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Introduction

In this volume of HMS-IJME eight contributions are included,
organised in two parts.

In the first part we present a special issue with five invited papers
concerning a special topic: Investigating Complex Systems in Mathematics
Education. The purpose of this collection is to identify diverse systemic
perspectives with respect to the complexity in mathematics education.

The contemporary reality spans across the perceptual and the virtual
world, across the teaching practices and the international comparative
studies with proximity being topologically redefined to transcend its
geographical meaning. The re-conceptualisation (seemingly reversal)
between the local and the global objectives, as well as between the
didactical research and the teaching practices are actually becoming more
evident and it is very difficult to describe the connections and to
conceptualize the emerging situations for the mathematics education.

Important time-spaces for these exchanges are created throughout the
mathematics teaching and learning communities ranging from relatively
informal structures (such as personal blogs), to official communities’
communication spaces (such as official fora of research or of teachers'
associations), or even to international committees or organisations (such as
ICMI, CIEAEM, PME, MES or the TIMSS and PISA, the UNESCO and
OECD reports for mathematics education).

Furthermore, the academic output -with a continuous revalorisation of
the dimensions that affect the phenomenology of the teaching and learning
of mathematics- is now more than ever transparent and accessible to the
mathematics education community and the broader society, due to
technological and sociocultural convergences (including the internet, the file
formats, the communication language).

In this complex framework, it seems reasonable to investigate
mathematics education through the conceptualisations of complexity and of



2 Introduction

the systemic approach, in order to facilitate our deeper understanding the
interactive characteristics of mathematics in education.

Mathematics educators have discussed issues about complexity and
systems in the last decades. Notably, in March 2003 in the same issue of
Journal for Research in Mathematics Education Brent Davis and Elaine
Simmt drew our attention to complexity and learning systems, while Helen
Doerr and Lyn English discussed basic complex systems through
mathematical modelling. Less than year later, in 2004, Complicity: An
International Journal of Complexity and Education was launched (with
Brent Davis as the co-editor), investigating related issues in education. In
Greece, researchers in Didactic of Mathematics have recently developed a
variety of publications, round tables and conferences on complexity and on
systemic ideas.

It is an honour for HMS-IJME that Brent Davis contributes to the
present collection of papers, with his paper entitled “Complexity as a
prompt to rethink school mathematics: From computation to modelling”.
Davis discusses the diverse conceptualisations of complexity adopted by
mathematics educators. Subsequently, he presents an empirical study about
a teaching experiment concerning exponentiation. Davis questions what
constitutes the “basics” within school mathematics, arguing at the same time
for mathematics education towards modelling, rather than computation.

The collection continues with Dimitris Chassapis’ theoretical discussion
about “Conceiving mathematics classrooms as activity systems”. Chassapis
employs activity theory to gain deeper understanding about the complex
phenomena that occur in mathematics classrooms. He argues that
mathematics education research and practice may benefit from
conceptualizing mathematics classrooms as complex systems of activities,
taking also into account their interactions within the educational system and
the broader sociocultural context.

Konstantinos Nikolantonakis’ contribution is an empirical investigation
entitled “A Mathematical activity for the training of In-Service Primary
school teachers using a Systemic Approach”. Nikolantonakis synthesises
systemic and cybernetic ideas with radical constructivism ideas to discuss in
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service primary school teachers’ dealing with “The target number”, utilised
as a field for repositioning the concept of division within the tool-object
dialectic. The systemic concepts of framing, interaction and co-construction
are at the crux of his framework of analysis, emphasising the importance of
the construction of a multi-levelled dialogue amongst teacher, student -
trainee, class.

Fessakis and Kirodimou’s paper concerns an empirical investigation
about the teachers’ professional development entitled “Improving the
teachers’ understanding of complex systems through dynamic systems
modelling and problem solving”. Through a research by design
methodology (combining systems dynamics, authentic problem solving and
Digital Games Based Learning), they argue that the employment of dynamic
systems modelling, as applied in sustainability problems on the field of
ecosystems, may facilitate the teachers’ understanding of complex systems.

The collection concludes with a paper authored by Andreas Moutsios-
Rentzos and Francois Kalavasis entitled “Systemic approaches to the
complexity in mathematics education research”. By conceptualizing
learning as linking links and the school unit as a learning organization, they
introduce a framework to empirically reveal implicit inter-/intra- systemic
links in the system of scientific disciplines and the system of school unit as
experienced by the educational protagonists. They argue that this approach
helps the didactical planification towards mathematics learning as linking
links by identifying a communication space amongst the seemingly
incongruent experience spaces of the educational protagonists.

The second part of the volume includes three papers investigating
diverse mathematics education topics.

Katerina Kasimatis, Tasos Barkatsas and Vasilis Gialamas in their
paper entitled “Values about mathematics learning: focusing on Greek high
school students” discuss the structure of mathematics values of Greek
students. The conducted analysis revealed nine value factors, containing
both inter-cultural and specific to Greek population aspects, with the
identified gender and grade level comparisons providing deeper
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understanding of the development of the values the Greek students hold
about mathematics and mathematics learning.

Ann Luppi von Mehren in her paper entitled “Inspiration for
Elementary Mathematics Descriptions from a “Heritage” Reading of On the
Nonexistent by Gorgias” adopts Ivor Grattan-Guinness’ distinction between
history and heritage to present a heritage reading of Gorgias’ On the
Nonexistent. She argues that Gorgias’ text can be helpful for elementary
mathematics teachers in their designing and communicating challenging
mathematical ideas.

Michael Voskoglou and Igor Subbotin with their contribution entitled
“An Application of Fuzzy Logic for Learning Mathematics according to the
Bloom’s Taxonomy” discuss an improved version of the Trapezoidal Fuzzy
Assessment Model to assess the students’ learning with respect to “Real
numbers” in line with Bloom’s Taxonomy. They employ the Center of
Gravity defuzzification technique to more efficiently (in comparison with
traditional assessment methods based on bivalent logic) treat the student
scores that are at the boundary between two grades.

The editors
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Brent Davis
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Calgary, Alberta, Canada T2N 1N4

Abstract

This writing begins with a brief survey of some of the disparate ways that
complexity thinking has been taken up by mathematics educators. That
review is used to frame a report on a brief teaching experiment that was
developed around the topic of exponentiation, which is used in turn to
introduce two main arguments that are rooted in complexity thinking.
Firstly, it is asserted that the notion of ““basics™ within school mathematics
must be interrogated and elaborated. Secondly, a case is made for shifting
the core of school mathematics away from computation and toward
modeling. This proposed shift toward modeling is situated in the literature,
specifically among mathematics education researchers with an interest in
complex modeling.

Keywords
complexity thinking; school mathematics; mathematics curriculum

Introduction

| am currently involved in a longitudinal investigation of “changing the
culture of mathematics teaching at the school level.” Through this design-
based inquiry (Hoadley, 2004), a group of university researchers has teamed

HMS i JME, Volume 7. 2015 — 2016 (7-29)



8 Brent Davis

with the staff of a school in a 7-year commitment to work together in
transforming how mathematics is seen and engaged.

The project’s key defining features are, firstly, that “learning” is
understood to happen simultaneously across multiple levels of organization
and, secondly, that learning at the institutional level may be the most
important consideration for those interested in substantial and sustainable
educational change. While we are of course also attentive to adaptive and
transformative processes at individual and social levels, our principal focus
is on the culture of mathematics teaching and learning in the school. How is
mathematics talked about? How do people perceive themselves in relation
to mathematics? How does the discipline figure into student choices in
courses and career trajectories? How are beliefs held in place or interrupted?

At the start of the project, three years ago, researchers and teachers met
to brainstorm concerns, followed by a collective distillation of the more-
than-50 topics that were identified. The result comprised the following three
clusters of questions:

e Mathematics curriculum - e.g., What mathematics is important to
teach? Is that the same was what is in the curriculum? Where did
that curriculum come from?

e Individual understanding - e.g., How does understanding of a
concept develop? Is there a “best” way to structure/sequence
teaching to support robust conceptual development? Are individuals’
understandings necessarily unique, or is there a way of nudging
learners to “true” interpretations of concepts?

e Social process — e.g., How do groups support/frustrate the
development of individual understanding? How does individual
understanding support/frustrate the work of groups?

While there was some comfort in being about to organize the questions
into just three categories, the research team was at first somewhat taken
aback with the full range of concerns. The breadth of topics and the
challenge of framing their questions in manners that are simultaneously
provocative and pragmatic seemed to be beyond our reach. However, with
some time for examination and reflection, we soon changed our minds.

HMS i JME, Volume 7. 2015 — 2016 (7-29)
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While these three clusters of questions might seem on the surface to be
focused of disparate matters, “inside” them we perceived a uniting theme:
complexity.

More precisely, we elected to regard these clusters of issues as
emergent phenomena — that is, as forms and agents that obey an
evolutionary dynamic and that arise in and transform through the
interactions of other forms and agents. That realization shifted our principal
focus from the three clusters of questions to a single unifying theme. In the
process, as is reported below, a space was opened both to move toward
productive and pragmatic responses to the questions posed and to make
meaningful strides toward the grander intention of the project.

What is “complexity” ... within mathematics education?
Before getting into some of the specifics of those developments, it is
important to situate the intended meaning of complexity.

Unfortunately, there is no unified or straightforward definition of the
word. Indeed, most commentaries on complexity research begin with the
observation that there is no singular meaning of complexity, principally
because researchers tend to define it in terms of their particular research
foci. One thus finds quite focused-and-technical definitions in such fields as
mathematics and software engineering, more-indistinct-but-operational
meanings in chemistry and biology, and quite flexible interpretations in the
social sciences (cf. Mitchell, 2009).

Within mathematics education, the range of interpretations of
complexity is almost as divergent as it is across all academic discourses.
This variety of interpretation can in part be attributed to the way that
mathematics education straddles two very different domains. On one side,
mathematics offers precise definitions and strategies. On the other side,
education cannot afford such precision, as it sits at the nexus of disciplinary
knowledge, social engineering, and other cultural enterprises. Conceptions
of complexity among mathematics education researchers thus vary from the
precise to the vague, depending on how and where the notion is taken up.

However, diverse interpretations do collect around a few key qualities.
In particular, complex systems adapt and are thus distinguishable from

HMS i JME, Volume 7. 2015 — 2016 (7-29)



10 Brent Davis

complicated (i.e., mechanical) systems, which may consist of many
interacting components and which can be described and predicted using
laws of classical physics. A complex system comprises many interacting
agents — and those agents, in turn, may comprise many interacting subagents
— presenting the possibility of global behaviors that are rooted in but not
reducible to the actions or qualities of the constituting agents. In other
words, a complex system is better described by using Darwinian dynamics
than Newtonian mechanics.

Complexity research only cohered as a discernible movement in the
physical and information sciences in the middle of that 20™ century, with
the social sciences and humanities joining in its development in more recent
decades. To a much lesser (but noticeably accelerating) extent, complex
systems research has been embraced by educationists whose interests extend
across such levels of phenomena as genomics, neurological process,
subjective understanding, interpersonal dynamics, mathematical modeling,
cultural evolution, and global ecology. As discussed elsewhere (Davis &
Simmt, 2014; 2016), these topics can be seen across three strands of interest
among mathematics education researchers — namely,

e Complexity as a disciplinary discourse — i.e., as a digitally enabled,

modeling-based branch of mathematics.

e Complexity as a theoretical discourse — i.e., as the study of learning
systems, affording insight into the structures of knowledge domains,
the social dynamics of knowledge production, and the intricacies of
individual sense-making.

e Complexity as a pragmatic discourse — i.e., as a means to nurture
emergent possibility, with advice on how to design tasks, structure
interactions, etc.

Unfortunately, however, it is difficult to consider all of these topics at
the same time, and any attempt to do so would result in an unwieldy paper
that would likely be of little use. Re-emphasizing that the theme of
complexity reaches across all aspects of our collaborative work, in this
article I focus on mathematics curriculum and how complexity thinking, as
a disciplinary discourse, might inform curriculum development.

HMS i JME, Volume 7. 2015 — 2016 (7-29)
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A teaching experiment on exponentiation

For centuries, the basics of school mathematics have been identified as
addition, subtraction, multiplication, and division. Notably, these operations
are “basic” not because they are foundational to mathematics knowledge,
but because they were vital to a newly industrialized and market-driven
economy a few hundred years ago.

It is easy to see why computational competence would be useful to a
citizen of that era, and to ours as well. If anything, the need has been
amplified in our number-dense world. However, it is not clear that these
four operations are a sufficient set of basics today, given that some of the
most pressing issues — such as population growth, the rise of greenhouse
gases, ocean acidification, decline in species diversity, cultural change,
increases in debt, and so on — have strongly exponential characters. More
descriptively, these sorts of pressing issues are instances of complexity,
evidenced in part by their potentials for rapid change and unpredictability.

Understandings and appreciations of the volatility of prediction have
become rather commonplace, no doubt in part because of the way the
“Butterfly Effect” has captured the collective imagination. However, while
awareness of this popular trope might suggest that complexivist sensibilities
have gained traction, it might also indicate limited understanding of the
actual mechanisms at work inside complex dynamical systems. The
Butterfly Effect is most often stated in terms of a system’s sensitivity to
initial conditions, but what really matters is the power of iteration to amplify
or dampen. That is, the Butterfly Effect only makes sense within a frame of
exponentiation.

Prompted by this thought, | wondered how | might structure a study of
exponentiation that treated the concept as a useful interpretive tool rather
than a site for symbolic manipulations, an emphasis that represents a
significant departure from our program of studies. As it is currently
represented in local curriculum documents and textbooks, exponentiation is
an exemplar of questionable practice. Guides and resources tend to frame
the topic almost entirely in symbolic terms and to focus on a single
interpretation of the concept — namely, as “repeated multiplication.” For

HMS i JME, Volume 7. 2015 — 2016 (7-29)



12 Brent Davis

example, 9"-grade learning outcomes in my home province of Alberta are
stated as follows:

1. Demonstrate an understanding of powers with integral bases
(excluding base 0) and whole number exponents by:
e representing repeated multiplication, using powers
e using patterns to show that a power with an exponent of zero is
equal to one
e solving problems involving powers

2. Demonstrate an understanding of operations on powers with integral
bases (excluding base 0) and whole number exponents:
° (am)(an) — am+n
e a"+a'=a"",m>n
° (am)n - amn
an

. (%)" = = b # 0 (Alberta Education, 2007, p. 17)

In other words, in the approved classroom resources, the pedagogical
sequence is the reverse of conventional wisdom. Texts start with abstract
and symbolic manipulations, move to applications (e.g., the Rice-Doubling

question, the Richter scale, half lives, compound interest), and do not touch
the ground of immediate personal experience.

In order to avoid the curriculum emphasis on symbolic manipulations,
the decision was made to work at the 8"-grade rather than the 9"-grade
level. The host teacher generously offered a week of class time, and the
outline of lesson topics for that week is presented in Table 1.

HMS i JME, Volume 7. 2015 — 2016 (7-29)
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Table 1. An overview of a weeklong unit on exponentiation.

Day Focus Activities
Monday Images of - drawing pictures of exponential change
Exponentiation - web searches (“exponentiation,” “exponential
growth,” “powers of two,” and related terms)
Tuesday Exponentiation - collectively assembling a lattice
Lattice - looking for patterns

- contrasts to addition and multiplication

lattices
Wednesday Analogies to Other - symbolism and vocabulary
Binary Operations - noting similarities between addition and

multiplication, and extending these to
exponentiation

Thursday Exploring the - justifying and questioning
Validity of those - thinking about the structure of mathematics
Analogies and mathematical ideas
Friday Consolidation and - other illustrations of exponentiation
Examples - instances of exponentiation in the world we
inhabit

A more detailed, general overview of the classroom activities has been
presented elsewhere (Davis, 2015), and so only summary descriptions are
offered here.

Monday. The unit’s opening task was an invitation to create images of
exponential change. Students were instructed on drawing grid-based images
of sequential doubling — starting by outlining a single square, then doubling
the figure to enclose two squares, and so on to the limits of their sheets of
paper. T-tables were incorporated into the activity to record quantities and
make number patterns more apparent, and students were then tasked with
creating similar images and tables for bases of 3 to 9. They were encouraged
to do web searches, and together generated a rich range of associated figures
that included images of exponential growth/decay and exponential curves.

Tuesday. On the second day, students were asked to compare

HMS i JME, Volume 7. 2015 — 2016 (7-29)



14 Brent Davis

exponentiation to addition and multiplication. Earlier in the school year, the
class had created poster-sized lattices for addition, subtraction,
multiplication, and division on xy-coordinate grids. On these charts, values
on the x-axis served, respectively, as augend, subtrahend, multiplier, and
dividend; values on the on the y-axis as addend, minuend, multiplicand, and
divisor; and corresponding positions on the grid as locations for sums,
differences, products, and quotients. Figure 1 presents small portions of
these lattices.

