My hand is smaller… 
J: Do you want to count the cubes? 
I: Yes. 
J: 1, 2, 3, 4, 5, 6. Six. 
I: 2, 4, 6. Six. I counted them two by two. 
R: So, what are you going to tell the 
squirrel, seven, eight or six? 
J: Maybe we are confused… 
I: No…We counted them! (He is angry.) 
I: The cubes are big. The hands are small. 
R: So, what is more helpful for you? The 
hands or the cubes? 
I-J: The cubes. 
R: Why? 
I: It is easier. 
J: I was confused with the hands. The 
cube is better. 
I: We put the cubes more quickly. 
R: So, what are you going to tell the 
squirrel? 
I: Six. 
J: Yes. We will give him the cubes and 
we will say six. 

[1] John is putting his 
hands vertically along 
the side of the table and 
the boys are counting 
together. 
[3] Ilias is putting his 
hands horizontally 
along the side of the 
table. John is making 
the same action in the 
air.  
[8] He is putting again 
his hands horizontally 
along the side of the 
table.  
[9] John is counting 
Ilia’s hands. 
[11] John is counting 
his own hands by 
putting them 
horizontally. 
[12] Ilias is counting 
John’s hands. 
[15] They are putting 
the cubes together one 
by one along the side of 
the table. John is 
putting one cube and 
then Ilias is putting the 
other one and this 
process is continuing. 
 
 
[29] He is putting again 
the cubes along the side 
of the table 
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I: Yes. 
 

During their collaboration, John and Ilias discussed different ways of 
solving the mathematical problem. Although they both accepted the process 
of counting as their data, when they used their hands to measure the side of 
the table, the placing of their hands vertically or horizontally challenged 
their finding of an acceptable answer. However, this challenge emerged 
when John tried to repeat the process of the counting that his partner 
proposed by making the same action (cf. utterance 11). The action of the 
evaluation of the different ways for the solution of the problem by both 
allowed them to reach at their conclusions about the suitability of the 
measurement units that they used (cf. utterances 21-26). They had the 
opportunity to make comparisons between their hands and the cubes and to 
formulate an explanation about the choice of the cubes for the measurement 
process. Moreover, we should mention that they also acted collaboratively 
in using the materials simultaneously, when measuring the side of the table 
with the cubes (cf. utterance 15).  

c) inspecting the  different answers to a mathematical problem jointly  
This collaborative action was emerged when the type of the problem 

that the children had to deal with required more than one answers. In that 
case, the children inspected their different answers jointly while working 
together.  

 
Example 4 
The children (a boy and a girl, George (G) and Katerina (K)) were 

asked all the different combinations in order to hide six whistles in Bob’s 
house. Bob would organize a party and he would like to play this game with 
his friends. Bob had a two-storey house (a model of the house was given to 
the children) and they had to think that Bob could hide some whistles on the 
first floor and the rest on the second. The question was how many whistles 
Bob could hide on the first and how many on the second floor. The children 
had six whistles and a sheet of paper to record their answers at their 
disposal. 
         Utterances Actions 
1a 
1b 
 
2a 
2b 

G: This is the first floor and this is the 
second.  
G: He can put three whistles on the first 
and three whistles on the second.  
K: Yes! Three on the first and three on 

 
[1b] George is writing 
the answer (3, 3). 
 
[2b] She is counting four 
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3 
4 
5 
6 
7 
8 
 
9 
 
10 
 
11 
12 
13a 
13b 
14 
15 
16 
17 
18a 
18b 
19 
 
20 
21 
 
22a 
22b 
22c 
23 
24 
25 
26 

the second. 
K: I think that he can put four here (she 
showed the first floor) and two here (she 
showed the second floor). 
G: No, four on the first and one on the 
second.  
K: No, because four plus two makes six! 
G: Αh! Yes! 
K: If he put one… 
G: They remain five. 
K: Maybe he can put five on the first and 
one on the second floor. 
G: Yes, one here (he showed the first 
floor) and five here (he showed the 
second floor). 
K: No, I said five here (she showed the 
first floor) and one here (she showed the 
second floor).  
G: Ok, five on the first and one on the 
second, eh? 
K: Yes, I think so… 
G: Yes. Can I write it? 
G: 1, 2, 3, 4, 5, 6. 
K: Did you put them all together? 
G: Yes. 
K: Will we put all of them on one floor? 
G: Yes. 
K: And nothing on the other? 
K: That is zero? 
G: No, he will put six here (he showed 
the first floor) and seven here (he showed 
the second floor).  
K: Six and seven? 
G: Yes, six (he showed again the first 
floor) and seven here (he showed again 
the second floor).  
K: But six plus seven is... 
K: Does he happen to put six and zero? 
K: I think so… 

fingers in her hand and 
she is putting two more 
fingers in the other hand.  
[5] He is writing the 
answer (4, 2). 
[6] She is holding one 
whistle in her hand. 
[7] He is counting the 
rest whistles. 
 
 
 
[13a] He is writing the 
answer (5, 1). 
[13b] He is putting all the 
whistles on the first floor. 
 
 
[18b] She is counting six 
fingers. 
 
 
 
 
[22a] She is trying to 
count her fingers, but she 
is troubled. 
[23] He wrote the answer 
(6,0) 
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G: Μm…Ok. 
R.: Can you put the whistles in another 
way? 
G: No. 
K: Ok. 