-] 1 k] ] & = L] =1 | o —A 1 -] 3 d 1 -5 <] s 1
1 =] 1 3 1 | 2 1 L] a1 1 | o 1 1 | H 1] 1 2
=3 1 U] 1 | T 1 o ! 2 ] a o -] & - - T - -
4 =3 =1 B il R il — T | |
e e e e . I N T I 05— 8 ~05 =1
Addition Geld (x + ¥) Subtraction Grid (x - ¥) Multiplication Grid (x = v} Division Grid (x + )

Figure 1. Core portions of the addition, subtraction, multiplication, and
division lattices generated earlier in the school year.

In the earlier unit, these devices proved to be powerful tools for
noticing patterns and, in the process, interpreting identity elements,
commutativity, and other concepts and properties. We imagined a chart for
exponentiation might serve similar purposes and began the second class
with the construction of an exponentiation lattice spanning values of —10 to
+10 on both axes — that is, covering the range of —107° to 10'°. A core
portion of the exponentiation lattice is presented in Figure 2.

HMS i JME, Volume 7. 2015 — 2016 (7-29)
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Figure 2. A piece of the exponentiation lattice.

The collective analysis of the result began by examining the first
guadrant. Students compared its patterns to those in the addition and
multiplication lattices, posted nearby. Three observations were immediately
noted. First, students remarked on the “steeper and crazy-steeper™ increases
in values as one moves away from the origin, contrasted with the
“flattening” feel of the addition lattice and the *“gentler rising” of the
multiplication lattice. Second, it was noted that the exponentiation chart
“doesn’t fold over like adding and multiplying” — that is, whereas the
addition and multiplication lattices are symmetric about the line y = x, the
exponentiation lattice is not. Third, “the diagonal of one table is the 2-row
of the next.” That is, just as the values along the y = x diagonal of the
addition lattice correspond to those of the y =2 row of the multiplication
lattice, so the values along the y = x diagonal of the multiplication lattice
correspond to those of the y = 2 row of the exponentiation lattice.

HMS i JME, Volume 7. 2015 — 2016 (7-29)



16 Brent Davis

Those observations set up preliminary discussions of the lack of
commutativity of exponentiation and nature of the values on the y=x
diagonals of the lattices. Students were asked to settle the first issue
themselves, quickly agreeing that steepnesses and flattenings had to do with
the fact that multiplication “can change things faster than addition, so
multiplying over and over will really change things.” As for the second
observation, after analyzing several examples, students agreed there was
good reason for the lack of symmetry in the exponentiation lattice. As one
student explained, “Any number to the 1 [first power] is just itself, but 1 to
any number is 1. So it all breaks down right away ... and it gets worse as the
numbers get bigger.” The third observation, however, proved to be more of
a sticking point. Students were able to recognize the relationship between
the values along the y = x diagonal in one chart and the y =2 row of the
next, but were clearly struggling with how to represent the values appearing
along the y = x diagonal of the exponentiation chart. The break came when a
cluster of students noticed a pattern in the different ways relationships can
be expressed when moving from addition through multiplication to
exponentiation. That is, on the addition lattice, the values along the x =y
diagonal are doubles, and so can be written as either “x + x” or “x x 2”. And
so, on the multiplication lattice, the values along the x =y diagonal are
squares, and so can be written as either “x x x” or “x*”. That set up the
realization that “x*” should describe the values along y = x diagonal on the
exponentiation lattice — that is, 1!, 2%, 3° 4% and so on. However, that
insight was accompanied by a question: what is the second way of writing
“X*? The query sparked a flurry of discussion, and my immediate sense was
that the issue revolved around the notation for exponentiation.

Moving on to the fourth quadrant, students quickly noted vertical
patterns of decrease that reflected patterns of increase in the first quadrant.
Examination of the left side of the lattice was not so quick, however. A
number of quandaries arose: Predictably, the oscillation between positive
and negative values was confusing for many, but satisfactory explanations
based on even and odd numbers of multiplications were quickly offered.
The more confounding question for most was, “What happens between the
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rows?” on the left side. Their calculators indicated “ERROR” when
negative bases (e.g., (-4)*®) were entered. We deflected the queries,
advising that there were online tools (e.g., a calculator available at
www.mathisfun.com) available to dig into the emergent issues. We also
flagged that a new number system is needed to talk about some of those
values. While we elected not to delve into imaginary and complex numbers,
we drew an analogy to other operation lattices and other number systems. In
particular, the need for signed numbers arose in creating addition and
subtraction lattices, and for fractional numbers when creating multiplication
and division lattices. It makes sense that another operation might present the
need for another set of numbers.

Wednesday. The third session dealt with analogies between
exponentiation and the operations of addition and multiplication. Prompted
by the problems encountered with x* the previous day, we began by noting
that the symbolism for exponentiation might obscure the relationship to
other operations. To highlight similarities to “2 + 3” and “2 x 3,” then, we
proposed “2 ™ 3,” which is one of several accepted notations (Cajori, 2007).
The resulting set of pairs:

X+ X =2X

X X X = X

XM X=X
seemed to satisfy the desire for parallel representations that had emerged the
day before.

We set up the day’s task with a version of Table 2 (below), which was
an extension of a chart they had done earlier in the year comparing
properties of addition to properties of multiplication. We reminded them of
that detail to get things started, and then invited suggestions for completing
the row labeled “Commutative Property.”
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Table 2. The blank speculation table

Topic/ Property | How it looks for | How it looks for Speculation for T/IF

addition (x +vy) | multiplication (x X y) | exponentiation (x ™ y)

Commutative

Property

Reverse

operation

Identity

element

Inverse

values

The main point of this activity was to deepen understandings of
exponentiation. A second purpose was to support understandings of the
relationship among concepts, based on a vital difference between topics
studied at elementary and secondary levels. Whereas almost all the concepts
encountered at the elementary level can be interpreted in terms of (i.e., are
analogical to) objects and actions in the physical world, the analogies for
concepts at the secondary level are mostly mathematical objects (see
Hofstadter & Sander, 2013). Making analogies, then, is both a mechanism
for extending mathematical insight and a window into the structure of
mathematics knowledge.

Before setting the students to work on their own, we indicated that they
should not worry about the last column, as we had already planned that for
the focus of the fourth session. The rest of the class was devoted to filling in
blank cells, an effort that began in small groups and that ended in whole-
group negotiations of acceptable, parallel phrasings for each entry (see the
second row in Table 3). Notably, the final three rows of the chart were
additions proposed by the students themselves.
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Table 3. Conjectures for exponentiation based on analogies to addition and

multiplication

Topic/ Property | How it looks for | How it looks for Speculation for T/F
addition (x +y) | multiplication (x x y) exponentiation (X 2 y)

Commutative a+ b=b+ axb=bxa a“b=b"a False

Property 23+3?

Reverse Subtraction (=) Division (=) De-exponentiation (v)

operation

ldentity 0...asin l..asinaxl=1xa=a | 1?...sincea”l=a...

element at0=0+a=a although17a=1

Inverse values

Additive inverse

Multiplicative inverse of a

Exponentative inverse

of ais isl+a,or§;a><§=l ofaislva,orva;
0-a,or-a; a*(va)=1
a+(-a)=0

Operating on Subtraction can Division can be done by De-exponentiation must

the opposite be done by multiplying the be doable by
adding the [multiplicative] inverse: exponentiating the
[additive] arb=ax % [exponentative] inverse:
inverse: avb=a”(vh)
a-b=a+(-h)

“Next” A repeated A repeated multiplication is | A repeated

operation addition is a an exponentiation. exponentiation must be
multiplication. a ... something.

“Next” set of

numbers

When you allow
subtraction, you
need signed

numbers.

When you allow division,

you need rational numbers.

When you allow de-
exponentiation, you
need another set of

numbers.

Thursday. The fourth session was devoted to exploring the truth or
falsity of the speculations from the day before. Students worked in small
groups and focused on speculations of their choosing. They also made free
use of the Internet to help them in their deliberations. Topics in the follow-
up discussion included a problem with the speculation on inverse values
(i.e., that for every a there is a la such that a” (va) = 1), because the
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exponentiation grid suggested a”~0=1 (for all a # 0). If the speculation
were true, it would mean that the exponentative inverse of every number
would be 0, which most felt to be nonsensical — in addition to rendering the
speculation on “operating on the opposite” similarly troublesome. We
elected to leave these discussions unsettled, suggesting that our simple
analogies might be misleading. We also suggested that further studies in
high school would shed some light on a few of the details — a point that was
supported by topics that came up in students’ web searches, including
logarithms, imaginary and complex number systems, and titration (i.e., the
next hyperoperation after exponentiation).

Friday. The final session was devoted to review and consolidation. We
framed the session by developing the table presented in Table 4, through
which we suggested that the geometric image best fitted to addition is the
line, to multiplication is a rectangle, and to exponentiation is a fractal. That
thought was tied in to a “fractal cards” activity (Simmt & Davis, 1998) that
the students had undertaken earlier in the school year.

Table 4. Some geometric analogies to arithmetic operations

Operation | Principal Visual Metaphors Common
Applications/Interpretations
(using whole number values)
e combining of sets or lengths
-y (Y] ii_l,} along 1 dimension
i e can be consistently
represented in linear form
e sets of sets or array/area
T ﬁi?;:i;’ii_ih gt.anerat-ed by crossing
2x4 e e \e dimensions
———5 e can often be represented as a
rectangle
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" . e sets of sets of sets (etc.) or
_—

_,»":f — rl_,. = = 5.-=,:I _.,'"-E:-':--_ — - .
@2890009@e 0000
2N 4 ——— i e representable in a fractal-

w@ :: esque, recursively generated

and/or branching image

®® | multi-dimensional form

The balance of the lesson was given to conducting searches and looking
across instances of exponential growth and decay (e.g., creating fractal
cards, population growth, species decline, greenhouse gas increase,
technology evolution), framed by Charles and Ray Eames’ (1977) film,
Powers of Ten and Cary and Michael Huang’s (2012) interactive Prezi
presentation, The Scale of the Universe. Exponential growth curves emerged
to be a uniting image across these explorations, and also proved useful as a
recap on the week as they linked back to the images and grid developed on
Monday and Tuesday.

Complexity as a disciplinary discourse: moving from computation
to modeling

While the explicit topic of instruction in the above teaching episodes

was not complexity, it was oriented toward and by a deeper awareness of
complex modeling — evident in three specific aspects:

- the examination of the mathematics of rapid change — The contrast
between the exponentiation lattice and the addition and
multiplication lattices afforded insight into a mathematics of sudden
growth and decay, which is vital for appreciating the dynamics
involved in complex modeling.

- the encounter with the emergence of mathematical constructs —
Looking at an instance of complex emergence through the explicit
discussion of how new number systems have arisen iteratively as
operations on established systems presented the need for new
number systems.

- the treatment of mathematics a means to model experiences and
phenomena — Exponentiation was used to interpret a range of
phenomena, especially those that have an element of self-similarity.
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As a researcher with interests in the possible contributions of
complexity thinking to school mathematics, | see these points as illustrative
of a powerful opportunity to transform school mathematics. Specifically,
they present the possibility of rethinking “doing math” as more an exercise
in modeling than one in computation. That is, being mathematically
competent also is also about being able to interpret and simulate real-life
situations with mathematical constructs. It was in this spirit that
exponentiation was studied in the reported classroom episode. While some
calculations were involved, computation was always a means to an end. It
was a tool within the modeling activity.

To elaborate, a “model” is a representation — a description, an image, a
copy — which is intended to highlight vital, defining attributes of some
phenomenon. Most often, a model is a simplification, one that is useful as a
tool for understanding. A “mathematical model” is thus a description of a
phenomenon using mathematical constructs. Examples abound, and range
from the mundane to the enormously complex. On the more familiar end of
the spectrum, every act of counting or measuring is an act of mathematical
modeling — that is, of representing a situation in terms of an appropriate
number system. At the more complex end of the spectrum, mathematical
models are used in the natural sciences (e.g., physics, chemistry, biology,
geology, meteorology, astronomy), engineering, and the social sciences
(e.g., economics, psychology, political science, sociology) to interpret,
explain, and predict phenomena that arise in the interactions of many, many
interacting agents.

In this sense, the discipline of mathematics has always been about
modeling — although this core emphasis has often been obscured by the
computational demands of some models. In particular, prior to rapid and
inexpensive computing, the modeling of systems was largely focused on
those dynamics that could be studied through differential linear equations.
Poincaré was notable among those who examined non-linear dynamical
systems, doing so from a theoretical perspective (Bell, 1937). The
computational power of digital technologies in the second half of the 20"
century was necessary for the investigation of dynamical systems began to
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flourish. Computing power brought about possibility of doing “experimental
mathematics” (Borwein & Devlin, 2008) and numerical analysis, triggering
a rebirth of the modeling of non-linear dynamical systems. Importantly,
digital computing provided not only a means of computing extremely large
data sets and iterating functions through hundreds of thousands of
repetitions, it also provided means for converting numerical data to visual
representations, enabling the generation of new insights and, consequently,
new forms of mathematics (Mitchell, 2009).

It might be tempting to characterize the ever-growing gap between the
research mathematics and school mathematics in terms of the contrast
between the emphasis on modeling in the former and the emphasis on
computation in the latter. That distinction would be unfair, however. Every
topic in school mathematics was originally selected for its power to model,
and this detail helps to explain the traditional pedagogical emphasis has
been on rote application. In the first public schools, learners were being
trained not to model, but to apply established mathematical models, and to
do so efficiently and effectively. Routinized, repetitive instruction that does
not allow for much divergent thinking is arguably the best way to do that.

In other words, schooling’s emphasis on computation was once fitting.
However, circumstances and sensibilities have changed, along with the
needs of a mathematically literate citizen. But so too have the affordances of
the world in which we live, such as access to data, computational speed, and
spatio-visual interfaces. Such evolutions were behind Lesh’s (2010)
assertion that complexity has emerged as “an important topic to be included
in any mathematics curriculum that claims to be preparing students for full
participation in a technology-based age of information” (p. 563). To be clear
on the point of this article, the suggestion is not that study of complex
systems is new, but that the mathematics of complexity could represent a
significant shift from traditional emphases on computation to a new
emphasis on modeling — and, in that shift, possibly nudge school
mathematics closer to its parent discipline. As Stewart (1989) has reported,
mathematicians have long seen their work in terms of modeling. Just as
significantly, they were perfectly aware when they were using linear
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approximations and other reductions in order to avoid computational
intractability. Lecturers and texts followed suit in omitting nonlinear
accounts; hence generations of students were exposed to over-simplified,
linearized versions of natural phenomena. In other words, non-complex
mathematics prevailed in public schools not because it was ideal but
because it lent itself to calculations that could be done by hand. The power
of digital technologies has not just opened up new vistas of calculation, they
have triggered epistemic shifts as they contribute to redefinitions of what
counts as possible and what is expressible, and this insight has been
engaged by many mathematics education researchers (e.g., English, 2011;
Hoyles & Noss, 2008; Moreno-Armella, Hegedus, & Kaput, 2008).

Notable in the movement toward recasting school mathematics in terms
of modeling is the seminal work of Papert (e.g., 1980), particularly his
development of the Logo programming language in the late 1970s. The
language was designed to be usable by young novices and advanced experts
alike. It enabled users to solve problems using a mobile robot, the “Logo
turtle,” and eventually a simulated turtle on the computer screen. While not
intended explicitly for the study of complexity, Logo lent itself to recursive
programming and was thus easily used to generate fractal-like images and to
explore applications dynamically — opening the door to more complexity-
specific topics. To that end, different developers have since offered Logo-
based platforms that are explicitly intended to explore complex systems
(and other) applications. For example, StarLogo (lead designer, Mitchell
Resnick; http://education.mit.edu/starlogo/) and NetLogo (lead designer,
UriWilensky; http://ccl.northwestern.edu/netlogo/). Both platforms were
developed in the 1990s and extended Papert’s original Logo program by
presenting the possibility of multiple, interacting agents (turtles). This
feature renders the applications useful for simulating ranges of complex
phenomena. Both StarLogo and NetLogo include extensive online libraries
of already-programmed simulations of familiar phenomena (e.g., flocking
birds, traffic jams, disease spread, and population dynamics) and less-
familiar applications in a variety of domains such as economics, biology,
physics, chemistry, neurology, and psychology. At the same time, the
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platforms preserve the simplicity of programming that distinguished the
original Logo (e.g., utilizing switches, sliders, choosers, inputs, and other
interface elements), making them accessible for even young learners. Other
visual programming languages have been developed that are particularly
appropriate to students (e.g., Scratch, scratch.mit.edu, and ToonTalk,
www.toontalk.com).

Over the past few decades, hundreds of speculative essays and research
reports (see, e.g., http://ccl.northwestern.edu/netlogo/references.shtml) have
been published on these and other multi-turtle programs. Regarding matters
of potential innovations for school mathematics, in addition to well-
developed resources, there have been extensive discussions and there exists
a substantial empirical basis for moving forward on the selection and
development of curriculum content that is fitted to themes of complexity.
Not surprisingly, then, with the ready access to computational and imaging
technologies in most school classrooms, some (e.g., Jacobson & Wilensky
2006) have advocated for the inclusion of such topics as computer-based
modeling and simulation languages, including networked collaborative
simulations (see Kaput Centre for Research and Innovation in STEM
Education, http://www.kaputcenter.umassd.edu). In this vein, complexity is
understood as a digitally enabled, modeling-based branch of mathematics
that opens spaces (particularly in secondary and tertiary education) for new
themes such as recursive functions, fractal geometry and modeling of
complex phenomena with mathematical tools such as iteration, cobwebbing,
and phase diagrams.

The shift in sensibility from linearity to complexity is more important
than the development of the computational competencies necessary for
modeling. The very role of mathematics in one’s life is transformed through
this shift in curriculum emphasis. As Lesh (2010) described, “whereas the
entire traditional K-14 mathematics curriculum can be characterized as a
step-by-step line of march toward the study of single, solvable,
differentiable functions, the world beyond schools contains scarcely a few
situations of single actor-single outcome variety” (p. 564). Extending this
thought, Lesh highlighted that questions and topics in complexity and data
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management are not only made more accessible in K-14 settings through
digital technologies, current tools have made it possible to render some key
principles comprehensible to young learners in manners that complement
traditional curriculum emphases.

Despite the growing research base and the compelling arguments,
however, few contemporary programs of study in school mathematics have
heeded such admonitions for change. It is perhaps for this reason that many
mathematics education researchers have focused on familiar topic areas
(such as those just mentioned; see Davis & Simmt, 2016, for other
examples) as means to incorporate studies of complexity into school
mathematics. Discussions of and research into possible sites of integration
have spanned all grade levels and several content areas, and proponents
have tended to advocate for complexity-content, but in a less calculation-
dependent format.

Closing Remarks

For many mathematics educators, complexity thinking might seem like
a Pandora’s box. If the field were to open it and take up the topic seriously,
an array to world-changing possibilities would impose themselves.
Complexity thinking challenges many of the deeply engrained,
commonsensical assumptions on how humans think and learn. It interrupts
much of the orthodoxy on group process and collective knowledge. And, in
particular, as a curriculum topic, there is no straightforward way to fit
complex modeling into the mold of contemporary school mathematics. It
transcends procedures with its invitation to experiment; it demands
precision, but in the service of playful possibility; it is rooted in
computation, but offloads most of that work onto digital technologies; it
requires facility with symbol manipulation, but that manipulation is more
for description than deriving solutions. In other words, merely considering
complex modeling as a possible topic for today’s classrooms forces a
rethinking of not just what is being taught, but why some topics maintain
such prominence and how topics might be formatted to engage learners
meaningfully and effectively.
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Indeed, as the example of exponentiation might be used to illustrate, if
complexity were to be seriously considered as a curriculum topic, it would
compel reexamination of the very foundations of school mathematics. Not
only must the “basics” be available for interrogation and revision, emphases
of computation-heavy and symbol-based processes would have to be
complemented with modeling-rich and spatial-based possibilities.
Importantly, this is not an either—or situation. Taking up modeling as a focus
of school mathematics does not negate computation and symbolic
manipulation, but such a shift does reposition them as means rather than
ends.

It will be interesting to see if and when the culture of school
mathematics is able to move in the direction of complexity thinking. The
discourse itself suggests that, while a sudden and dramatic shift could
happen at any time, it is more likely that the grander system will find ways
to maintain its current emphases for some time longer. Caught in a tangle of
popular expectation, deep-rooted practice, entrenched curricula,
uninterrogated beliefs, and lucrative publishing and testing industries,
school mathematics is an exemplar of a complex unity. This insight, more
than any other, is the one that sustains my interest. Sooner or later, a well-
situated wing flapping will trigger that moment of exponential change
through a cascade of transformations that pull school mathematics into a
new era.
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Abstarct

This paper contributes to the efforts of mathematics education community to
understand the complex phenomena which occur in mathematics classrooms
by highlighting the usefulness of activity theory. Activity theory and the
associated concepts attempt to overcome the separation of human action
from the relevant elements embedded in its context by means of a functional
structuring of the key elements involved in social and institutional
situations. Conceptualizing mathematics classrooms as complex systems of
activities and considering their interactions with other activities within
educational system as well as outside it in their broader societal and cultural
context may offer a new look at the challenges of mathematics education.
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Introduction: New perspectives on learning and teaching

During the past few decades, a spectrum of socio-cognitive perspectives
has emerged which consider knowledge as an emerging characteristic of
activities taking place among persons in specific contexts and view learning
as a developmental process appearing twice: first, on an interpersonal,
socio-cognitive, level positioned between people and second, on an
intrapersonal, cognitive, level situated inside the individual person. On this
ground, learning is regarded as a constructive activity that over and over
again requires active and extensive reorganization of existing conceptual
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structures. As a consequence, an everyday growing amount of research and
developmental studies propose ways of applying, and in many cases put in
practice, these socio-constructivist approaches in re-conceptualising school
curricula, teaching practices, and learning activities, however, not effecting,
in my view, the promised or anticipated learning gains in mathematics
education. Although more research into refining and extending these socio-
constructivist approaches in applied contexts of education is needed, |
consider that their relative inefficiency in transforming their theoretical
assumptions to practice originates from a not balanced approach between
the interpersonal and intrapersonal aspects of cognition and learning when
implemented in school contexts. This fact results, after all, either in
distorted applications of socio-constructivist theoretical assumptions or in
school projects having not actual theoretical relation to the socio-
constructivist approach they claim. A balanced approach transcending the
distinction between the interpersonal and intrapersonal level of cognition
and learning offering promising options both in studying and reforming
school pedagogies, curricular materials, and educational tools is offered by
conceptualizing the teaching and learning in school classrooms as complex
systems of activities.

A complex system, as is aptly clarified by Davis & Simmt (2014),
“comprises many interacting agents — and those agents, in turn, may
comprise many interacting subagents — presenting the possibility of
global behaviours that are rooted in but that cannot be reduced to the
actions or qualities of the constituting agents. In other words, a
complex system is better described by using Darwinian principles
than Newtonian ones. It is thus that each complex phenomenon must
be studied in its own right. For each complex unity, new laws emerge
that cannot be anticipated or explained strictly by reference to prior,
subsequent, or similar systems™ (p. 88).

In the following, the activity systems of school learning and teaching,

as modelled by Engestrom (1987), is outlined with specific references to
mathematics education where appropriate.
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The activity system of learning-teaching

According to Engestrom (1987), who expanded Leontiev’s theory of
activity as originated from the ideas of Vygotsky, the system of human
activity combines a set of primary components and their reciprocal
relationships (Fig. 1).

Instrumenls

Subject / \‘ Object I_‘D Outcome
/ — }/ \
r'___:-'-"'"f‘- -\---\-\"'-\-\__\___

Rules Community Division of Labor
Fig. 1. The structure of a human activity system (Engestrom, 1987, p.78).

Every human activity is animated by a subject, usually a collective one,
who is working towards some object, tangible or intangible, in order to
transform it into some outcome. In order to achieve the expected outcomes,
the subject uses specific instruments which, broadly defined, include the
mediating, material or symbolic tools, which they shape the activity (and, in
turn, they are shaped by the activity). Persons, either as individuals or in
groups, who have the same object of activity, constitute a community.The
community binds individuals together through rules and division of labour.
Rules signify norms, conventions, or social traditions that are established by
the community to govern its members and as a result guide the system’s
actions and interactions and the division of labour defines the allocation of
works among community members both horizontally and vertically with
respect to expertise, power and status (Engestrom, 1996, 1998) .

In mathematics education, the subject refers to a student or a group of
students ranging from primary to higher education who follow a
mathematics course, to a teacher or teachers of mathematics, to mathematics
education policy makers or curricula developers or even to parents and other
groups of social agents that are involved and to some extent effect
schooling. The object refers to mathematical knowledge, conceptual tools,
problem solving techniques, mathematical practices, ways of thinking or
even assessment and examinations at which the activity is directed or more
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broadly, as put by Kaptelinin (2005, p 5), to “sense-making” or “ultimate
reasons” for the behaviours of the subjects. On this account, the objects of
activity of mathematics teachers may be described as a productive teaching
attaining the goals set by curricula or developing mathematical skills or
motivating their students to learn, while for students the objects of
mathematics classroom activity may be defined as responding to the teacher
demands or solving assigned mathematical problems or preparing for
successful examinations or appropriating concepts and techniques of
mathematics. The instruments are both material tools (e.g. paper and pencil,
chalkboards, manipulatives, calculators, computers, etc.) and symbolic tools
(e.g. language, symbols, diagrams, charts, pictures, etc.), which mediate
acting and thinking of the subjects in any activity. The instruments by their
use transform the activity itself and at the same time alter the subjects’
behaviour (Chassapis, 1999). The community in mathematics classrooms is
usually constituted by the teacher and students but also, according to the
case, it may include teachers, family members, friends, educational officials,
policy makers and other actors. The rules of mathematics teaching and
learning activity are implicit and explicit. Implicit are the rules which set
permissible and non-permissible behaviors and acts aiming to regulate the
community’s discussion and argumentation in the mathematical classroom,
e.g. raising the hand before responding a teacher’s question or not making
noise when the teachers address the class, etc. On the other hand, explicit
are the rules set by the school regulations or by the administrative decisions
of the school authorities, e.g. assessments procedures and norms or absence
from lessons rules, etc. The division of labor refers to the sharing of tasks
and responsibilities between the members of the community in a vertical
dimension according to their roles as defined by power relations and
hierarchies of authority (e.g., students, teachers, school head, regional
director, etc.) and in a horizontal dimension as stated by the requirements of
the teaching method (e.g., student or teacher centred pedagogy etc).

There are studies of mathematics education which focus on a particular
component of the activity of mathematics teaching and learning or in the
interrelation of two or more components in a mathematics classroom (e.g.,
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Chassapis, 1999, Zevenbergen & Lerman, 2008, Groves & Dale, 2004 are
focused on mediating instruments; Jaworski, 2005 on communities;
Hardman, 2007 on the object of a teaching/learning activity, etc.)

It must be pointed out that an activity system is an intertwined system
whose elements are tied together by “a collective object and motive [that] is
realized in goal-oriented individual and group actions” (Hasu & Engestrom,
2000, p. 63) and therefore whenever a component changes the system
becomes unstable and must develop or change to obtain a renewed stability.
That is, an activity system in not a static but a dynamic structure and all
components of the system reciprocally and dynamically influence each
other so that the system is continually adjusting, adapting, and changing.

At the same time, every activity system is not an isolated entity but
interacts with other activity systems and is crucially influenced by changes
in its environment (Kuutti, 1996). This interaction takes place concurrently
across two dimensions. On a vertical, let say on an inter-level dimension, an
activity system is nested in other superposed activity systems and is
interacting with one or many of their components (Nunez, 2009). In
educational contexts of learning and teaching mathematics, the activity
system of a mathematics classroom or a computer laboratory is nested in
the primary or secondary schooling activity system and this, in its turn, is
nested in the broader institutional activity system which is structured by the
educational system of a country and ultimately in the particular society
considered as a culturally and historically framed system of activities

(Fig.2).
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Fig. 2: Nested activity systems within Educational Context Levels (Nunez, 2009, p. 10)

Mathematics education literature includes research papers selecting as
their minimum unit of analysis various activity systems at any one of the
mentioned levels or at their mutual interaction. Citing just a few quite
indicatively, Zevenbergen & Lerman (2008) focused on a mathematics
classroom using interactive whiteboard, Jaworski & Potari (2009) related a
mathematics classroom to its educational and social context, Venkat &
Adler (2008) studied the implementation of a mathematics education reform
on the school level, Jurdak (2006) considered activity systems of problem
solving in the socially situated real world and school contexts and Kanes
(2002) approaches numeracy as a cultural-historical activity system in a
society.

On a horizontal, let say on an intra-level dimension, an activity system
interacts with other systems functioning on the same level of analysis. In a
formal mathematics classroom, for instance, there are at least two different
but interacting activity systems: that of the teacher and that of the students.
These two systems may, and usually, differ in their objects, as well as, in
their intended outcomes. The object for students may be meeting
examination requirements, so their participation in the mathematics lessons
aims at acquiring knowledge and skills required to success in examinations
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typically transforming mathematics texts into grades and test scores. On the
other hand, the object for the teacher of mathematics may be to teach
students the proper subject matter transforming mathematics texts into
teaching tasks in order to accomplish the mathematics curriculum
requirements to the maximum feasible extent. Therefore, even though
temporary exceptions may exist, teachers and students in a mathematics
classroom do not usually engage in the same activity and thus, at least two
(or maybe in some cases multiple) coexisting in a mathematics classroom
activities influence the pedagogy chosen teachers and the learning climate
formed. In a corresponding way, the communities of students and teachers
and their division of labour are different, while the rules, which can be both
explicit and implicit, are normally the same for both students and teachers
imposed by the school regulations and classroom rituals (Fig. 3).

INSTRUMENTS INETRUMENTS
Lessons; assignmants, ‘Study sholis’;
quastions, hompwork, lests pancil, pagar, oras
SUBRIECT DEJECT OUTCOME OBJECT SUBJECT
Tt bt ~ 1 ’ Sehotd b and - Grahis, - School hésil % 1 =, Shudnt
T mtudent sl Aooins .
- ¥ 1 - . -

RULES COMMUNITY DIVESION OF LABDR DIVISION OF LABDR COMMUNITY. RULES
Standardized  Othar leachers Salf-contained Each studant for Classnoom Standardizod
lima schedube,  of tha school grads level CAssrooms Fiteme- oo Pirssil timi schaduls,
slandnrd sclsbal slandand schood
subjacis, groding subjects, grading

Fig. 3: Traditional teaching and school-going as interconnected activity systems
(Engestrom, 1998, p.80)

Basic functioning principles of an activity system
As epitomised by Kaptelinin et. al. (1999), the functioning of any
activity system is structured by the following basic principles:

- Any activity is oriented or directed towards an object, which is related to
the subject (a person or a group engaged in the activity). This “object (in
the sense of ‘objective’) motivates activity, giving it a specific direction”
(Nardi, 1996, p. 73). In contrast to a “thing” which may be regarded as any
element of reality characterised physical specificity, by

“object ... we understand a form embodying the socio-historical
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experience of mankind. An object is the vehicle of this experience and
embodies a specific aspect of human social practice; it is the form in
which a physically defined thing functions as people go about their
life activities in society. The essence of an object functioning in the
social process is constituted not by its physical properties, but by the
specific connections and relations that become known in the process
of collective activity”” (Stetsenko, 1995, p. 59).

As Jonassen & Rohrer-Murphy (1999, p. 8) further exemplified it , “the
object of an activity can be anything, so long as it can be transformed by
subjects of the activity system”.

- Activities are long-term formations, whose objects are transformed
into outcomes through a process consisted of several steps.
Activities are realised by certain actions or chains of actions, which
in turn are consisted of operations, both being short-term processes
(Leontiev, 1978). These actions are directed towards a conscious
goal, and are related to one another by the same overall objective.
Actions, in turn, are composed of operations, which are automatic
processes unconsciously performed by the individual subject(s) of
the activity. Operations, are not directed toward a goal as are
actions, but they provide an adjustment of actions to the existing
situation and the prevailing conditions. In a few words, at the level
of actions, the questions posed are about “what”: What must be
done to be the activity accomplished? At the level of operations the
guestions to be answered are about the “how”: How has each action
to be executed? How things are made to happen? Operations are
bound to conditions under which their respective actions are being
carried out. These, actually hierarchical, levels of an activity
system are not fixed but subject to developments; operations can
become actions through internalization and actions in one context
may be transformed to activities in another situation.

In any activity system they are involved internal, mental, processes
and external, physical, processes, which although differentiated are
in a constant reciprocal relationship. The subject is transforming
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the object of an activity, while the properties of the object penetrate
into the subject and transform him or her (Kuutti, 1996). Thus, the
internal “mental” processes of the subject cannot be understood
without reference to external processes manifested in his or her
behaviours. The internal processes are formed at a social level in
collaboration and interaction with others or by the use of external
tools. The other way around, “mental processes manifest
themselves in external actions performed by a person, so they can
be verified and corrected, if necessary” (Kaptelinin, 1996, p. 109).
As Vygotsky (1978) has analysed, all human activities are
mediated by tools which are carriers of cultural knowledge and
social experience and alter by their use the nature of the activities.
This knowledge and experience is manifested in both the structural
properties of the tool, and in the way the tool should be used. A
tool comes fully into being when it is actually used and knowing
how to use it is an essential part of the tool (Kaptelinin et. al.
1999).

Activity systems are not static, but dynamic processes under
continuous change and development (Kuutti, 1996). Therefore,
knowing the history and development of an activity is a
requirement for understanding its essential aspects.

The before mentioned principles which rule the functioning of an
activity system should be conceived in a holistic way since each one is
associated with all others and is in many ways related to the various aspects
of the whole activity.

Developmental changes in activity systems

The development and change of every human activity is an outcome of
contradictions generated in the activity itself, and at the same time is a
result of transformations imposed by new needs which are produced by one
or more of the components of the activity (Engestrém, 2001).
Contradictions should not be understood as single conflicts or even
complex but solvable problems but as fundamental tensions and
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misalignments in the structure of the activity system that typically manifest
themselves as problems, ruptures, and breakdowns in its functioning
(Virkkunen and Kuutti, 2000, p 302). ). It follows that overcoming
contradictions is key to, and at the same time the explanatory principle of,
changes and developments in activity systems.