 
In the above example, the children found some of the different 

combinations of this problem jointly. When a child told an answer, the other 
one inspected it and this action led them to find the right one (cf. utterances 
4-5, 22-24). This checking also gave them the opportunity to think of more 
answers. For example, George’s mistake that 4 plus 1 could be an 
acceptable answer gave the opportunity to Katerina to propose 1 and 5 as an 
alternative answer. Furthermore, in contrast to the previous examples, the 
children used different ways in order to support their answer. Katerina used 
the counting of her fingers as a warrant for the right solution, whereas 
George counted the whistles. These two different kinds of perceptual 
counting unit items (Steffe et al., 1983) seemed to be acceptable by both of 
them implicitly, as it was not a topic of discussion during their 
collaboration. 

 
Discussion 
The purpose of this study was to identify the types of collaborative 

actions that the preschool children realized as they worked together when 
they had to solve a mathematical problem in pairs and to be led to a 
conclusion. Our results showed that the preschool children can collaborate 
productively when dealing with mathematical tasks, through coactions, as 
they worked together on the same idea (Martin et al., 2006). Therefore, we 
could argue that the preschool children interpreted the word “together”, 
according to the researcher’s advice about the way they were expected to 
deal with the tasks, as a realization of coactions for every step of the 
solution of the problem. In all cases, the children explicitly coordinated their 
efforts as they solved the mathematical problems. 

In our research we identified three types of collaborative actions of the 
preschool children: a) using materials simultaneously, b) evaluating their 
different ways of solving a mathematical problem jointly and c) inspecting 
the different answers to a mathematical problem jointly. All the 
collaborative actions that the preschool children used gave them learning 
opportunities, as they critically examined their proposed solutions by 
repeating, through their actions, each other’s ideas or by confirming their 
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answers using alternative methods. An interesting question for further 
investigation is the relation of these collaborative actions to the zone of 
proximal development for different groups of children. 

We should mention that in many studies the role of a teacher is 
significant for the construction of a productive collaborative learning 
environment (Cobb et al., 1992; Dekker & Elshout-Mohr, 2004; Edwards, 
2002). The main habits that students have to adopt with the help of the 
teacher during their efforts to collaborate are usually: listening, explaining, 
justifying, reconstructing. In our study the preschool children hadn’t been 
taught any kind of collaborative skills, as our purpose was to investigate 
possible collaborative actions that they might use on their own. Thus, 
another research question concerns how a kindergarten teacher could 
encourage children to use these collaborative actions, as they seemed to be 
effective for their mathematical learning. 

Finally, according to our findings, the preschool children’s spontaneous 
collaborative actions allow us to assert that they do not experience essential 
difficulties when they try to work together, which is in contrast with the 
performance of older children who have already shaped more stable beliefs 
about the learning and teaching of mathematics as well as about the 
individuality that characterizes traditional mathematics classroom (Cobb et 
al., 1992). Unlike the preschoolers, the older children have to change their 
beliefs in order to succeed a productive collaboration (Kafoussi, Chaviaris 
& Dekker, 2010). This fact could lead to the hypothesis that the 
development of collaboration from the preschool age could help the children 
to succeed productive collaborations during their future mathematical 
education.  
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Abstract 

The APOS/ACE theory for learning and teaching mathematics was 
developed during the 1990’s in the USA by a team of mathematicians and 
mathematics educators led by Ed Dubinsky and one of its central ideas is 
the use of computers as a teaching tool. In this paper we introduce 
principles of fuzzy logic on comparing the performance of two student 
groups concerning the comprehension of the real numbers in general and of 
the irrational numbers in particular. The first group was taught the subject 
in the traditional way (control group), while the APOS/ACE instructional 
treatment was applied for the second group (experimental group). The two 
groups are represented as fuzzy subsets of the set of the grades (from A to 
F) achieved by the students in a pre-instructional and a post-instructional 
test and the çentroid defuzzification technique is applied on comparing their 
performance. The results of our classroom experiments showed that the 
application of the APOS/ACE approach can effectively help students to 
enlist the real numbers in a powerful cognitive schema including all the 
basic sets of numbers. 
 
Keywords: Fuzzy sets, centroid defuzzification technique, teaching and 
learning the real numbers, APOS/ACE theory.  
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1. Introduction 
The fuzzy sets theory, introduced by Zadeh[24] in 1965, gave genesis to 

fuzzy logic, a rich and meaningful addition to standard logic. The 
applications which may be generated from or adapted to fuzzy logic are 
wide-ranging and provide the opportunity for modelling under conditions 
which are inherently imprecisely defined, despite the concerns of classical 
logicians. Many systems may be modelled, simulated and even replicated 
with the help of fuzzy logic, not the least of which are human cognitive 
systems (e.g. [3], [5], [7], [8], [10-12], [16-19], etc) 

Fuzzy logic offers a much higher problem solving capability than the 
standard probability theory opening the door to the construction of 
mathematical solutions of computational problems which are stated in a 
natural language.  

The methods of assessing the individuals’ performance usually applied 
in practice are based on principles of the bivalent logic (yes-no). However 
these methods are not probably the most suitable ones. On the contrary, 
fuzzy logic, due to its nature of including multiple values, offers a wider and 
richer field of resources for this purpose. This gave us several times in the 
past the impulsion to introduce principles of fuzzy logic in assessing the 
performance of student groups in learning mathematics and in problem 
solving (e.g. see [8], [11-12], [16], [19], etc). 

In this paper we shall apply such kind of principles in comparing the 
results of performance of two groups of students of the Graduate 
Technological Educational Institute of Western Greece concerning their 
comprehension of real numbers in general and irrational numbers in 
particular. The first group was taught the subject in the traditional way 
(control group), while the APOS/ACE [acronyms constituted by the words 
Actions, Processes, Objects, Schemas for the former and Activities (on the 
computer), Classroom (discussion), Exercises (done outside the class) for 
the latter]. instructional treatment was applied for the second group 
(experimental group). The APOS/ACE theory for learning and teaching 
mathematics was developed during the 1990’s in the USA by a team of 
mathematicians and mathematics educators led by Ed Dubinsky and one of 
its central ideas is the use of computers as a teaching tool (see [1-2]). 