Engestrom (1987) has defined four types of contradictions:

- Primary inner contradictions, which occur within each constituent
component of an activity system, e.g. using a paper and a pencil as
an instrument to carry on number operations versus using a
calculator for the same task.

Secondary contradictions, which occur between two or more
components of the activity system, e.g. between students and
division of labour in a mathematics classroom decided to work in
groups for solving a problem.

In cases that the object and motive of a culturally more advanced
activity is introduced in an activity system, tertiary contradictions
may occur between the new and the previous object of the activity,
e.g. between the study of number operations in a primary school
classroom introduced by the teacher in replacement of playing with
numbers. Furthermore, in cases that two or more activity systems
are interacting, as for instance are the systems of learning and
teaching in a mathematics classroom or the system of a classroom
activity and the broader system of schooling, tertiary contradictions
may occur between the objects of the interrelated activities.

A quaternary type of contradictions may occur between the rest of
the components (except the object) of an activity system, i.e.
subjects, instruments, rules, community or division of labor, and its
adjoining or overlying linked activity systems, e.g. between
learning activity in a mathematics classroom and learning
mathematics in an everyday real world contexts as is for instance
game playing or between an activity of teaching mathematics and a
rule producing activity of educational administration.
Contradictions in activity systems take place through, and are driven by, the
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reciprocal and integrated processes of internalization or literally
appropriation and externalization. Internalization is the process by which
external activities are transformed into or modify internal ones, e.g. when is
learnt to mentally perform number operations. It is a process which allows
potential interactions with reality without performing actual manipulation
with real objects (ideas, imaginations, mental simulations, etc.). By the
way, it must be underlined that the terms “appropriation” and
“internalization” do not assume a transmission method of knowledge that
neglects the active participation of the learner. Externalization,
correspondingly, is the process by which internal, mental, activities become
external or are manifested by the creation of new tools and social practices
e.g. drawing a diagram illustrating a relationship.

In this account, development and change of an activity system means
resolution or transformation of contradictions and tensions occurred
between individuals and socio-cultural influences, between two or more
elements of an activity system, and between interconnected activity systems
resulting in the construction of a new object and motive(s), that is resulting
a new, more functional or advanced activity system. Such a development
and change is a long-term spiral process of appropriation and externalization
that Engestrom (1987) has called “learning by expanding” clarifying that

“The essence of learning activity is production of objectively,
societally new activity structures (including new objects, instruments,
etc.) out of actions manifesting the inner contradictions of the
preceding form of the activity in question. Learning activity is mastery
of expansion from actions to a new activity. While traditional school-
going is essentially a subject-producing activity and traditional
science is essentially an instrument-producing activity, learning
activity is an activity-producing activity” (Engestrom, 1987, p. 124-
125, italics in original).
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Concluding comments: Dealing with the complexity of

mathematics classroom

Mathematics classrooms are complex systems by themselves or are
essential constituents of broader activity systems in which many types of
activities are interacting involving different subjects, objects, instruments,
rules, communities and division of labours, having diverse motives and
pursuing various outcomes.

An idea of the multiplicity of activity systems which coexist and
interact in a mathematics classroom, except the two leading activities of
learning for students and teaching for the teacher (both subjected to broader
institutional, administrative and socio-cultural activity systems) may be
given by the assumption that students, although being in the same class and
formally attending the same course of mathematics, have different motives
because of their different socio-cultural backgrounds and for that reason
they may work towards different outcomes. As a consequence, they
actually participate in different activities. Those students who consider
schooling to be a very important step towards their future life are
participating in the *“activity of school learning”, appreciate school
achievement and work for achieving good examination grades. On the
contrary, other students who consider school attending as a formal
obligation prior to their working life and are totally unconcerned with
mathematics learning they actually participate in a traditional “school-going
activity”, a different and in many aspects conflicting activity to “school
learning”. As mathematics teachers know by their experience, such a
conflict between two or more activities taking place in the same classroom
generate contradictions which undermine and in many cases degenerate the
intended learning activity.

Conceptualizing mathematics classrooms as complex systems of
activities and considering their interactions with other activities within
educational system as well as outside it in its broad societal and cultural
context may offer a new look at the challenges of mathematics education
faced both by researchers and teachers of mathematics. Activity theory
provides, in my view, a powerful lens through which we may conceive
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mathematics classrooms not simply as complex systems of activities but, at
the same time, as socio-cultural terrains on which both individual and social
levels interact shaping practices and processes.

Assuming that mathematics classrooms are social formations and
students and teachers act primarily as social beings and secondary as
individual persons is not a new premise in mathematics education.
However, for most researchers in the field this assumption means in fact that
individuals involved in mathematics learning, teaching and schooling live in
a social world or they bring into play socially inherited forms of thinking
and acting.

On the contrary, activity theory takes for granted that individual
thinking and acting are products of social and cultural processes. Claiming
that human cognition is “in a very fundamental sense a cultural and social
process” (Hutchins, 1995, p. 353) and is mediated by the tools and resources
used (Wertsch, 1994), activity theory put emphasis on the social, cultural
and historical influences of the institutions and contexts in which students
engage in learning and teachers commit teaching mathematics. In the
complex systems of activities which are structured and developed in
mathematics classrooms, students and teachers thinking and acting as social
beings embody institutional influences shaping the teaching of teachers, the
learning of students, the organisation of schooling and, above all, the
complexity of their mutual interactions.
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Abstract

The present article studies the influence of learning mathematics through
the use of an activity called "The target number" which was proposed to in
service primary school teachers within the context of an ongoing training
program and also focuses on the description of the activity used by the
teachers and trainers. Its application is using a scenario of consecutive
scenarios-phases which examines the learning process by focusing
attention on a group of trainees-classroom- as a system and the interactions
that are developed. The systemic concepts of framing, interaction and co-
construction constitute as the core body which analysis the activity
mentioned above, whilst at the same time the concept of division is
repositioned within the tool — object dialectic.

Keywords: Systemic approach, Mathematics Education, Framing,
Interaction, Co-construction, In service Primary school Teachers

1. Introduction

The systemic approach is a new scientific paradigm and an alternative
proposal in the field of psychosocial and educational practices. Systemic
perception focuses on the complexity of relationships between individuals
and/or ideas and reminds us that we are all parts of an interconnected whole
(Bateson, 1972).

The educational framework is a privileged thinking space for
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Systemics who focus on: a) the relationship dynamics within the school, b)
the ways of cooperating with teachers regarding problems that emerge with
students, c) the cooperation with families and school, d) the cooperation of
teachers and health professionals, €) the school failure etc.

In this presentation we will attempt to approach the area of education
and in particular the teaching of mathematical concepts and the
corresponding learning process from a systemic perspective (Karkazi &
Nikolantonakis, 2009, 2011; Nikolantonakis, 2010). Valuable assistance in
this process will be the involvement of a class of in service primary school
teachers and an instructor-trainer whom will use a mathematical problem
within the context of the ongoing training program.

Before we move onto the systemic analysis of the process that will be
followed, we would like firstly to make a point of the context in which the
teaching takes place: a class of in service teachers. We will consider the
class as a system and we will refer to some aspects of this system such as
its structure and function and then we will focus our attention on the 'status
quo' of this class using as a reference the systemic concepts of ‘framing’,
‘interaction’ and “co-construction’.

Didactics of Mathematics and Constructivism

Constructivism is determined by the following principles (Von
Glaserfeld, 1988):

1. Knowledge is a process of adaptation to the natural and social
environment, and it is not the discovery of a pre-existing world regardless of
the person.

2. Knowledge is constructed actively by the person and not passively
understood from their environment.

3. Knowledge serves to organize our world and not the 'objective reality'
meaning that the aim is to organize our learning experiences and to give
them purpose and meaning.

The difficulties faced by a teacher when attempting to apply the
principles of constructivism in mathematical education are various:
conceptual, educational, cultural and political (Koleza, 2006).

The application of constructivism in practice requires from teachers’ to
have the knowledge of teaching principles and at the same time to have an
"appropriate™ teaching approach. Constructivist teaching is based on
students' activities, on problem solving, on exploratory projects and
innovative ideas. Using these kinds of activities the teachers must not only
be familiar with the theoretical principles underlying a particular subject
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(content knowledge), but also to be able to adopt a variety of approaches to
the pertaining subject (pedagogical content knowledge).

\Von Glasersfeld (1988) has identified five consequences of educational
practices arising from radical constructivism.

First consequence: Learning which aims at understanding is separated
from learning which is aimed at training (whereby repetitive processes are
used and aim at the behavior). The contrast between concepts of
understanding and behavior coincide with the traditional view of teaching
whereby training aims at acquiring knowledge and beliefs and not to
challenge repetitive behaviors.

Second consequence: Procedures arising from students (from the
analysis of students’ answers) are the interesting material. The behaviorist
teacher is trying to see ‘through’ the apparent behavior of his/her students.
The constructivist teacher is trying to see from ‘within’.

Third consequence: Verbal communication becomes a process for
guided learning for the student, and not a process for transferring
knowledge.

Fourth consequence: Students deviating from teachers expectations
becomes a means for teachers’ to understand students’ efforts towards
understanding.

Fifth consequence: Teaching and using also interviews leads the trainers
not only to conclude students’ cognitive structures, but also to define them.

The theory of constructivism includes, besides the above, three other
basic ideas:

a) Students devise personal methods for solving mathematical problems

b) Mathematical learning occurs through problem solving

c) The role of the social group is crucial in order to obtain knowledge.

Therefore, the basic pursuit of teaching, according to the constructivist
theory, is to provide opportunities and to encourage the student to construct
his/her own mathematical knowledge through exploration, experimentation,
hypotheses’ formation, generalization, justification, etc. This is the only way
to consolidate their understanding and for effective learning to occur. In
relation to how environmental learning occurs, many constructivist theories
share four fundamental hypotheses which should be taken into account.
These hypotheses can be described as knowledge construction, collaborative
learning, self-regulation and the use of carefully formed authentic problems
(Otting & Zwaal, 2007).

\Von Glasersfeld concludes that Radical constructivism: a) is not a
dogma, b) does not claim to be 'true’, ¢) it is a way of thinking and d) one

HMS i JME, Volume 7. 2015 — 2016 (47-62)



50 Konstantinos Nikolantonakis

should think if it is useful in his/her field.

2. The School classroom as a system

A system is a whole with defined limits, consisting of people who
interact, evolving over time, organized in relation with its environment and
its intentions. All the elements of this definition are important, but we will
focus on the key concepts of 'limits' and 'intentions'.

Limits

Interactions take place within the limits of a particular system and can
be understood in connection within this framework. There are limits such as
the limit 'of belonging' stating who belongs and who does not belong to this
system, the limits that concern place and time etc. When one draws limits,
it benefits the organization of the system, and in doing so favors certain
stability. It is important for trainers to show interest in what state the
organization of the system-class is because an organized group becomes a
good context for learning (Curonici & McCulloch, 1997; Pauzé & Roy,
1987).

Intentions

One of the tasks of the trainer is to keep their focus on the initial
intentions of the school which in this particular case is the ongoing training
program and to create conditions with the students—trainees to manage it.
With a systemic approach, the concept of the project plays a key role: the
behavior of a system is interpreted in relation to its project and not to its
structures. Its regulation and adaptation are designed to satisfy the project;
its performances are defined in relation to the observed behaviors and
intentions.

In our case, the activity "The target number™ was the project which the
group-class of primary school teachers focused on within the context of the
ongoing training program. This project will serve as a reference point
throughout the whole of this paper and which will allow us to see the
course of the system-class and the co-constructions of the protagonists
regarding a mathematical game-problem.
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Table 1: The Activity “The Target Number” [4]

Each student forms 10 cards numbered from 0 to 9. Each player keeps the
cards in his hands or placing them prominently in front of him on the desk.
Students are divided into groups of 3 people. The teacher - trainer gives to
all teams the command “I will suggest a number that will call target -
number"”. Each of you, without looking at the choices of the other players
and without talking with them, will choose a card, you will place it on the
desk in the center and the purpose of each group will be the following: the
sum of the three cards of its members to give the target number.

"The target number" as a game-activity is a good example of the theory of
a-didactic situations [1] of Guy Brousseau (Brousseau, 1998), it is a field
for repositioning the concept of division within the tool-object dialectic [2]
of R. Douady (Douady, 1987) and implements the concept of the
conceptual field [3] (Vergnaud, 1990).

Evequoz (1990) from his point of view insists that a class is an
artificial system whose history is shorter than that of a physical system. It is
based on a hierarchical structure on two levels (that of the teacher-trainer
and that of the students-trainees). We observe two types of interactions:
vertical interaction, between the teacher-trainer and the students-trainees
and horizontal interaction, between the students-trainees. The teacher-
trainer is supposed to undertake the function of the 'navigator".

3. Group-class and the concept of ‘framing’

‘Framing’ is a key concept in our analysis regarding the group-class
and the framing of trainees from the trainer. The concept of framing was
developed by a group of family therapists and researchers in Lausanne
(Fivaz, Fivaz & Kaufmann, 1982). It is a concept which is applied in a
therapeutic, educational and parental relationship. The operation of framing
is to favor the development and autonomy of the sub framing system. The
system which frames holds a superior hierarchical position in relation to the
sub framing system and is characterized by having greater stability over
time and by its ability to adapt to the sub framing system (Curonici &
McCulloch, 1997, 2004).

The framing of trainees by the trainer takes diverse forms during the
Scenes of the Scenario in the game-activity "The target number".
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Table 2: Scenario of the activity [4]

Scene 1 Try once. We set this question. Are you ready?
This question can make them think that something needs to
be prepared. If not we draw a few rounds of cards and then
they will probably begin to perceive and request a few
minutes to talk within their group.

Scene 2 Teacher proposes a few rounds to be dealt and to put small
and large numbers, and in multiples of three.
Scene 3 The teacher asks each group to write on a paper their

strategy. Different groups will exchange their strategies. In
this phase we will repeat the game with the new strategies
which arise from the exchange between the different groups.

Scene 4 We record on the board the different strategies and we start a
dialogue on whether there is a better strategy than the others,
and what are the characteristics of a good strategy.

Scene 5 We play the same game in groups of 4, 5, 6 or 7, etc. players.

Scene 6 In this phase the same game is repeated but using the cards
from 0 to 7 or from 0 to n, where n <9. At the end we play all
together in a group.

Scene 7 The teacher - trainer gives the task to research the following
problem.
We have cards from 0 to |. The players are divided into
groups of k players. The target number is n. Explain in this
case the strategy accepted during the previous phase.

Firstly, the trainer is obligated to impact on the core of the learning
system in order to create: 1.The setting for the trainer and the trainees,
2.The teaching and learning times, 3. The objects of the situations which
create the environment and 4. The organizational relations with respect to
these objects.

The trainer’s actions define and provide the framework within which
the trainees and the trainer will interact so that trainees will be able to
negotiate the given problem.

Indicatively in Scene 1 we pose the same question every time, “Are
you ready”? This question makes them think that something needs to be
prepared. If this is not the case, another round is dealt and hopefully they
will begin to perceive and to request a few minutes to talk within their
group in order to agree on an action project.

In Scene 2, the trainer regulates the situation where the ultimate goal of
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its implementation is to produce a profitable strategy from students, even if
at that time, the purpose is relatively distant. An important part of the
trainers’ activeness consists of a constructive contract, to dissipate the
enunciations and to ensure their treatment and their discussion in class.

In Scene 3, the trainer defines the duties of each group while
simultaneously gives the necessary space and assigns the trainees to record
their strategy, to apply it in another group, to receive the rule of another
group and to execute the game-activity with a new strategy.

Within the context of a teaching course the concepts of ‘framing' and
'navigation' from the trainer implies that the trainer is the one who handles
the process of learning through a linear relationship with his students? In
other words, mathematical knowledge is a product that is transmitted from
A to B and the perception of teaching is identified with the direct
transmission of knowledge?

According to Fivaz et al. (1982) the operation of framing can favor the
autonomy of the sub framing system: the autonomy of the trainees in
relation to the trainer.

In Scene 4, the trainer provokes the trainees to listen and to study. They
create conditions of conflict and dialogue. The trainer is interested in what
the trainees do, he/she listens to them not because he/she expects a precise
answer from what the trainer asked (classical function of the trainer in the
didactic contract), but because they are capable of having a say and can
participate under conditions of conflict. This discussion can lead closer to
the real profitable theory. Also in this scene the trainer’s question "So do
you believe this is it?" seeks confirmation and urges the group of trainees to
construct a logical argument. The phrase which is often repeated "I do not
know, we must see..." is a statement of ignorance which also constitutes an
incitement for them to research. The award is a process through which the
trainer expresses a form of symmetry with the trainees during the learning
project, which results to the onset of research and thereby legitimizes the
trainees’ ignorance and encourages them to invest and to research (Sensevy,
Mercier & Schubauer-Leoni, 2000).