The rest of the present paper is formulated as follows: In the next 
(second) section we present the headlines of the APOS/ACE theory and we 
provide some simple examples for its better understanding. In the third 
section we describe our classroom experiment, while in the fourth section 
we apply a simple fuzzy model on our experiment’s process and we use the 
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centroid defuzzification technique for assessing the performances of the two 
groups. Finally, in the last (fifth) section we state our conclusions and we 
discuss the future perspectives of this research.  

 
2. The APOS/ACE theory for learning/teaching mathematics 
APOS is a theory based on Piaget’s principle that an individual learns 

(e.g. mathematics) by applying certain mental mechanisms to build specific 
mental structures and uses these structures to deal with problems connected 
to the corresponding situations [6]. Thus, according to the APOS analysis, 
an individual deals with a mathematical situation by using certain mental 
mechanisms to build cognitive structures that are applied to the situation. 
The main mechanisms are called interiorization and encapsulation and the 
related structures are actions, processes, objects and schemas.   

The theory postulates that a mathematical concept begins to be formed 
as one applies transformations on certain entities to obtain other entities.  A 
transformation is first conceived as an action. For example, if an individual 
can think of a function only through an explicit expression and can do little 
more than substitute for the variable in the expression and manipulate it, 
he/she is considered to have an action understanding on functions. 

As an individual repeats and reflects on an action it may be interiorized 
to a mental process. A process performs the same operation as the action, 
but wholly in the mind of the individual enabling her/him to imagine 
performing the transformation without having to execute each step 
explicitly. For example, an individual with a process understanding of a 
function thinks about it in terms of inputs, possibly unspecified, and 
transformations of those inputs to produce outputs.   

If one becomes aware of a mental process as a totality and can construct 
transformations acting on this totality, then we say that the individual has 
encapsulated the process into a cognitive object. In case of functions 
encapsulation allows one to form sets of functions, to define operations on 
such sets, to equip them with a topology, etc. Although a process is 
transformed into an object by encapsulation, this is often neither easy not 
immediate. This happens because encapsulation entails a radical sift in the 
nature of one’s conceptualization, since it signifies the ability to think of the 
same concept as a mathematical entity to which new, higher-level 
transformations can be applied.  On the other hand, the mental process that 
led to a mental object through encapsulation remains still available and 
many mathematical situations require one to de-encapsulate an object back 
to the process that led to it. This cycle may be repeated one or more times. 
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For example, in defining the sum f + g of two functions possessing a 
common domain, say A, it is necessary to reconsider again f and g at a 
process level and thinking of all x in A to obtain a new process mapping 
each x in A to the sum f (x) + g(x).   Then this new process must be 
encapsulated, in order to obtain the function f + g at an object level.   

A mathematical topic often involves many actions, processes and 
objects that need to be organized into a coherent framework that enables the 
individual to decide which mental processes to use in dealing with a 
mathematical situation. Such a framework is called a schema. In the case of 
functions it is the schema structure that is used to see a function in a given 
mathematical or real-world situation.      

The APOS theory has important consequences for education. Simply 
put, it says that the teaching of mathematics should consist in helping 
students to use the mental structures that they already have to develop an 
understanding of as much mathematics as those available structures can 
handle. For students to move further, teaching should help them to build 
new, more powerful structures for handling more and more advanced 
mathematics. Dubinsky and his collaborators realized that for each mental 
construction that comes out of an APOS analysis, one can find a computer 
task of writing a program or code, such that, if a student engages in that 
task, he (she) is fairly likely to build the mental construction that leads to 
learning the mathematics. In other words, performing the task is an 
experience that leads to one or more mental constructions. As a 
consequence of the above finding, the pedagogical approach based on the 
APOS analysis, known as the ACE teaching cycle, is a repeated cycle of 
three components: Activities on the computer, classroom discussion and 
exercises done outside the class.  The target of the activities on the 
computer is to help students in building the proper mental constructions for 
the better understanding and learning of the corresponding mathematical 
topic. The students discuss later in the classroom their experiences from the 
computer tasks performed in the laboratory, they repeat the same tasks 
without the help of computer this and they reach, under their instructor’s 
guidance and help, to the proper conclusions. Finally, the purpose of the 
exercises, which are given by the tutor as a home work, is to check and to 
embed better the new mathematical knowledge (for more details see [1-2], 
[17], etc).   
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3. The classroom experiment 
The implementation of the ACE cycle and its effectiveness in helping 

students making mental constructions and learn mathematics has been 
reported in several research studies of the Dubinsky’s team. A summary of 
earlier work can be found in [21]. More recently this approach was applied 
in studying the pre-service teachers understanding of the relation between a 
fraction or an integer and its decimal expansion [22-23]. 

In developing and applying in practice the ACE design for teaching the 
real numbers in general and the irrational numbers in particular we 
performed during the winter semester of the academic year 2012-13 
(October 2012) a classroom experiment with two groups of students of the 
Graduate Technological Educational Institute (T. E. I.) of Western Greece 
(ex Patras) being at their first term of studies. The subjects of the 
experimental group were 90 students of the School of Technological 
Applications (prospective engineers) attending the course “Higher 
Mathematics I”1. The students of this group were taught the real numbers in 
the computers’ laboratory and in the classroom according to our ACE 
design that we shall present below. The subjects of the control group were 
100 students of the School of Management and Economics of the same T. E. 
I. attending a similar mathematical course (the instructor was the same 
person). In this group the lectures were performed in the classical way on 
the board, followed by a number of exercises and examples. The students 
participated in solving these exercises.  Notice that the students of both 
groups had more or less the same mathematical background from secondary 
education, since they had finished the same type of Lyceum (the upper level 
of secondary education in Greece). Further, the grades that they obtained in 
the Panhellenic exams for entrance in the higher education were of about the 
same level. Also, since they were in the first term of their studies, they had 
attended no previous mathematical courses at the T. E. I. of Western 
Greece.  

On the first day in class the students of both groups completed 
individually a five-item pre-instructional written questionnaire (see 
Appendix I). The instrument served to establish the similarity of the two 
groups and to guide the development of the teaching process.  The results of 
                                            

1 This course involves an introductory chapter repeating and extending the students’ 
knowledge from secondary education about the basic sets of numbers, Complex Numbers, 
Differential and Integral Calculus in one variable, Elementary Differential Equations and 
Linear Algebra. 
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the pre-instructional test for the two student groups are presented in the 
following table:  
 

Table 1: Results of the pre-instructional test   
 

Experimental group (G1) 
 

% Scale Grade Amount of 
students 

% of students 

89-100 A 0 0 
77-88 B 17 18.9 
  65-76 C 18 20 
53-64 D 25 27.8 

Less than 53 F 30 33.3 
Total  90  

 
 

Control group (G2) 
 

% Scale Grade Amount of 
students 

% of students 

89-10 A 0 0 
77-88 B 18 18 
65-76 C 20 20 
53-64 D 30             30 

Less than 53 F 32 32 
Total  100  

 
The interpretation of the data of Table 1 will be presented in section 4 

in terms of our fuzzy assessment method.  
Our APOS/ACE approach for teaching the real numbers to the students 

of the experimental group involved three iterations of the ACE cycle. Each 
cycle consisted of two class sessions, one for computer activities and one for 
classroom discussions. Homework exercises were assigned and collected. 
Notice that, since the proper understanding of rational numbers is an 
essential pre-assumption for the comprehension of irrational numbers, our 
design involved frequent repetitions of the corresponding situations for 
rational numbers. Some of these repetitions were adapted from [22]. 
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In an action level the concept of an infinite decimal (rational or 
irrational number) is understood by considering its finite decimal 
approximations. The target of the first iteration of the ACE cycle was to 
facilitate the interiorization of this action to a process. The students 
completed in the computer laboratory activities with a preloaded decimal 
expansion package. They developed general descriptions of what was stored 
and answered various questions about an infinite digit string such as: What 
is a repeating decimal? Which of the strings are repeating decimals? What 
are the digits in the first 20 places after the decimal point and what would 
appear in the 1005th place? Further, students were asked to calculate the 
successive finite decimal approximations of several square roots with 
gradually increasing accuracy.  

In the classroom discussion the students reported their group responses 
and the class negotiated agreements. A notational system for infinite 
decimals was devised. For example, since 1< 2 <2, 1.4< 2 <1.5, 
1.41< 2 <1.42, 1.414< 2 <1.415,  1.4142< 2 <1.4143, 
1.41421< 2 <1.41422, etc, 2  can be written as  2 = 1.41421….. . The 
dots at the end indicate that the sequence of the decimal digits is continued 
to infinity. Therefore, by accepting this symbolic representation of an 
infinite decimal we can not see written all its decimal digits. We can only 
see the digits of its given decimal approximation each time. The instructor 
recalled at this point that a repeating decimal (rational number) can be 
written in the form a,b c . Here a, b, c are natural numbers, where a denotes 
the integer part of the rational number, b is its decimal portion that possibly 
appears before the repeating cycle (in case of mixed periodic numbers) and 
c is the repeating cycle (period) of the number. A finite decimal can be 
written as a repeating decimal with period 0 or 9; e.g. 2.5 = 2.5 0  = 2.4 9  
The exercises included problems where certain information about an infinite 
digit string was provided that was sufficient to specify the string. 

The target of the second iteration of the ACE cycle was to facilitate the 
encapsulation of the concept of a real number to a mental object. During the 
computer activities students were asked to work out examples with 
transparent and opaque decimal representations of real numbers like the 
following:   

The rational numbers 3

5
=0.6 , 1

3
 0.33..., 281849

99900
=2.82113113113… , 

have transparent decimal representations, since we can foresee their decimal 
digits in all places; but the same is not happening with 

1861

1 = 0.0005373…, 
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which, possessing a period of 1860 digits, has an  opaque decimal 
representation. Notice that decimal representations of certain irrational 
numbers, despite of their complex structure in general, are also transparent. 
For example, this happens with the numbers 
2.001313113111311113111113… where 1, following 13, is repeated one 
more time  at each time, and 0.282288222888222288882…where 2 and 8, 
following 28, are repeated one more time at each time. Taking this 
opportunity the instructor clarified to the class that an infinite decimal is an 
incommensurable (non periodic) decimal not because its decimal digits are 
not repeated in a concrete process (this in fact can happen according to the 
above two examples), but because it has not a period, i.e. its decimal digits 
are not repeated in the same concrete series. Some standard cases of decimal 
expansions of transcendental numbers like   and e were also added to the 
above examples. Students were also asked to convert fractions and roots of 
second or higher order to decimals and vice versa. Further, the computer 
activities included arithmetic operations among irrational and rational 
numbers by using their finite decimal approximations.  