Consequently, the context of framing, the student-trainee from the
teacher-trainer does not mean that the student-trainee doesn’t act by
him/her-self. In contrast, the active subject is interposed between the
stimulus and the response. For Piaget (1937), intelligence organizes the
world by its self-organization that means that learning is a continuous
mental reorganization process. This organization and reorganization takes
place through an experiential and reflective process in which the main
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emphasis for the interpretive process is attributed to the subject.

In Scene 2, the students-trainees play as partners. The plan that they
have agreed on is that every time they participate in the game at the same
time the project poses confirmation or rejection of their position. The aim
of each team is to win, that means to construct collectively and
cumulatively the desired number. By repeating another round, the group
develops strategies as a means or reason as to why each member chooses to
play a particular number rather than another. The students - trainees in each
group construct a representation of the situation and use it as a model in
order to be able to make decisions. We should of course note that the
interaction with co-trainees for this specific problem regarding its
resolution is the key way that affects the learning process.

4. Learning and interaction

In the systemic approach the concept of interaction, feedback,
(Watzlawick, Bewin & Jackson, 1972) is the cornerstone of how a system
functions and its members within this system. In the systemic
consideration, the human systems are ‘open systems’ that means that there
is a continuous flow of exchange (matter, energy or information) with the
environment (Bertalanffy, 1973). The interaction between the elements of a
system is characterized by the circularity that is a complex feedback and
reciprocal process. In the case of the system ‘the class’ during the game-
activity "The target-number" various subsystems composed of students-
trainees. The trainees participate and discuss within these sub
systems/groups that are formed.

In Scene 4, the conditions consist of communication between trainees
who propose and oppose. The trainees are in symmetrical positions and in
relation to: (a) the means of action to the environment, (b) the information
and (c) the rules of the dialogue. The trainees receive feedback from 1) the
environment for action and 2) the view of the interlocutor. The trainees
interact with the environment and the exchanged messages are theorems
and proofs developed or in a process of development.

If we invoke the First Cybernetic period of systemics and stay close to
the systemic concept of feedback (Bertalanffy, 1973), we could say that the
person receives feedback through information that relates to the
consequences of his/her actions and based on this information he/she can
tackle past information, can make new conclusions and be orientated
towards the path of change (solve the problem). This is not achieved by
‘sake of grace’ but because of the interactions—feedback of the trainees.
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Maturana and Varela (1980) working on perception, invite us to
simultaneously consider the organization as a system endowed with its own
internal logic and as a unity with numerous interactions. Simultaneously
Maturana develops a theory of self-organization or autopoiesis. The human
as a system but also other micro-societal systems, such as the family and
the school are subjected to a process of autopoiesis by exchanging energy
and information with the environment. This process is necessary for their
development and takes place without threatening their identity (the human
system is regarded simultaneously as both an open and close system).

In Scene 2, we ask from students to have feedback with the
environment and to repeat the game in order to obtain knowledge (rule,
technique, strategy) and in order to ‘pass’ from basic strategy to excellence.
“To pass’ means the reduction and/or elimination of the student's—group of
trainees’, uncertainty for the choices that need to be made. The group of
trainees reflects on their choices and decisions, through their actions with
the environment. Feedback is considered to be the influence of the
environment onto the group, which is perceived by the group as a reward or
rejection related to their actions, allows for the correction of the groups
actions, to accept or to reject a hypothesis and to choose between several
solutions.

Patricia McCulloch (1994) has studied in particular, the horizontal
interactions between students and has highlighted the huge potential for the
entire class system. Within this, there is also a place for the teacher-trainer
assuming they have relevant control of the class which McCulloch prefers
to designate as a framing position. The teacher encourages the exchange
between co-trainees in a classroom or members of a team of professionals
(in service teachers). Consequently we are moving away from a linear
perception of teaching (A to B) and we pass onto a constructivist perception
of mathematical teaching, whereby the process of construction emerges in
order to obtain the intended knowledge. Each student-trainee actively
participates in the learning process and co-constructs with other students-
trainees to find the solution to the mathematical problem. This construction
is co-woven through the interactions of the trainees in the working groups
where the inter subjectivity is desired, and therefore is not a problem
anymore.

Heinz von Foerster (1988) considers that there is no distinction
between observers and observed systems. He proposes to replace the
epistemology of description with the epistemology of construction.

We can therefore say that the proposed exercise to the students by the
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teacher is based on the constructivist organization and teaching which
ensures on a cognitive level, self-motivated learning through collectivity.

5. Systemic and Learning

We believe that mathematics in a school frame is first and foremost a
social activity and not only an individual one. The transition from natural
thought such as that of mathematical syllogisms is followed by
constructions and rejections, and by the use of different means of proof. In
scene 4, the students make declarations (an integrated form or partially
integrated form of strategy solution) examined by their interlocutors for
consideration. They can refuse a logic as wrong and then to prove in their
turn.

Table 3: Catalogue of strategies [4]

(1) Use of the division by 9

This is the procedure used and accepted at the end. We divide n by 9. We
took n = 9p + u. The first p players play 9, the next u and the following ones
0.

Very rarely it is expressed with this form. It frequently founded in the
following form:

- between 0 and 9, the player A plays n, n<=9, the players B and C play 0

- between 9 and 18, the player A plays 9, the player B plays n-9 and the
player C plays 0

- between 18 and 27, the players A and B play 9 and the player C plays n-18
With k players and cards from 0 to I, you divide n with | and you have n =Ip
+u. The first p players play I, the player on the position p+1 play u and the
others 0. The number k is used for the determination of the interval of
target-numbers. The difficulty is to give numbers to the players and to
correspond the number in relation with p. At the end of the scene 5 the
generalization is used to share the roles to everyone, with the target-number,
that means if the target-number is before, inside, or after his/her interval.

(2) Use of the division by 3

We divide n by 3 and we have n = 3p + u.

If u=0, every player plays p, if u =1, two players play p and the other plays
p +1. If u=2, one player play p and the other two play p+1.

This strategy can also be generalized. With k players and cards from 0 to |,
we divide n with k, and we take n = km +u. The u first players play m+1 and
the others m. The number | doesn’t play any role to calculations, but only to
the calculation of the interval of possible numbers.
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(3) Another strategy

If n<=18

If n is an even number, the players A and B play n/2 and the C player plays
0.

If n is an odd number, the players A and B play (n-1)/2 and the C player
plays 1

If n>18, the players A and B play 9 and the C player plays the

rest.

Bateson (1972) distinguishes four learning levels: the first corresponds to
behavior of reflective type, the second consists to learning, the third to learn
how to learn and the last level could be defined as the level where one
learns how he has learned to learn or even to find the reasons of his own
reason.

In Scene 2, the trainer repeats the phrase "what should one do in order
to always find the requested target-number" and after various attempts from
the different groups “what happened that you found it this time?" or to
another group "what did you do so that you may always find it?" urges
them to recognize what they are doing when they are doing it. With the
phrase that is expressed to each group separately and in total to the class
"what strategy is necessary (mathematically) to follow so that you win
every time?" helps repeat to the groups the initial general guidelines. We
observe at this point which way the teacher-trainer prompts the students-
trainees to recognize their actions making use of the techniques of
identification-reconstruction of suitable indications that characterizes their
action.

However, we would like to focus on the collective dimension of the
last phase of the learning process where all the different subsystems of the
class (teacher/different working groups) interact and decide on the
‘appropriateness’ of the problem solution. The students-trainees put forward
the theorems of each group which agreed to open dialogue within the class.
In Scene 4, often the trainer-teacher asks a question between students’
enunciations “is it possible that all could be right?". The students’
enunciations are appropriate from the fact that they can develop the whole
class as collective thinking unit.

Thus, students-trainees submitted interesting arguments that led all the
trainees to accept the use of division (division by 9 or division by 3 or some
minor variations) as part of the solution to the problem. General overview
of Scene 4 is that "Doing mathematics doesn’t mean that | only accept,
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learn and correctly transmit mathematical messages. To formulate a
theorem does not mean to give information, but what is true is within a
system". Von Glasersfeld (1988) refers to “areas of consensus” in relation
to the production of knowledge and not to one reality with a capital R. The
formalization is generally regarded as a fundamental dimension of the
productive work of a class, a group etc. The teacher-trainer and the
students-trainees are structured as a collective of thinking to generate
knowledge whilst at the same time allows for the evaluation of this
production. Specifying the ways of execution and the structure they are
forming, acknowledges their legitimacy. Summarizing in terms of the a-
didactic situations theory we could note that the students-trainees are put in
front of a problem and should try to solve it and in the midst of their efforts
they are utilizing their resources of available knowledge, the ways and
action systems that have been successfully used up till then so as to have
the best result.

During these activities, the decisions that the student-trainee will make
for the solution of the proposed problem will lead to the concept that is
required for its efficient use. After the student-trainee passes through an
action situation, he/she seeks ways of formulating the operations he/she has
done in order to be able to maintain them in a formulated summary in
his/her memory and to communicate them to his/her classmates. The
environment of the student-trainee requires from him/her to be able to be in
a position to convince the effectiveness of the solution he/she put forward.
He/she needs to convince the correctness of his/her decisions and his/her
proposals. We have a validation situation. Upon the completion of the
search, we arrive at an accurate and concise formulation of the concept that
was constructed by the student-trainee or the team of students-trainees in
the format of an action rule that can be used in such situations. We are
talking about formalization of situations where a concept that is constructed
and used by the student-trainee acquires with the teacher's intervention the
character-status of established knowledge.

6. Epilogue

Collective learning is inherently systemic in the sense that it is an
interactive process and is condensed so that one may learn to act in a
complex system where other players also act, so that one learns to juxtapose
and combine representations and to process with others common
representations. Consequently, the systemic approach can help develop
such learning processes, mainly by suggesting open reporting models and
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representations, more reflectively rather than regulatory.

In regards to the constructivist teaching organization, we would like to
point out that it enables and supports the development of students-trainees
on multiple levels. It ensures self-motivated learning on a cognitive level, it
enables the student-trainee how to learn to use himself/herself in complex
interactive situations, achieves cooperativeness within the group-class and
the implementation of his/her self.

The teacher-trainer can be the guarantor of the framing process for the
development of students-trainees. In what way? With the double movement
of stability and adaptation of the trainer (framing system) that allows
students-trainees (sub framing system/s) to experiment the facts, to be
recognized, to be listened to according to their rhythm, their difficulties,
their strong points, their qualities and at the same time to be associated with
their peers or colleagues who will take care to maintain the objectives,
requirements; a dynamic tension of an interactive relationship of students-
trainees to within the context of the exercise that was given to them.

In other words, a teaching technique is formed whereby the teacher
organizes the confrontation of students' — trainees’ enunciations and their
adjustment. (Sensevy et al., 2000). From its success is dependant the
transformation of the environment (Comiti & Grenier, 1997). An important
part of the trainers’ actions suggests the construction of a contract, to
dissipate the enunciations and to ensure the treatment of students’
discussion in class. In the case of the game-activity "The Target Number"
we are confronted with the recognition of the need ("So we find things”)
which seem to form not only the mathematical and epistemological project
of the teacher-trainer but also a teaching mean "if things are found” this
means for students-trainees that their recognition is likely to lead them to
win. So we acknowledge the fundamental function of the construction of a
dialogue at multiple levels (teacher, student - trainee, class).

Endnotes

[1] The theory of a-didactic situations expresses and examines the genesis
conditions of mathematical knowledge that is formed between a teacher and
his/her students. In this we distinguish a social project which aims at
learning knowledge from the learner and constitutes a list of conditions that
must be satisfied in order to improve the student’s ability so that they may
succeed in solving a problem.

[2] During the school period of a pupil division takes successively the
following statuses: implicit tool for solving problems, teaching object,
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explicit tool to solve problems. This change of status (tool/object,
implicit/explicit) corresponds to a macro scale, that Regine Douady has
called object-tool dialectic. We say that a concept is a tool when we focus
our interest on the use that is made to solve a problem. For object we mean
the cultural object which has its place in a larger edifice that is the
knowledge learned at a certain point, socially recognized. The tool-object
dialectic has borned from a reference to the activity of the mathematician.
Regine Douady talks of tool-object dialectic to distinguish the process of
change of status of the concepts that are found in particular at the didactic
transposition level. She distinguishes for the same concept three statutes:
object, implicit tool, explicit tool. She organizes more widely these three
statuses in a tool-object dialectic.

[3] A mathematical concept is a carrier of many meanings enclosed in many
different situations. We can be sure that the student has understood the
whole concept when they have tackled all the different situations which
represent the concept. A set of problems-situations need to be constructed
and their treatment will lead to the integrated concept.

[4] The description of this activity was given during a Master course on
Didactics of Mathematics in Grenoble by Claude Comiti (1991-1992).
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Abstract

Teachers’ training is a fundamental factor for any effort to introduce
students to complex systems, through mathematics or any other learning
path. In this paper, we argue that dynamic systems modelling can support
the meaningful learning of complex systems concepts in teachers’ training.
System dynamics concerns the study of the non-linear behavior of complex
systems. In this research, teachers of various subjects and grades, approach
complex systems by solving sustainability problems on the field of
ecosystems during their training for the Education for Sustainability. The
research by design and the case study methodology were applied to
investigate the effectiveness of a specially devised teaching intervention
participants' experiences, perceptions and conceptions of the complex
systems and systems modelling based learning approach were studied. The
present paper proposes an effective learning design for the introduction of
complex systems concepts to teachers, combining systems dynamics,
authentic problem solving and Digital Games Based Learning.

Keywords: Sustainability, systems modelling, complex systems, system
dynamics, DGBL, teachers’ training
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1. Introduction

The modern systems thinking (Bertalanffy, 1973; Wiener, 1961) has
stirred the interest of the educational world mainly due to the awareness of
the restrictions of linear causal analytic approach in the study of complex
dynamic systems that surround us (Groff, 2013; Klopfer, Scheintaub,
Huang, Wendel & Roque, 2009; Sterman, 2001). Forrester (1992) proposes
system dynamics in combination with the learner centered learning as a
framework for achievement of cohesion, meaning and motives in the
modern education of all ranks. Traditional curricula teach static snapshots of
the real world while the world's problems are dynamic. The human mind
perceives these static snapshots as photographs, maps and static
relationships in a wonderful and effective way. However, in systems with
interacting components that change over time, the human mind is an
inadequate “simulator" of their behavior. Even a simple social system
cannot be solely understood by intuition (Forrester, 1992). The penetration
of systems thinking in the curriculum of primary and secondary school is
fairly low. While simulations are widely used in education to actively
involve students in self-guided discovery procedures, the modelling, which
opens the "black box" of simulations and allows learners to create or modify
their own models, have not become an integral part of the educational
process (Klopfer, Colella & Resnick, 2002). The idea of introducing system
dynamics in the education has inspired important educational projects such
as the Creative Learning Exchange (CLE) (http://www.clexchange.org) or
the work on Starlogo (http://education.mit.edu/starlogo; Colella, Klopfer &
Resnick, 2001). Projects like the “Adventures in Modelling (AIM)” using
StarLogo aim to introduce students and teachers to the process of designing,
creating, and analyzing their own models. Moreover, the participants
explore models in any domain in order to develop a deeper understanding of
patterns and processes in the world around them (Klopfer et al., 2002).
StarLogo allows students and teachers to see the "invisible" and examine
complexity in ways that were previously impossible to do (Blauvelt, 2001).

Because of its interdisciplinary nature, the utilization of dynamic
systems modelling in the education is of particular interest for several
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subjects including mathematics, science, ecology, social sciences,
management and technology. Specifically, for the mathematics education,
the dynamic systems modelling provides an additional domain of
applications of mathematics as a formal mean for the description and the
study of the world, in a manner that utilizes the Information and
Communication Technology (ICT) as a cognitive tool. The research
concerning the introduction of students in systems thinking through
computer modelling in various subject matters is advancing internationally
(Gkiolmas, Karamanos, Chalkidis, Papaconstantinou & Stavrou, 2013;
Leiba, Zuzovsky, Mioduser, Benayahu & Nachmias, 2012). The effective
training of teachers constitutes necessary prerequisite for the utilization of
systems thinking and the study of complex systems in K-12 education. In
the present study concerns the investigation of teachers’ ideas and
misconceptions, about fundamental concepts of complex systems, along to
the development of the understanding of systems thinking concepts. The
authors aim to facilitate teachers’ meaningful learning (Ausubel, 1963;
Ausubel, Novak & Hanesian, 1978), as well as their conceptual
understanding of complex systems, through a thoroughly designed
instructional intervention. The formal systems and complexity theories can
be introduced more smoothly and incrementally, building upon the
infrastructure of the understanding of the key concepts. In this context the
formal description of systems emerges initially as a tool for their clear
description which serves the needs of human-human and/or human-
computer communication.