In the classroom the students performed the same mathematical 
activities without using the computers. In this way they realized that in 
converting a fraction to a decimal, if the quotient obtained is an infinite 
decimal having a long period, a long and laborious division is reached in 
general, which is not possible to be determined soon. At this point the 
instructor emphasized that given a fraction , , , 0Z

   


   , the quotient of the 

division μ : ν  is always  a periodic decimal. The probability to be a finite 
decimal is small enough, since a fraction, whose denominator is not a 
product of powers of 2 and/or 5, cannot be written as a finite decimal. In 
case of an infinite decimal, since the remainder of the division μ : ν is 
smaller that ν, performing the division and after a finite number  of steps (at 
most ν-1) the same remainder will reappear at some step. This means that 
the resulting decimal is a periodic one, having a period of at most ν-1 digits. 
Conversely, a standard method for converting periodic numbers to fractions 
(although other methods could be used as well) is by subtracting both 
members of proper equations containing multiples of a power of 10 of the 
given number. For example, given x=2.75323232…, we write 
10000x=27532.3232… and 100x=275.3232…., wherefrom we get that 

9900x=27532-275, or x=
27257

9900 .  Reflecting on the above examples the 

students reached to the conclusion that periodic decimals and fractions are 
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the same numbers written in a different way. Students’ contact at school 
with the definition of irrational numbers as incommensurable decimals is 
usually rather slim, while emphasis is given on defining them as non 
rational numbers (i.e. they cannot be written as fractions 

  , with μ, ν 

integers and 0  ). However, students must clearly understand the 
equivalence between the above two definitions: Similarly to the fact that 
rational numbers and periodic decimals are the same numbers written in a 
different way, the same holds for non rational numbers and 
incommensurable decimals. Thus, the set of real numbers R can be defined 
as the set of all commensurable and incommensurable decimals and their 
opposites. In closing the classroom discussion the instructor presented 
empirically the concept of a sequence of finite decimals and of its limit (i.e. 
what it means to “tend” to a number) and explained it to students by using 
the appropriate examples, like this with 2  mentioned above. In no case is it 
necessary for the teacher to give the analytic definition of the limit of a 
sequence. The above empiric approach is enough for helping students to 
encapsulate the concept of a real number to a mental object.  The homework 
exercises were standard problems related to the topics mentioned above 
aiming to consolidate the students’ knowledge and understanding of these 
topics.   

The target of the third iteration of the ACE cycle was to help students 
to enlist real numbers in general and irrational numbers in particular in their 
cognitive schema related to the already known basic sets of numbers 
(natural numbers, integers and rational numbers). A prerequisite for this is 
that they must be able to transfer in comfort among the several 
representations of real numbers. Therefore, the computer activities in this 
cycle involved among others examples of constructions of line segments 
with incommensurable lengths; either classical geometrical constructions by 
using the Pythagorean  theorem, like 2, 3 , 5  etc, or cases where the 
construction of the graph of a function is necessary, like 3 2  with the 

function 3( )f x x  (or 3( ) 2f x x  ) etc. They involved also examples of 

writing real numbers in the form of a series 
0 10

n
n

n

x





 , where κ0 is an integer 

and κ1, κ2,…., κn,…. are natural numbers less than 10. Finally, the computer 
activities involved also examples of interpolation of rational and irrational 
numbers between two given integers, or between two rational (irrational) 
numbers aiming to promote the later discussion in classroom about the 
density of the sets of rational and real numbers. 
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In the classroom discussion the instructor recalled first that in defining 
the set Q of rational numbers as the set of all fractions and in order to count 

each fraction only once, we considered only the fractions of the form 


 , 

where μ and ν are non negative integers ( 0  ), with greatest common 
divisor equal to 1.  In an analogous way, since for all integers κ and α with 1 
  α   9 we have κ.α = κ.(α-1) 9   and .9 = κ+1  2, in defining R as the set 
of all decimals and in order to count each real number only once , we must 
exclude all infinite decimal expansions of the form  κ.κ1κ2…….. , in which 
there exists a natural number ν such that κμ=9 for all μ ν.  

Activities on geometric constructions of irrational numbers were also 
organized in classroom combining history of mathematics with Euclidean 
Geometry. For example, as we have already mentioned above, these 
activities included the construction of the line segments of 
length 2 , 3, 5 , etc with the ruler and compass only in terms of the 
Pythagorean Theorem and the proper placing of them on the real axis, 
followed by proofs of the fact that the above lengths do not correspond to 

rational numbers (since they cannot be written in the form 


, with μ and ν 

natural numbers, ν  0). Within the culture of ancient Greek mathematics the 
geometric figure was the basis for unfolding mathematical thought, since it 
helped in obtaining conjectures, fertile mathematical ideas and justifications 
(proofs). In fact, convincing arguments are built by drawing auxiliary lines, 
optical reformations and new modified figures, and therefore mathematical 
thinking becomes more completed in this way. Therefore the geometric 
representations of real numbers enrich their teaching, connecting it 
historically with the discovery of incommensurable magnitudes and the 
relevant theory of Eudoxus.  Following these historical steps of the human 
thought is therefore a good way for helping students to accept the existence 
of incommensurable magnitudes. 

                                            

2 In this case, if we denote by [x] the integral part of x, we have that [x] = κ0 and at the 
same time that [x] =κ0+1, which is absurd! Therefore there is a debate in the literature 
whether or not decimal expansions of the form κ0, 9  are representing real numbers; e.g. see 
[15]. Fortunately the results obtained when using these representations are conventionally 
correct because the corresponding operations could be performed in an analogous way 
among the sequences of the partial sums of the corresponding series. This allows us at 
elementary level to pass through this sensitive matter without touching it at all. 



130 Michael Gr. Voskoglou  

HMS i JME, Volume 6. 2014 (120-142) 

Another crucial matter for the instructor is to find the proper way to 
explain to students the continuum of R with respect to the density of Q.  In 
other words to persuade them that in a given interval of numbers it is 
possible to have an infinite number of elements of a certain type (rational 
numbers) and at the same time to be able to add an infinity of elements of 
another type (irrational numbers), when this is not compatible with the usual 
logic and intuition.  It seems that the use of the geometric representations of 
real numbers is a proper way to deal with this problem (an interval of points 
on the real axis cannot be “filled” with rational points only). The difficulty 
in this case is that most of the irrational numbers, like 3 2 , π, e, etc, are 

associated with lengths of line segments that cannot be constructed 
geometrically. Therefore, we correspond to all these numbers points of the 
real axis in an approximate way by using their finite decimal 
approximations and our fantasy3.  

However, things became more complicated when we arrived to the 
natural, but crucial, question asked by students: “Which numbers can be 
written in the form of an incommensurable decimal number?” At the lower 
high-school level (Gymnasium) students learnt that this happens with the 
square roots of positive rational numbers that they cannot be exactly 
determined (i.e. they have not an exact value).  Later, at the upper high-
school level (Lyceum), they learnt that this also happens with the n-th roots, 
nN, n2. However, as the instructor emphasized at this point, the 
converse is not true, since they are incommensurable decimal numbers that 
cannot be written as roots, or in a more general expression they are not roots 
of an algebraic equation with rational coefficients. Thus we arrive to the 
concept of the transcendental numbers. This new kind of numbers usually 
activates students’ imagination and increases their interest by creating a 
pedagogical atmosphere of mystery and surprise. The instructor informed 
students (without giving any proofs) that the set of algebraic numbers is a 
denumerable set, while, as Cantor has proved, the set of transcendental 
numbers has the power of continuum (i.e. it is equivalent with the whole set 
R of real numbers, “filling” all the points of the real axis).This practically 
means that transcendental numbers are much more than algebraic numbers, 

                                            

3
 Mathematically speaking the above correspondence is based on the principle of the 

nested intervals connected to the method of Dedekind cuts for defining the real numbers 
(e.g. see section 2 of [13]), an approach not compatible with an elementary presentation of 
real numbers to students.  
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but,  apart from some characteristic examples, like π and e, the information 
that we have about them is very small relative to their multitude. That is 
why one can characterize them as a “black hole” (in analogy with the 
astronomical meaning of term) in the “universe” of real numbers [14]. 

In concluding, our general didactic approach included: A fertile 
utilization of already existing informal knowledge and beliefs about 
numbers, active learning through rediscovery of concepts and conclusions, 
construction of knowledge by students individually or as a team in the 
computer laboratory and in classroom. Construction of knowledge followed 
in general student’s perspective, while teacher’s role was limited to the 
discussion in the whole class of wrong arguments and misinterpretations 
observed. The teaching process was based on multiple representations of 
real numbers (rational numbers written as fractions and periodic decimals, 
irrational numbers considered as non rational ones and as incommensurable 
decimals which are limits of sequences of rational numbers, geometric 
representations, etc) and on flexible transformations among them. It was 
hoped that this approach could help students in building a powerful schema 
for real numbers.  

At the end of the instructional unit students of both groups completed a 
new ten-item post-instructional written questionnaire (see Appendix II). 
Students were instructed to work on the questionnaire individually and to 
answer each question thoroughly. The instrument counted as a progress 
grade added to the course’s final exam results. The results of the post-
instructional test for the two student groups are presented in the following 
table: 
 

Table 2:  Results of the post-instructional test   
 

Experimental group (G1) 
 

% Scale Grade    Number of         
     Students 

% of students 

89-100 A 3 3.3 
77-88 B 21 23.3 
65-76 C 28 31.1 
53-64 D 22 24.4 

Less than 53 F 16 17.8 
Total  90  
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Control group (G2) 
 

% Scale Grade Amount of 
students 

% of students 

89-100 A 1 1 
77-88 B 10 10 
65-76 C 37 37 
53-64 D 31 31 

Less than 53 F 21 21 
Total  100  

          
4. Application of fuzzy logic in assessing the student’s performance   
As we have already stated in our introduction, we have applied 

principles of fuzzy logic in comparing the results of performance of the two 
groups of students of the previous experiment by implementing on the 
experiment’s process the following fuzzy model and the defuzzification 
technique known as the centroid method.  According to this method, the 
centre of gravity of the graph of the membership function involved provides 
an alternative measure of the system’s performance. The application of the 
centroid method in practice is simple and evident and, in contrast to the 
measures of uncertainty which can be also used as alternative 
defuzzification techniques (for example see [11] and its references), needs 
no complicated calculations in its final step. The techniques that we shall 
apply here have been also used earlier in [7], [16-18], etc. 

For a better understanding of the present section, the readers who are 
not familiar with fuzzy logic are advised to study first the introduction of 
[18], where the basic principles of this multi-valued logic are briefly 
presented. For a detailed description of the fuzzy sets theory, the ideas and 
principles of fuzzy logic and the uncertainty connected to it we refer to the 
book [4]. 

Here, for reasons of continuity, let us start with the definition of fuzzy 
sets [24]: Let U be the universal set of the discourse, then a fuzzy subset A of  
U, or equivalently a fuzzy set in U is a set of ordered pairs of the form A= 
{(x, m(x)) : xU}, where m: U [0, 1] is the associated to A membership 
function.  

The value m(x) of each x in U is called the membership degree of x in 
A. The closer is m(x) to 1, the better x satisfies the property characterizing A. 
For example, if A is the set of the tall students of a class and m(x) = 0.9, 



The APOS/ACE Instructional Treatment for Mathematics: A Fuzzy Approach  133 

HMS i JME, Volume 6. 2014 (120-142) 

then the student x is rather tall. On the contrary, if m(x) = 0.2, then x is 
rather short, while if m(x) = 0.5, then x is of middle height. 