2. Theoretical framework

2.1 The sustainability as key concept in the context of the
intervention

For the design of the teaching intervention in an authentic context, a
familiar, interesting, and accessible for teachers, problem domain, rich in
complex systems, is needed to be selected. Ecology constitutes a well-
known example of a complex systems domain (Anand, Gonzalez, Guichard,
Kolasa & Parrott, 2010; Grimm, 1994). The structure of an ecosystem is
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determined by the interactions between populations of animals, birth and
death rates, the quantities of food and other more specific variables of
different ecosystems (Forrester, 1992). System dynamics modelling offers a
method for the understanding of the behavior of such complex systems, by
representing them in executable computer models which simulate the
ecosystems taking advantage of the many simultaneous computations
(Forrester, 2007). Ecosystems were also selected in the present research
because the participant teachers (of various subject matters) were attending
postgraduate course concerning the education for the sustainability and the
environment. The research focus on the key concept/problem of the
sustainability of an ecosystem, while systemic concepts emerge and
develope in relation to the key concept.

In the context of environmental education, sustainability concept is
often determined by the interaction of three components, namely the
environment, the society and the economy without explicit signification of
its relation to complexity. For Pittman (2004) there is a dynamic dimension
to the concept of sustainability which embodies the ideal of change towards
being viable. Sustainability is an ongoing process of a dynamic equilibrium
of behaviors and conditions. There have been proposed many ways of
representing sustainability (Todorov & Marinova, 2011) with most popular
the Venn diagram of the three overlapping circles (economy, society,
environment). In this paper, we adopt a quantitative model approach for the
sustainability concept in the field of Education for Sustainability (EfS) using
the STELLA modelling environment as a cognitive tool. The proposed
conception of sustainability is more or less that of the general systems
theory in which a system is sustainable for a time interval if it is has not
exhausted the required resources for its operation (Dexhage & Murphy,
2010). UNESCO has been invited from the United Nations Commission on
Sustainable Development to make a significant effort to help educators
worldwide: not only to understand sustainable development concepts and
issues, but also to learn how to cope with interdisciplinary values-laden
subjects in an established curriculum (UNESCO 2005b; UNESCO, 2010).
In that direction the ecosystems’ computational modelling activities could
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play a significant role, helping teachers to develop their conceptual
understanding of complex systems to innovate Mathematics and Science
education enhanced by ICT.

2.2 Computer modelling of system dynamics as a learning approach

For the needs of the research, participant teachers are engaged in
computer modelling of dynamic systems and the use of game simulations. It
constitutes a widespread conviction in the field of technology enhanced
learning that development of computer models supports the comprehension
of the modelled system. The developer of a system model engages in
experimentation and reflection circles repeatedly, during which he/she
improves his/her understanding of how and why the specific system
operates. This claim is supported by research findings (Confrey & Doerr,
1994; DiSessa, 1986; Talsma, 2000) while being the starting point for the
creation of several cognitive learning environments and educational
programs relative to systems thinking and the complex systems in particular
(Colella et al., 2001). Computer modelling value as learning tool and
epistemological method justifies the integration of computer programming
in education as the pioneer Papert (1980) defended with, his brainchild,
LOGO programming language. More recently, several computing
environments were developed especially for studying of dynamic modelling
and complex systems, such as Stella (Richmond, Peterson, & Vescusco,
1987), StarLogo (Resnick, 1994), Model-It (Jackson, Stratford, Krajcik &
Soloway, 1995), and NetLogo (Wilensky 1999; Wilensky & Resnick, 1999).
These environments enable the design and the development of complex
systems models, not only by researchers but also by teachers and students.
The modelling activities contribute to the understanding of complex
concepts such as sustainability. Students who explore models exhibiting
complex behavior of real world systems, may observe the same behavior in
other systems, internalizing this idea as part of their normal thinking (Senge,
2000). Even if some students will not construct models later in their lives,
they should be aware of the nature of these models that will be built by
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those whose propose changes in economic and social policies and will be
available for public inspection.

In parallel, over the past few years the Digital Games Based Learning
(DGBL) has become recognized as distinguishable pedagogical model
(Connolly et al., 2012; Gee, 2003) which could enhance students’
engagement with complex learning content. Learning games are considered
as interactive simulations enriched with game features (Klopfer, 2008).

2.3. Review of related works

In this section selective review of educational research on dynamic
systems modelling is given. Surveys of Hogan and Thomas (2001), as well
as of Nuhoglu (2008) focused on the nature of the reasoning of secondary
school students in modelling dynamic ecosystems with STELLA software
through the identification of cause and effect relations. Hogan et al. (2001)
research have Dbeen discussed srudents' difficulties on development
quantitative models, where it deemed necessary to provide continuous
Scaffolding. The Joolingen and Bollen (2013), and Jong, Joolingen,
Savelsbergh and Borkulo (2012) present the research results of the use of
two learning modelling environments in young groups. This is SimSketch,
which allows modelling development through an informal way of design
and the Co-Lab, a collaborative inquiry-based learning environment. The
findings of these researches showed that while there was no significant
difference in the groups creating and investigating models with the different
software, there was a shift of participants from the representation of models
accurately (morphic analogy) to a more functional representation (validation
of models based on their results rather than their structural similarity). This
shows improvement in the participants' ability of abstract perception of the
systems.

More recent research combines meaningful learning and conceptual
understanding with the system dynamics, integrating conceptual modelling
(concept maps) in the modelling software. The Zuzovsky and Mioduser
(2012) work is a typical example in this category of research, which concern
a modern pedagogical approach to support students in the study of complex
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systems through the conceptual modelling environment Dynalearn
(www.dynalearn.eu). According to the researchers, the concept mapping
functionality enabled direct and intuitive construction of representations of
the systems under study. Furthermore, concept mapping supported the
analysis of students’ ideas about the structure and the cause-effect
relationships in the systems under study. Similarly, studies of Leiba et al.
(2012), and Souza, Sa, Costa e Silva, Wilhelms and Salles, (2011),
concerning the Dynalearn modelling software evaluation, claim that
students increased their ability to represent structural and functional
properties of systems. The combination of conceptual mapping (qualitative
modelling) with the simulation of dynamic systems (quantitative modelling)
seems to facilitate the understanding of complex systems by students.

Summarizing this review, many researchers note that there are
promising results and significant progress in the design of dynamic systems
modelling environments for learning internationally (Komis, Raptis, Politis,
& Dimitrakopoulou, 2004). Despite this fact, dynamic systems modelling
environments (such as Stella, Modellus, Vensim, iThink and Dynalearn) are
not used extensively in educational practice. Moreover, the research that
concerns the teachers’ understanding of complex systems, as well as suitable
teachers’ training in dynamic systems modelling for learning are limited.
Since teachers’ training is a decisive precondition for the success of any
educational innovation, we focus on the need for study the issue of teachers’
training for the conceptual understanding of complex systems concepts and
their potential in education.

2.4. Research rationale, and research questions

The world we live is full of complex systems with circular relations and
the simple linear deterministic reasoning of traditional mechanics is simply
not enough to deal with them. Subsequently, systems thinking and complex
systems dynamics constitute significant capabilities that could be developed
by the education system. Many researchers have already studied the
students’ exposure to systems dynamics modelling with encouraging results.
Furthermore, international organizations advocate the cultivation of systems
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thinking in K-12 education. Sophisticated and user friendly ICT modelling
environments for complex systems dynamics, of discrete events or
continuous time, are available widely along with teaching and learning
material and support. Systems thinking and the study of complex systems
dynamics could extend the frontiers of mathematics education and its
applications to the teaching practices of other knowledge fields, in
combination to the use of ICT modelling tools. The integration of complex
systems modelling in K-12 education depends crucially on the suitable
training and professional development of the teachers. In this work we focus
on the conceptual understanding of complex systems concepts and
especially on the concept of sustainability. The aim of the research is to
improve complex systems understanding by the teachers using a specially
designed teaching intervention in which they solve authentic sustainability
problems using simulations and systems dynamics modelling.

Thus, an integrated instructional intervention (series of learning
activities) was conducted aiming to assess teachers' conceptions of the
Sustainability concept and related concepts of complex systems, addressing
the following questions:

RQ1. Can dynamic system modelling environments be used as tools for
meaningful learning (conceptual understanding) of complex systems
concepts?

RQ2. Can the concept of sustainability be approached through the study of
a dynamical system of an ecological problem?

RQ3. How effective are the processes of modelling as teaching and learning
methods?

RQA4. Does the proposed instructional intervention and learning activities
contribute to the improvement of conceptual understanding of the
participant educators?

3. Methods and procedures

3.1 Methodology

A combination of research by design and case study methodologies was
selected to approach the posed research questions. More specifically, the

HMS i JME, Volume 7. 2015 - 2016 (63 — 96)



Improving the teachers’ understanding of complex systems through
dynamic systems modelling and problem solving 71

exploratory case study methodology (Yin, 2011) was selected because it
allows a better understanding of complex phenomena and, in-depth
observation of authentic conditions, in specific cases. In an exploratory case
study, it is not required hypotheses declaration a priori about the results, but
in this case the authors expected positive effect of interventions. The
research by design is a relatively new methodology that is suitable for ICT
enhanced learning interventions development and evaluation. Research by
design incorporates an iterative process of intervention design and
implementation in order to promote both theoretical understanding and
educational practice (DiSessa & Cobb, 2004). The design element is just as
important as the research-experimental element. In the present case the main
purpose of the research by design was the design of innovative instructional
intervention supporting the improvement of the teachers’ understanding of
complex systems concepts.

3.2 Sample and procedures

The research was conducted to 8 teachers (seven females and one male)
who were postgraduate students attending the program "Environmental
Education for Sustainable Development™ of the Department of Philosophy,
Pedagogy and Psychology of the University of Athens, during the academic
year 2013-2014. The teaching intervention (delivered by the second author)
was implemented in two three-hour sessions.

3.3 Research data collection instruments

A full and detailed description of interventions with worksheets and
questionnaires exceeds the limits of this article, the interested reader can
find detailed information at Kyrodimou (2015). Three research data
collection instruments were used:

1) Q1. Initial investigation questionnaire of ideas-perceptions of
teachers of the concepts: system and sustainability. The initial investigation
questionnaire was designed to explore the initial ideas of the participant
teachers about complex systems and sustainability/viability concepts (see
§5.1).
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2) Q2. Final investigation questionnaire of ideas-perceptions of
teachers and evaluation of the intervention. The final questionnaire was
given to the participants after the teaching intervention in order to: a) detect
any conceptual change from their original ideas for the concepts of system
and sustainability, b) to record the opinion of the teachers about whether and
to what extent can the modelling environments be used as tools in
understanding the dynamic concept of sustainability and whether they
contribute to the conceptual understanding by the students.

3) Three learning activities work sheets (WS1-WS3): for
introduction/familiarization, design/development and simulation/analysis of
a dynamic system model with qualitative-quantitative modelling software
Stella (see §4.4).

3.4 The teaching intervention

In the teaching intervention, teachers are getting familiar with the
modelling and simulation of dynamic systems through three learning
activities from the ecology field. More specifically the teachers are called to
give sustainable solutions in environmental issues. Through the
investigation of the long-term effects of different policies for population
control in an eco-system, the participant teachers are expected to improve
their understanding for the concepts of sustainability and complex dynamic
systems because they are going to use them as authentic problem solving
methods (tools).

Learning Activity 1. Familiarization with STELLA software. A step-by-
step guide to modelling a predetermined ecosystem.

The purpose of the first learning activity is to familiarize the teachers
with the STELLA modelling software. The teachers initially introduced to
basic concepts of STELLA (e.g. entities, stocks, flows, connectors) and then
were asked to create a model population of hares in an eco-system following
a step-by-step guide (Figure 1). By defining the equations, a STELLA
model will follow from the structure. The model will illustrate the system's
dynamic behavior and the hare population change over time. Adding the
hunting as a factor of depopulation of the hares, educators are seeking
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regulatory policies to bring the population in dynamic equilibrium. By
simulating the regulatory policies of the model, the linking of the time-
paced evolution of the population with the concept of sustainability and
dynamic system emerged (Figure 2).

Bt Anla

Figure 1. The model of the hares’ population in Stella environment.
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Figure 2. The graph of the population of figure 1 model in dynamic

equilibrium

Learning Activity 2. Learning-Study complex systems through a computer
simulation game

The second learning activity aimed at development of intuitive teachers'
conceptions of complex system and sustainability through a simulation
game. Table 1 contains an excerpt from the learning activity worksheet.
Learning activity 2, uses the Fish Game, by the Cloud Institute for
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Sustainability, that simulates the human fishing activity on a lake, in order
to ask teachers to discover a sustainable fishing practices (Figure 3).
Teachers provided descending guidance to explain the rules of the game
while they were recording the results of the fishing activity before and after
the implementation of fishing policies.

Figure 3. Screenshot from the FishGame, of Cloud Institute for
Sustainability

Table 1. The directive of the Fish Game

You <can be guided to the Fish Game through the website:
http://cloudinstitute.org/fish-game/

You have 10 days to catch as many fish as you can. The money you make from
these fish will need to support your family for the next month. Each fish nets €2.
Your computer is your opponent.

The lake in which you are fishing can only support 20 fish (that is the carrying
capacity of the lake). Every night, the fishes that remain after a day of fishing will
reproduce at a rate of 25% (for the purpose of this game, we round to the nearest
whole number). However, the total number of fish can’t exceed 20. For instance, if
there are 12 fish, they will multiply to 15 overnight. If there are 19, they will
multiply to 20.

For your 10 fishing days you can choose whether you want to take none, one, two,
or three fish for the day. There are two other fisher folk also trying to catch as
many fish as they can — they will follow your lead, and base their catch on yours.
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. Remember: The goal of the game is to win as many fish as you can.

2 You will play the game 3 times. Before starting each round, you have to
choose a catch fish policy that can change every day, you will record the expected
results and you will apply your policy to the game until the end of the 10 days.

For each game complete as below (e.g. Fisheries Policy: 1,1,2,3,0,1,1,1,1 and 1)

Learning Activity 3. The teachers develop systems model for resolving a
historically recorded ecosystem management problem

In the third learning activity, the teachers apply what they have learned
earlier to study a complex ecosystem associated with the historical problem
of the collapse of the fishing activity of sardines in the Pacific Ocean in the
50's The same problem is used also on the board game Fish Banks Ltd.
(http://www.systemdynamics.org/products/fish-bank/) which is a role-
playing game developed by Dennis Meadows. Table 2 shows, the
introductory excerpt of the 3" learning activity worksheet.

Table 2. The problem which was raised to teachers in learning activity 3.

The seas are a source of wealth for centuries. Throughout the course of these
centuries, the fishermen are in constant battle with the sea and in recent years with
the development of higher harvest fisheries technology have prevailed in this long
battle. The excerpt below illustrates the result of over-exploitation of the sardine
population led to the collapse of the catching sector in 1950.
“The Pacific Coast sardine industry had its beginnings back in 1915 and reached
its peak in 1936-1937 when the fishing netted 800,000 tons. It was first in the
nation in numbers of pounds of fish caught, and ranked third in the commercial
fishing industry, growing $10 million annually. The fish went into canned
sardines, fish bait, dog food, oil, and fertilizer. The prosperity of the industry was
supported by overexploitation. The declines in the catch per boat and success per
unit of fishing were compensated for by adding more boats to the fleet. The
fishing industry rejected all forms of regulation. In 1947-1948 the Washington-
Oregon fishery failed. Then, in 1951, the San Francisco fleet returned with only
eighty tons. The fishery closed down ...".
Robert Leo Smith (in Owen, 1985)
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The Tragedy of the Commons

« The tragedy of the commons is an economic theory of a situation within

h 4 a shared-resource system where individual users acting independently
and rationally according to their own self-interest behave contrary to the common
good of all users by depleting that resource.
Activity 1 — The model in Stella
You are hereby required to take the role of the manager of fisheries sector in the
period of 1950 before the sardine collapse in the Pacific fishery. Studying the
simulation model of the Fish Banks L.td. game you will be invited to submit
proposals that should ensure the conservation of the fish population and fishing
activity. The model is based on the Fish Banks L.td. game which was originally
developed by Professor Dennis L. Meadows.
Through the interaction between the system fish population and the fishing
companies, you are asked to analyze policies by changing its structure, having
responsibility and aim to configure a regulatory policy to support a sustainable
fisheries policy.

The goal of the 3rd learning activity is to permit teachers to use the
historical authentic data of the collapse of sardine fishery to create a
computerized simulation model for the prediction of the dynamic behavior
of the corresponding complex system in order to be able to test the long-
term effects of different management policies. Teachers open the "black-
box" of simulation and assume the controller role in a sustainable fisheries
policy facing a real situation. The problem solving ability of the participant
teachers will reveal the level of understanding of the examined concepts.
Problem data and the different policies are given to students with the
assistance of authentic documents of the time. Specificly, in learning
activity 3, the teachers study the behavior of the system (Figure 4) and give
answers in some initial conditions of the fish population to be studied. Three
different policies that affect the dynamics and sustainability of the system
follow. In each of these, the teachers are asked to record their prediction
before and after the execution of policy. The ultimate objective is or
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students to search and design their own fisheries policy for the continuation
of fishing activity and ensuring the fish population.

=

Figure 4. The model of the sardine population in STELLA.

4. Results

4.1 Questionnaires and learning activities

The key findings of the research questionnaires and learning activities
implementation are presented in this section along with the answers the
research questions.