Obviously, any crisp subset A of U can be considered a fuzzy subset of 
U with membership function m defined by m(x) = 1, if x belongs to A and 
m(x) = 0, if x is not in A. Most of the classical notions for crisp sets (e.g. 
subset, intersection, union, complement, etc) can be generalized in terms of 
the above definition to corresponding notions of fuzzy sets. 

Now, given a fuzzy subset A = {(x, m(x)): xU} of U with membership 
function m, we associate to each xU an interval of values from a prefixed 
numerical distribution, which actually means that we replace U with a set of 
real intervals. Then, we construct the graph of the membership function 
y=m(x). There is a commonly used approach in fuzzy logic to measure 
performance with the pair of numbers (xc, yc) as the coordinates of the 
centre of gravity (centoid), say Fc, of the level’s section F contained 
between the graph of m and the OX axis, which we can calculate using the 
following well-known  from Mechanics formulas:  
 

,F F
c c

F F

xdxdy ydxdy

x y
dxdy dxdy

 
 

 
                (1) 

 
Concerning the described experiment, we characterize a student’s 

performance as very low (F) if x  [0, 1), as low (D) if x  [1, 2), as 
intermediate (C) if x  [2, 3), as high (B) if x   [3, 4) and as very high (A) 
if x   [4, 5] respectively. Denote by G1 the experimental group and by G2 

the control group and set U = {A, B, C, D, F}. 
We are going to represent the Gi’s, i=1, 2, as fuzzy subsets of U. For 

this, if niF, niD niC, niB and niA denote the number of students of group Gi who 
achieved very low, low, intermediate, high and very high success 
respectively, we define the membership function mGi in terms of the 
percentages of the students who achieved the corresponding performance. 
More explicitly for each x in U. we define 4  

                                            

4  We recall that the methods of choosing the suitable membership function  are usually 
empiric, based either on the common logic (as it happens in our case) or on the data of 
experiments made on a representative sample of the population that we study. For general 
facts on fuzzy sets we refer freely to the book [4]. 
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Then Gi can be represented as a fuzzy subset of U by Gi = {(x, ( )

iGm x ) :  

xU}, i=1,2. Therefore in this case the level’s section F defined by the  
graph of the membership function of the  corresponding fuzzy subset of U is 
the bar graph of Figure 1 consisting of five rectangles, say Fi,  i=1,2,3, 4, 5 , 
whose sides lying on the x axis have length 1. It is straightforward then to 
check (e.g. see section 3 of [18]) that in this case formulas (1) give: 
 

 

 
1 2 3 4 5

2 2 2 2 2
1 2 3 4 5

1
3 5 7 9 ,

2
1

2

c

c

x y y y y y

y y y y y y

    

    
            (2) 

with yi = 

Ux

i

xm

xm

)(

)(
 , where x1 = F,  x2 = D,  x3 = C,   x4 = B, x5 = A 

respectively and                      y1+y2+y3+y4+y5 =1.  
 

Further, using elementary algebraic inequalities, it is easy to check that 

y1
2+y2

2+y3
2+y4

2+y5
2 1

5
 , with the equality holding if and only if 

y1=y2=y3=y4=y5=
5

1  (e.g. see section 3 of [18]). Then a combination of 

formulas (2) shows that the unique minimum value for yc (yc = 
10

1 ) 

corresponds to the centre of gravity Fm (
2

5 ,
10

1 ). 

The ideal case is when y1=y2=y3=y4=0 and y5=1. Then from formulas 
(2) we get that xc = 

2

9  and yc = 
2

1 . Therefore the centre of gravity in this 

case is the point Fi (
2

9 , 
2

1 ). On the other hand, the worst case is when y1=1 
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and y2=y3=y4= y5=0. Then from formulas (2), we find that the centre of 
gravity is the point Fw (

2

1 , 
2

1 ). 

 
Figure 1:  Bar graphical data representation 

     
Therefore the “area” where the centre of gravity Fc   lies is represented 

by the triangle Fw Fm Fi of Figure 2.  

 
Figure 2:  Graphical representation of the “area” where the centre of 

gravity lies 
 

Then from elementary geometric considerations one obtains the 
following criterion for comparing the groups’ performances: 
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 Among two or more groups the group with the biggest xc   performs 
better. 

 If two or more groups have the same xc  2.5, then the group with 
the higher yc performs better. 

 If two or more groups have the same xc < 2.5, then the group with 
the lower yc performs better. 

For a more detailed description of the centroid defuzzification 
technique see section 3 of [18]. 

We apply now this model to the data of Table 1 (pre-instructional test, 
see section 3). The two student groups can be represented as fizzy subsets 
of U by  G1 = {(A, 0), (B, 0.25), (C, 0.25), (D, 0.5) (F, 0.5)} = G2  
     

Therefore the students of the two groups responded similarly to the 
questionnaire’s items.  

In the same way, on applying the model to the data of Table 2 (post-
instructional test, see section 3) we represent the two groups as fizzy subsets 
of U by   G1 = {(A, 0.25), (B, 0.5), (C, 0.5), (D, 0.5) (F, 0.25)} and 

G2 = {(A, 0), (B, 0.25), (C, 0.5), (D, 0.5) (F, 0.5)}. 
Then, from the first of formulas (2), we find for the pre-instructional 

test that xc= 0.5*(0.5+3*0.5+5*0.25+7*0.25+9*0) = 2.5  for both groups, 
while for the post-instructional test we find that  
xc= 0.5*(0.25+3*0.5+5*0.5+7*0.5+9*0.25) = 5  for the experimental group 
and xc= 0.5*(0.5+3*0.5+5*0.5+7*0.25+0*9) = 3.125 for the control group.  

So, according to the above stated criterion, both groups demonstrated a 
better performance in the post-instructional with respect to the pre-
instructional test (as it was logically expected), but the experimental group 
demonstrated a significantly better performance than the control group in 
the post-instructional test. Notice also that two analogous experiments were 
performed during the academic year 2011-12. In this case the students’ 
performance was assessed by applying the classical GPA method 5 and the 
results obtained were similar to the above experiment [20].   

                                            

5 The Great Point Average (GPA) is a weighted average of the students’ performance. For 
this,  if n is the total number of students and 

FDCBA nnnnn ,,,,  denote the numbers of students 

getting the marks A, B, C, D, F respectively, GPA = 
n

nnnnn ABCDF .43.2.1.0   . 

Obviously we always have 0   GPA   4. 
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In concluding, it seems that the application of the APOS/ACE teaching 
style enhances significantly the students’ understanding of the real numbers 
in general and of the irrational numbers in particular. 

 
5.  Discussion and conclusions 
Fuzzy logic, due to its nature of including multiple values, offers a 

wider and richer field of resources in assessing the students’ performance 
than the practice usually applied in bivalent logic does. This gave us the 
impulsion in this paper to introduce principles of fuzzy logic on comparing 
the performance of two student groups concerning the comprehension of 
real numbers in general and of irrational numbers in particular. The first 
group was taught the subject in the traditional way (control group), while 
the APOS/ACE instructional treatment was applied for the second group 
(experimental group). The APOS/ACE theory for learning and teaching 
mathematics, developed during the 1990’s by Ed Dubinsky and his 
collaborators, is based on principles of Piaget for the learning process and 
one of its central characteristics is the use of computers as a teaching tool. 

The two groups were represented as fuzzy subsets of the set of the 
grades (from A to F) achieved by the students in a pre-instructional and a 
post-instructional test and the çentroid defuzzification technique was 
applied on comparing their performance.         

The results of our classroom experiments, performed during the 
academic years 2011-12 and 2012-13 at the graduate T.E.I of Western 
Greece showed that the application of the APOS/ACE approach for teaching 
the real numbers in general and the irrational numbers in particular can 
effectively help students for building a powerful cognitive schema for the 
basic sets of numbers.  

However, all those discussed in this article must not be considered as an 
intention to impose a model of teaching (at an elementary level) the real 
numbers. On the contrary, our general belief is that the instructor should be 
able to make a small “local research”, readapting methods and plans of the 
teaching process according to the teaching environment and the special 
conditions of each class [9]. Therefore this is simply an effort to introduce 
an alternative approach that could help the instructor to reconsider and 
organize better his/her teaching plans for this subject. 

Among our future research plans is the performance of more classroom 
experiments with different groups of students (high school students as well!) 
in order to obtain statistically stronger results and conclusions. It will be 
interesting also to apply to the same data, on the one hand assessment 
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techniques of the students’ performance based on  fuzzy logic, and on the 
other hand usual assessment techniques based on classical logic (like the 
GPS method mentioned above), and then to compare and analyze their 
results, advantages and disadvantages. Furthermore, since the centroid 
deffuzzification technique is part of a general fuzzy model introduced in 
earlier works ([12], [17]) for dealing with situations in a system’s operation 
characterized by a degree of fuzziness and/or uncertainty, another direction 
of our future research concerns the effort of representing in terms of this 
model even more such situations related to several sectors of the human 
activity (e.g. education, management, artificial intelligence, everyday life, 
etc).        
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Appendix I: Pre-instructional questionnaire 
1. Which of the following numbers are natural, integers, rational, irrational 
and real numbers? 

2  ,    
5

3
  ,     0 ,      9.08   ,    5  ,    7.333... ,    3.14159...  ,    3  ,   4  ,    

22

11
,    5 3 ,       

5

20
   ,         3 2 3 2  ,       

5

2
 ,        7 2 ,       

2
5

3
 
 
   

2.  Are the following inequalities correct, or wrong? Justify your answers. 
2 14

,
3 21
   2002

1001
>2       

3.  Convert the fraction 7

3
 to a decimal number. What kind of decimal number 

is this and why we call it so?  .  
4.  Find the integers and the decimals with one decimal digit between which 
lies 2 .  Justify your answers.     
5.  Find two rational and two irrational numbers between 10 and 20. How 
many irrational numbers are there between these two integers?  
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Appendix II: Post-instructional questionnaire 
1.  Which is the exact quotient of the division 5:7?   
2.   Are 2.8254131131131…  and 2.00131311311131111… periodic decimal 
numbers? In positive case, find the period and convert the corresponding 
number to a fraction.    
3.   Find the square roots of 9, 100 and 169 and describe your method of 
calculation.   
4.   Characterize the following expressions by C if they are correct and by W if 
they are wrong: 2 =1.41,  2 =1.414444…, 2 1.41,  there is no exact 
price for 2 .  
5.   Find two rational and two irrational numbers between 10 and 20 . How 
many rational numbers are there between these two square roots?   

6.   Are there any rational numbers between 1

11
and 1

10
?  In positive case, write 

down one of them. How many rational numbers are between the above two 
fractions?     
7.  Are there any rational numbers between 10.21 and 10.22?  In positive case, 
write down one of them. How many rational numbers are in total between the 
above two decimals?  
8.  Characterize the following expressions as correct or wrong. In case of 
wrong ones write the corresponding correct answer.   

3 5 3 5   , 3 7 3 7   , 
2 2

9 3
 , the unique solution of the equation 

x2=3 is x= 3 ,  2

1 17 1 17  
  
 

9.  Construct, by making use of ruler and compass only, the line segments of 
length 5  and find the points of the real axis corresponding to the real 
numbers 5  and - 5 . Consider a length of your choice as the unit of lengths. 
10.   Is it possible for the sum of two irrational numbers to be a rational 
number? In positive case give an example.  
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