QL. Initial investigation questionnaire of ideas-perceptions of teachers
of the concepts: system and sustainability. Examining the participant
teachers’ answers the question Q1.1: "How you would evaluate your own
understanding of the sustainability/viability concepts?" supports to the
estimation of how confident they were initially about their comprehension
of the sustainability concept. Most of the teachers believed that they
understand quite good (4/8) or very well (3/4) the concept of sustainability
while one teacher answered “satisfactory”. This was rather expected due to
the fact that they attend to a relevant postgraduate program. Table 3 shows
the answers to the question Q1.2 "How do you perceive the concept of
sustainability/viability?".
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Table 3. Teachers descriptions of the meaning of sustainability
Teacher Answer

T1 “... I have combined the concept with growth, which is a development
based on intergenerational justice and solidarity”

T2 “... Is the development that meets the needs of the present without
compromising the future of generations to come, taking into account
environmental protection™

T3 *“... Is the human interaction with the environment and society"

T4 *“... Is the socio-economic development that has as a stock the quality life
of future generations, as for the current generations in a climate of
growth and solidarity"

T5 “... i1s the combination of social, economic, political, cultural
considerations in relation to various environmental issues™

T6 ... highlights social - economic - political - ethical - environmental -
educational dimensions. A driving force, effort for the perpetuity”

T7 " ... is the non-use of natural resources until exhaustion "

T8 "... is development that meets the needs of the present without

compromising the needs of future generations..."

Teachers may elaborate the static conceptions of sustainability, affected by
the basic theory of the environmental education which approaches the
concept using the vein diagram of economy, society and environment

concepts.

Table 4, shows the answers to the question Q1.3. "What constitutes a
sustainable or viable system in Ecology?". The answers of the teachers
show that their conception of sustainability initially is quite confused
without explicit reference to concepts such as: resources, exhaustion, time
interval. Table 4 answers support the hypotheses that the participant
teachers had incomplete sustainability conceptions.
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Table 4 The sustainable system according to the participants’ initial opinion

Teacher Answer

T1 *...I1s a system which is structured in such a way as to indicate the causes,
the effects and possibly solutions of an environmental issue™
T2 “...we consider the way that the elements interact and the results of

interactions are optimal as much for the person as for the society and the

environment "

T3 “... Is the maximum enjoyment of goods without affecting the future
generations. Coexist economic, political and social systems™

T4 *“... the avoidance of an environmental issue with aim of continuing the
existence and maintenance of life and natural resources.”

T5 ... 1s a system that combines economic-environmental and social factors

T6 ... Is the development of a system so as not to disturb their equilibrium™

T7 “... Is the system that develops relationships with its parts"

T8 *“... Is the system that is in balance with the environmental, economic and

its social factors "

In addition, teachers asked to answer the question Q1.4. "A system is
often represented by a graph relating its input to its output over time. The
graphs (Figure 5) represented this variation for some systems cases (e.g.,
world population, fish or hare population). Which of these graphs
correspond to sustainable systems?"'.
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Figure 5. Identification of the graphs that correspond to a sustainable
system.

The teachers studied the four graphic representation of the systems and
identified which ones correspond to a sustainable system. The answers of
the teachers were as follows T1:A & B, T2:A, T3: B & D, T4: A & B, T5:B,
T6:B & D, T7:D, and T8:B. Only 2 out of the 8 teachers (T3 & T6)
recognized correctly both sustainable systems -which reveals
misconceptions in understanding of the general concept of sustainability in
mathematical terms. This finding is consistent to the finding of the previous
question Q1.3.

The initial investigation of the teachers’ ideas and conceptions reveals
misconceptions and incomplete ideas about sustainability despite the high
confidence of the participant teachers about their understanding of the
concepts. More specifically some teachers associated the concept of
"sustainability™ with the concept of development and management of natural
resources, while others imprinted it as a way of human interaction with the
environment. Teachers seem to perceive the concept of sustainability as an
attempt to balance the environmental impact of economic and social
development. The teachers’ conception of sustainability is compatible to,
and affected by, their “Education for Sustainability and the Environment”
studies, and does not refer to the technical meaning of sustainability as
understood in the context of systems theory. In systems theory, sustainable
system is the system which does not exhaust (never or within a certain time
interval) the essential resources of its operation. Mathematically, the
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variables that represent the resources should not be zero or get negative
values. The initial investigation of misconceptions and difficulties of the
teachers revealed that their understanding levels of the sustainability
concept could be improved significantly by teaching interventions and/or
learning experiences. The incomplete conceptual schemata of the teachers
need to associate the sustainability concept with concepts of complex
systems dynamics.

Analysis of Learning Activity 1. Familiarization with STELLA software.
A step-by-step guide to modelling a predetermined ecosystem. The 1st
learning activity was designed to familiarize participants with the STELLA
Software and the concept of the systems dynamics modelling which was
emerged during the simulation of hares' population in an ecosystem. All the
participant teachers completed successfully the learning activity. After the
completion of the activity teachers were asked to answer the question "What
is a dynamic system", the answers are shown on Table 5. The answers show
the influence of the terms of dynamical systems, as these presented in Stella,
in their discourse. This indicates that the participant teachers adopted easily
the conceptual framework of the systems dynamics, despite the fact that
they had no previous contact with it.

Table 5. Answers to the question what is a dynamic system

Teacher Answer

T1 " ...it's a system that changes over time, according to internal or ext/nal
events"

T2 " ... it's a system that the variable population fluctuates depending on
factors "

T3 "... a system of interactions where are changes in the long term"

T4 "... It's a system that we can define with some variables, and based on
them we can change-affect the system”

T5 " ...It is a regulating mechanism that contributes to the maintenance of a
system"

T6 " ...itis the system that changes over time "

T7 " ...itis a system of interaction with certain factors "

T8 " ... itis the system that includes variables that affect itself"
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Analysis of Learning Activity 2. Learning-Study complex systems
through a computer simulation game. In the second learning activity of the
instructional intervention, the teachers used the Fish Game to invent and test
the consequences of alternative fishing policies in a lake. Fish game
simulation presents complex behavior that is difficult to predict in the long
term, despite the fact that it works according to very simple rules. This
makes the specific game ideal mean for the introduction of the complex
systems features and properties. The goal of the game for the participant
teachers was to catch as many fish as possible in a given time interval of ten
days without exhausting the stocks of the lake. After a short experimental
familiarization with the Fish Game, the teachers had to determine three
fishing policies and to declare the results they assume as expected for each
proposed policy. Afterwards, they applied their proposed policies in the
game and compared the real results to their forecasts. This way, the teachers
are invited to devise intuitively a sustainable policy for the specific situation
in order to have a firsthand experience of the difficulties this task has even
for simple complex systems. Indeed, 7/8 (88.5%) of the teachers did not
managed to finish all the rounds of the game without exhausting the lake
fish stocks while only one was able to implement sustainable fishing policy.
This was quite surprising for them, and as an event of cognitive conflict it
caught their attention and prepared them to be aware and learn more about
complex systems.

Table 6, shows the teachers’ answers to the question: " What conclusion
can we draw for the evolution of a complex system, such as the above, when
we apply simple and intuitive harvest rules? Eventually, is it easy to predict
the time evolution of a system and to devise intuitively effective rules of
sustainable management?", that was answered at the end of the learning
activity.
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Table 6. Teachers’ opinions about intuitive management of complex
systems

Teacher

Answer

T1

T2
T3
T4

T5
T6

T7

T8

" ...we can't have the best results for us and the environment using only
simple intuitive reasoning. It's not easy to devise intuitive sustainable
management rules.”

" ... with simple and intuitive rules it is not easy to make safe predictions..."
"...it's not easy, needs understanding and developing adequate strategies..."
" .. Itis not easy to predict the evolution of a complex phenomenon only
with the human brain ..."

"... Intuition is not enough, there is difficulty in predicting..."

"... There is a difficulty predicting the behavior of the phenomenon if you
focus only the main problem..."

"... sometimes the simple rules are more correct and have better results but
greed did not let us think calmly and correctly "

"... sometimes wants a deeper understanding of the system for prevention of

its behavior "

Responses on Table 6 show that the 2" learning activity using the Fish
Game effectively guided the participant teachers to realize the counter-
intuitive behavior of complex systems which occurs even in those systems
that are described by relatively simple rules. The teachers through the
process of cognitive conflict and rebuttal of their own forecasts are prepared
to engage in the next learning activity in which they create a dynamic
system model to resolve a real ecological problem.

Analysis of Learning Activity 3. The teachers develop systems model for
resolving a historically recorded ecosystem management problem. As
already mentioned, in the 3rd learning activity, the teachers opened the
"black” box of the simulation and assumed the role of the controller in a
sustainable fisheries policy facing a real situation (the collapse of the
sardine in the Pacific Ocean fishing activity in the 50's). The teachers study
the dynamic model of the Fish Banks game and then they are called to
propose fishing policies that should ensure the conservation of the fish
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population and fishing. To assess the effectiveness of the learning activity,
the teachers are called to answer questions in specific steps of the
process.Teachers initially prepare graphs of the evolution of the sardine
population during the period 1937-1951, with the fishing policies that were
implemented by those who were responsible at that time and then to retell
the story of the problem using the graphic displays of fish population and
ships purchased as a policy response to the reduction in fishing activity
(praph 1 and 2).

L . T - -

ams 7T +u aers 7 s
Graph 1. The population of sardines during ~ Graph2. The number of ships, stocks
the fishing period 1937-1951 between 1937-1951

The participant teachers managed to produce correct graphs (in the
sense that they depicted the historical data) and understood what happened
as their storytelling reveals. Indicatively, the story of the sardines’
population narrated by a teacher using Graphs 1 and 2, follows: “The left
graph shows the decline of fish populations because of overfishing and the
right graph shows the decline in the fish population in relation to the growth
of ships. When number of ships increased, the fish number dropped
drastically".

The teachers are then guided to apply in the software model a 1st policy
according to which tax is imposed for the new boats. Using the simulation
of the model the teachers studied the policy repercussions in the
sustainability of fish population and the piscatorial activity for the interval
1937-1951. Through the study of the tax implementation policy all the
participants agreed that it was an acceptable sustainable policy (Graphs 3
and 4).
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Graph 3. The population of sardines during Graph 4. The number of ships, stocks
the fishing period 1937-1951 under the tax between 1937-1951, under the tax policy

policy

Subsequently, they were asked to extend the prediction (simulation
time) of system behavior by the year 2030 and to answer what would
happen if they applied the same policy that was recorded as sustainable. All
the teachers (8/8) were surprised by the results of the simulation of the
system behavior with new simulation time limit because they did not expect
that the tax policy would be proved unsustainable in the long term. Then,
the teachers were asked to consider a few more policies, concerning larger
taxes amounts in order to conclude that the increase of tax increases the time
interval of guarantee of fish catches, however, it is not capable to eliminate
the collapse of population. Finally, the teachers were asked to propose and
apply in the simulation their own plan of sustainable piscatorial activity.
Seven out of eight (7/8) teachers were able to propose a sustainable policy
that they validated through simulation and documented its viability using
graphs.

From the analysis of the implementation of the second learning activity
it seems that a) all the teachers completed the tasks successfully, b) they
understood the functionality of the model, c) they became capable to
transfer knowledge between the model and the real world system, and d)
they were able to apply the concept of sustainability for the resolution of an
authentic historical problem. The use of a historical ecological problem
formulated a conceptual context in which the teachers managed to engage in
mathematical and computational modelling of complex systems dynamics
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improving their understanding of relative concepts with a pleasant and
effective way.

Q2. Final investigation gquestionnaire of ideas-perceptions of teachers and
evaluation of the intervention. The final questionnaire aimed to detect any
conceptual change about the complex system and sustainability concepts on
the research participants. In addition, the questionnaire contains evaluation
questions about the teaching intervention. The key findings of the
questionnaire are presented in sections 85.2 and 85.3.

4.2 Evaluation of the teaching intervention by the participants

To the question: Q2.1. "Did your attendance in the activities of
computational modelling contributed in the better understanding of the
concept of sustainability/ viability?" most teachers found the contribution of
the intervention satisfactory (4/8), enough (1/8) or very much (3), on a 5
points likert scale. The data shows a positive evaluation of the intervention
contribution by the teachers’.

With question Q2.2. "How successful was the approach regarding the
concept of sustainability through the study of fishing activity Fish Game and
the study of dynamic model simulation of the environmental problem of
sardines in STELLA Software?" the teachers evaluated the contribution of
Fish Game and STELLA activities. The teachers found the contributin of
Fish Game activity, Satisfactory (3/8), Enough (2/8) and Very much (3/8)
on a 5 points likert scale. Similary, the teachers found the STELLA software
contribution Satisfactory (2/8), Enough (3/8) and Very much (3/8). The
answers support the hypothese that the teachers value positively the
contribution of the second intervention that aimed to experiential
exploration of the properties of complex systems such as the difficulty of
forecasting their behavior with simple thinking approaches, and their
counter-intuitive behavior.

In both the questions: Q2.3 "Do you think the modelling activities
constitute an interesting teaching method in education for the environment
and sustainability?", and Q2.4 "Do you consider the modelling activities an
interesting approach as an alternative way for learning in education for
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sustainability?”, the teachers answered the questions similarly Very (4/8)
and Enough (4/8). The responses show the participants' satisfaction and the
possible intention to implement computational modelling in educational
practice. This view is supported by the teachers’ answers in the next
question: Q2.5 "Do you think the modelling activities can be used to
improve the understanding and other complex concepts in education?", in
which all respondents answered positively.

In the question Q2.6 "Express yourself freely for the Stella software",
the teachers’ answers reveal that they appear to appreciate the possibilities
of the specific modelling software in the understanding of the studied
concepts and recognize a potential contribution in solving environmental
and other problems. Educators expressed the need for more familiarization
time with the Stella software.

4.3 Conceptual change detection

In the question: Q2.7 "Did these activities influenced your thinking on
how some changes in a complex environmental system can have long term
effects on the system viability?". All the participants answered positively
meaning that they perceived a change in their perceptions of complex
systems dynamics, at least in terms of predictability of their long-term
behavior. This is corroborated by the answers given in the next question:
Q2.8 "How do you think modelling activities can help to avoid making the
wrong policy making decisions on real environmental issues?". The answers
reveal that the teachers focused on the potential of long-term prediction, that
is difficult for anyone to obtain with regular thinking (e.g. T1: “They are
very useful as they provide situations in the future that the human mind is
impossible to do”, T8: “they can help by placing suitable variables in the
model to increase our predictions on the behavior of a system in long-
term™). Teachers also mention the ability to evaluate alternative scenarios to
assess and compare their effects (e.g. T4: “before a policy decision is taken,
the modelling can help those responsible to see expected results, advantages
and disadvantages of their policies").
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5. Discussion

An overview of teachers’ participation in the research activities is that it
was an interesting and unusual experience to them, through which they were
puzzled about various environmental issues and developed their practices of
critical and creative thinking. However, the allocated time is not considered
enough and that more time is needed in order to understand and to
consolidate the modelling activities. Most teachers focused on pleasant
reflection and better understanding of the studied subject. This reinforces
the view that the proposed instructive intervention can activate the
conceptual understanding processes in the field of complex systems in a
way that is pleasant and comprehensible to the educators. Consideirng these
results with respect the research results the following answers are posited.

RQ1. Can dynamic system modelling environments be used as tools for
meaningful learning (conceptual understanding) of complex systems
concepts?

The implementation analysis of learning intervention shows that
educators resolved with success the problems assigned to them. Moreover,
the teachers believe that they actually benefited in understanding of complex
problems (Q2.1, 85.2). Their statements regarding the intuitive addressing
of complex systems is that we risk to make wrong prediction on how a
system will behave in the future and the recognition for the need of
computational dynamic systems modelling as alternative management
policies (Table 6), shows that the intention were effectively enough.

RQ2. Can the concept of sustainability be approached through the
study of a dynamical system in an ecological problem?

The utilization of ecosystems as examples for reasoning about complex
systems was proved apt choice in the specific case. The ecological problems
are familiar, interesting and authentic to the teachers. Ecosystems provide a
conceptual framework for the introduction of abstract mathematical
concepts of the general systems theory. The historical data and the available
documentation on the ecosystems facilitate the creation of learning
activities. The interdisciplinary nature of environmental problems makes
them interesting means for the introduction to mathematical concepts.
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However, an issue that remains open is whether that experience can be
transferred to other cases and how to make the transition from the
conceptual introduction to the formal mathematical description and study of
complex systems.

RQ3. How effective are the processes of modelling as teaching and
learning methods?

The results of the implementation of the intervention and the
participants’ opinions advocate that, in this research, computational
modelling as a method of inquiry learning was effective and satisfactory.
The teachers that participated, recognized clearly the effective and
satisfactory levels of the method (Q2.3, Q2.4, Q2.5 85.2) expressing their
wish to implement this method.

RQ4. Do the proposed learning activities contribute to the improvement
of conceptual understanding of the participant teachers?

The researchers, taking into account the findings, believe that the
proposed instruction intervention and the use of modern learning approaches
(authentic learning, learning through simulation, games based learning,
problem based learning and learning by computational modelling)
introduces successfully the study of complex systems dynamics and
improves their conceptions of sustainability. The initial teachers’
conceptions for sustainability were influenced only by the official general
educational goal of environmental education. Through the teaching
intervention the teachers enriched their cognitive schemata of sustainability
with concepts of complex systems and the establishment of operating
conditions without the exhaustion of essential resources. Moreover, the
teachers realized that even simple systems that work with a few clear rules,
can exhibit complex behavior. In addition, the participants learnt that the
long term prediction of the complex systems behavior often exceeds the
capabilities of the human mind. Consequently, the computational modeling
and simulation of complex systems emerges as inevitable cognitive tool that
serves the study of a large class of problems based on mathematical theory
of systems. The success of the proposed teaching intervention, aiming to
improve the understanding of complex systems of the participant teachers, is
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supported by their conceptual change, as it is revealed in their answers to the
problems and the questions (compare Table 3, 4, and Q1.4 85.1 to Table 5,
6, and Q2.8 85.3) but also in their own opinion (Q2.1 85.2).

Considering and summarizing the theoretical and the empirical parts of
the research, it is supported that complex systems dynamics modelling, and
learning activities can support students to understand better the problems of
the modern world and may change the way students interact with their
environment, adopting a more proactive attitude towards their reality. As
Senge et al. (2000) claims, when a student has worked repeatedly with
models that exhibit such behavior and design of such models incorporating
various real observations, then the student may observe the same behavior in
other systems of real life, internalizing this idea as part of normal thinking.
Despite the considerable research efforts (Karamanos et al., 2012; Gkiolmas
et al., 2013; Colella, Klopfer & Resnick, 2001; Komis et al., 2004) and the
availability of advanced educational modelling environments, the systems
thinking approach and the study of complex systems have not yet been
adequately utilized in education. An important factor in this direction is the
preparation and training of the teachers. The present study designed and
applied experimentally a teaching intervention to improve conceptual
understanding of complex systems and dynamic systems computational
modelling based on the concept of sustainability in ecosystems.

The proposed intervention used thinking investigation tools for the
initial expression and diagnosis of misconceptions of the teachers, as well as
tools for the reflection upon their eventual misconceptions after the
completion of the learning activities of the intervention. The learning
activities of the proposed teaching intervention utilizes modern learning
approaches such as learning through simulation and modelling,
collaborative learning, authentic problem solving and Digital Games Based
Learning. Despite the small number of participants in this case study and the
fact that the results can't be generalized safely, the qualitative analysis of the
research findings shows that participant teachers can a) build dynamic
system models to represent real phenomena, b) explore the dynamic aspects
of the corresponding systems through the simulation of the models and c)
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use the simulation of the models to consider forecasts and assumptions
about the behavior of the represented systems. In other words, teachers
using the teaching intervention can develop fundamental systems thinking
capabilities. The authors believe that the proposed teaching intervention
could be used as an introductory experience for conceptual understanding of
key complex systems concepts in the context of environmental education or
in any other context before formal training to systems thinking.

Furthermore, the participant teachers improved significantly their
understanding of the sustainability concept and other related complex
systems features and properties such as their difficulty on long term
predictions and their counterintuitive behavior. More specifically, the
participants seemed to have moved from their original static conception of
sustainability to a more abstract, mathematical and dynamic meaning.
Moreover, the participant teachers developed positive attitude and
motivation to explore models further, to participate in computational
modelling learning activities and to learn more about subjects that could be
studied with the support of STELLA like software. The proposed learning
activities offer an effective method for the teachers to develop further their
conceptual understanding of complex systems and Education for
Sustainability key concepts, enabling them to seize modelling activities in
teaching and learning procedures.

6. Conclusion

The authors are convinced that the present research contributes to the
preparation of teachers to improve their understanding of complex systems
using systems dynamics modeling software in an authentic problem solving
environment. The trained teachers are expected to be more amenable to
utilize complex systems concepts in teaching and learning. More research,
in the direction of the teachers’ training relevant to systems dynamics
modeling for EfS, is currently under design. Research will take into
consideration the information collected from this first exploratory case study
in order to produce more thorough results and document best practices.
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Abstract

In this paper, we propose a systemic approach to the complexity of teaching
and learning mathematics within the school unit. We hypothesise a self-
similarity between the learning-teaching phenomenology (conceptualised as
an emerging linking links process) and the school unit (conceptualised as a
complex learning  organization), introducing a  co-developed
methodological-theoretical framework to reveal implicit links in this
complexity. Two empirical studies are discussed, investigating links within
and amongst the system of scientific disciplines (mathematics in comparison
with the other disciplines) and the system of school unit (mathematics as a
school course in the actual lived school reality, in the desired reality and the
perceived as normative reality), as experienced by the educational
protagonists. The proposed approach and systemic instrument -also
considering the ethical dimension of the interdisciplinarity and the
multiplicity of choices— help in identifying a communication space amongst
the seemingly incongruent experience spaces, thus facilitating the didactical
planification towards to a meaningful learning as linking links.

Keywords complexity, system, mathematics discipline, school
mathematics, views, beliefs, teaching-learning practices
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Marco Polo describes a bridge, stone by stone.

“But which is the stone that supports the bridge?” Kublai Khan asks.
“The bridge is not supported by one stone or another,” Marco answers, "but
by the line of the arch that they form.”

Kublai Khan remains silent, reflecting. Then he adds: “Why do you speak to
me of the stones? It is only the arch that matters to me.”

Polo answers: "Without stones there is no arch."

Calvino (1976, p. 82)

1. Learning as linking links

The notion of linking seems to be at the crux of various
conceptualisations of learning, including linking: a behaviour to a stimulus;
a cognitive process with a certain task; cognitive processes with each other;
cognitive and affective processes and experiences; neural and embodied
experiences to cognitive and affective processes; intrapersonal,
intersubjective and social experiences. The quantity and the quality of these
links, as well as their interconnections within a learning network or a
teaching design, characterise the quality of learning. The awareness of such
linking of links, in the frame of complexity theories, is related to the concept
of intelligence (Le Moigne, 1995).

In mathematics education, researchers have noticed the importance of
the qualitative and quantitative differentiation of learning experiences,
contrasting, for example: relational understanding and instrumental
understanding (Skemp, 1976), conceptual knowledge and procedural
knowledge (Heibert & Lefevre, 1986), processes, objects and procepts
(Gray & Tall, 1994), deep, surface or achieving approaches to learning
(Biggs, 2001; Entwistle, McCune, & Walker, 2001; Marton & Siljo, 1976).
It seems that learning is characterised by the links made amongst various
elements including the learners, the setting, the subject taught, the teacher.
The complexity of the learning phenomenon appears to be in a direct
relationship with the interconnection scheme of the links that a
conceptualisation considers. Nevertheless, this scheme is characterised by
its varied fragility: in the boundaries between the inside and the outside
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components the scheme seems to be sensitive to the change of the initial
conditions, whilst at the same time the scheme seems to be resilient to the
change of the conditions within which its identifiable learning or teaching
style has been constituted (cf Moutsios-Rentzos, 2009; Moutsios-Rentzos &
Simpson, 2011).

In this paper, in order to support a systemic instructional design for
mathematics education, we focus on the mathematics learning phenomenon
conceptualised through a soft systems theory approach, considering the
links amongst different systems and roles, namely: amongst the system of
scientific disciplines, the system of school unit system, the broader social
system within the school unit functions, as well as the various roles that the
teaching-learning subjects, individually and collectively, adopt (including,
teachers, students, principals, parents etc). For this purpose, we introduce a
co-developed methodological-theoretical framework, in order to identify the
complexity of the phenomenon. Applications and implications of this
framework will be discussed.

2. Systems and roles: mathematics learning in the school unit

2.1 The emerging importance of the school unit

Our approach places the school unit at the crux of the mathematics
learning phenomenon, considering the school unit as a dynamic learning
organisation which influences the learning process transcending the borders
amongst the school, the family and the broader community. This approach is
in (a seemingly) stark contrast with the official descriptions of the school
unit objectives, structures, rules and social representations, which focus on
the teaching processes, on the evaluation of learning by ‘ordering’ students
according to their responses to tests and on the departmentalization of the
cognitive contents. These official descriptions are linked with the
centralised educational systems, in which the central planification is more
important than the local dynamics and their interactions.

In order to introduce our systemic approach according to which the
importance of the school unit emerges, we need to mention related core
ideas of the ‘system’ conceptualisation. A system identifies a whole the
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parts of which are linked in ways that the constituted whole qualitatively
differs from the mere bricolage of its parts. Aristotle explicitly identifies
such wholes that are different than their constituting parts, contrasting them
with the heaps of parts (Metaphysics, 1045a8-10). Bertalanffy (1968, 1975)
posited the General Systems Theory, theorising the basic characteristics of
systems, including purpose, structure, behaviour, connectivity, elements,
subsystems, functions, interactions, boundary, environment. A system is
defined by its objective and its boundary (the noematic purpose that
identifies the system as a whole) and it may consist of elements (its parts) or
other systems (subsystems). The dynamic links (as activated by the system’s
objective) amongst the parts of the system crucially determine its properties,
which also crucially non-deterministically emerge as a result of the
aforementioned links and interactions. Systems vary in their openness
(referring to their level of interaction with its environment and other
systems), complexity (referring to the number of parts and their links) and
dynamic (referring to the volume and speed of systems’ input and output).

In accordance with these ideas, the school unit may be conceptualised
as a learning system (or learning organisation), consisting of subsystems
(such as the school class; Cobb & Jackson, 2008) and elements that interact
and are interdependent with the purpose to produce a multileveled and
multifaceted educational outcome. At the same time, the school unit does
not exist in vacuum; it lies within broader interacting social systems,
including the immediate (geographically and administrative) social
environment and the broader educational system. In Figure 1, a
diagrammatic descriptive (albeit necessarily partial), representation of those
links is presented.
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Social & Educational Environment
(supersystem)

Paolicy
makers

Houndary

School unit system

Figure 1. A descriptive approach to the complex school unit reality.

2.2 Mathematics and mathematics education in the school unit

Though not always explicitly mentioning the systemic ‘language’,
mathematics education researchers have discussed the complex interaction
between the school unit and the families, the curriculum, the socio-cultural
environment, the beliefs and the stereotypes about mathematics that the
protagonists (including teachers, students, parents) hold (Begg, 2003, 2005;
Bouvier, Boisclair, Gagnon, Kazadi & Samson, 2010; Chen & Stroup, 1993;
English, 2007, 2008; Kalavasis, Kafoussi, Skoumpourdi & Tatsis, 2010;
Moutsios-Rentzos, Chaviaris & Kafoussi, 2015; Thornton, Shepperson &
Canavero, 2007; Wittmann, 2001, 2005).

Following the conceptualisation of learning as linking and the
aforementioned systemic systemic ideas, it is posited that learning signifies
a systemic change, a disequilibrium of the till then status quo with regard to
the relationships amongst the learning protagonists, the corpa (rather than
corpus) of knowledge, as well as the interactions amongst and within the
various interacting systems. The quality of learning is embodied in the new
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state of equilibrium that the system reaches. Crucial factor in the learning
process and outcome is the individual and collective reflection upon each
experience and/or action that allow the identification of the qualities of the
occurring change. Through the attempts to communicate these reflections
and to obtain a shared, intersubjective meaning, learning leaves the
cognitive and affective ‘shadows’ and enters the individual and the
‘collective foreground’ (cf. the idea of a ‘collective learner’ in Davis, 2005).

In mathematics, such conceptualisations of learning may refer to the
constant revisit of ideas, through new levels and/or new qualities of
experience and generalisations (cf. the circle ‘experiencing’ — ‘questioning’
— ‘theorising’; Kalavasis & Moutsios-Rentzos, 2015), through re-analysing
and re-synthesising old parts and wholes to new parts and wholes, and/or
even to new old wholes and parts. The continuous communications (as
conceptualised in Watzlawick, Beavin & Jackson, 1967) amongst the
protagonists of the educational process (including, students, teachers,
principals, school advisors, policy makers, parents, siblings, family, broader
community etc) render the new inherently systemic mathematics learning
apparent.

A snapshot of a self-similar approach to the structure of these
communications, relationships and interactions is diagrammatically outlined
in Figure 2 (adopted from Kalavasis, 2007, 2013). The endogenous
relationships amongst the Protagonists (Prot) are affected by the
relationships occurring in the School Unit (SchUn), with the pentagons
defined by the diagonals identifying self-similarity and constructive
interaction: each order and normality or disturbance and inadequacy of the
inner pentagon is ‘reflected’ in the outer and vice versa.

By highlighting the importance of the school unit as a learning
organisation rather than an educational structure, the unit develops
epistemological and ethic exchanges with its members. This exchange,
formal or not, exists and at the same time is at an antagonistic relationship
with the ‘respective’ exchange of the other systems, including the family
and the broader community. Thus, the system’s learning should
appropriately address the linked (not necessarily aligned or even congruent)
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changes experienced by both the protagonists and the school unit. By
conceptualising the protagonists and the school unit as complex adaptive,
learning system (organisation), the communication space is at the crux of
the learning phenomenon, thus rendering the interactions amongst the
protagonists and the structures visible (Kalavasis, 2011).

SchUn—Scientiﬁc knowledge

Figure 2. A self-similar approach to the Sch(ool) Un(it) — Prot(agonists)
complexity.

2.3 A systemic framework for the teaching and learning of
mathematics

We attempt to map aspects of the communication space by considering
mathematics as element of interacting systems. In particular, in our
approach we consider the System of disciplines and the System of the school
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unit. On the one hand, we investigate the relationships between the
epistemic views that the protagonists (the teachers, principals, students,
family etc) of the school unit hold about mathematics, whilst, on the other
hand, we identify their pedagogical/educational views about mathematics as
a school course. This investigation is multifaceted exploring within each of
the two systems, as well as across their interactions.

It should be stressed that our interest concentrates in the individuals’
perceived views and experiences, rather than in the observed experiences by
an ‘objective’ observer. Our interest is in the realities experienced by the
protagonists and the invisible realities that emerge through their
interactions. Furthermore, we wish to differentiate our conceptualisation of
view from the notion of beliefs in the sense that a ‘view’ implies a
(potentially chosen) ‘perspective’ to something, rather than a more static
stance about something usually linked with beliefs. Notwithstanding this
conceptual difference, we agree with researchers (see, for example, the
volume edited by Pepin & Roesken-Winter, 2014) who realised that the
observed phenomena required the introduction of a more complex construct
identified as belief systems (Green, 1971). For Green, beliefs form relatively
isolated clusters that are internally structured through hierarchical
relationships (primary or derivative; central or peripheral). Beswick (2006,
2012) builds on these ideas and on Davis’ ideas about complexity (Davis,
2004, 2005; Davis & Sumara, 2006; Davis, Sumara & Luce-Kapler, 2008)
to argue for a conceptualisation of belief system as a complex system with
properties and characteristics that transcend the individual beliefs/agents
that constitute the system.

Consequently, in our approach we conceptualise views akin to beliefs
with respect to their formation and their clustering to form systems, but we
consider views to be more of a matter of choice, thus more amenable to
change and more dynamic. Importantly, each individual’s view of the topic
under investigation, implicitly or explicitly requires the individual to assume
the aspect of the self that is required in order to be part of the system under
investigation and to look into the topic from a certain perspective. By
investigating different views, we essentially investigate different systems or

HMS i JME, Volume 7. 2015 — 2016 (97 — 119)



Systemic approaches to the complexity in mathematics education research 105

subsystems, different and in differently ways related integrated wholes.
Notwithstanding the theoretical differences, the proposed framework shares
elements with the body of research looking into beliefs and belief systems
that may affect educational practices.

In Figure 3, we diagrammatically present our intersystemic, multi-
focussed approach.

Disciplines School unit

Figure 3. An approach to the complexity of school mathematics education.

First, we consider mathematics within the system of disciplines,
essentially altering the focal point in order to identify epistemic views about
mathematics in relation with the other disciplines: from the typical, neutral-
point-of-view investigations about whether or not, for example,
‘mathematics is useful’ to an investigation about whether or not
‘mathematics is useful, in comparison with other disciplines’. Hence, the
emphasis is on a relational/systemic view, rather than an ‘individual’
view/agent. Secondly, we consider the system of the school unit from three
interacting and interrelated perspectives that each protagonist assumes: a)
the symbolic/normative (the perceived official regulations), b) the pragmatic
representations (the perceived current state of school practices), and c) the
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desired/intentioned actions (the personal hypothetical actions, assuming the
power to implement them).

In this way, at first, we consider the protagonists’ self as a tri-
chotomised, yet integrated, whole that acts and interacts within a school
unit. At the same time, the protagonists inherently and unavoidably bring
within the school unit their own experiences and views of the broader social
network, thus rendering the school unit open to such interactions. Moreover,
the power equilibrium spans across this tri-focussed reality: a) the official
power structure as described by the official regulations, b) the actual power
structure as existing with each school unit, and c) the desired power
structure that each protagonist dreams/hopes/aims for the school unit.

Though ‘tri-chotomised self’, ‘power struggle and equilibrium’,
‘symbolic-pragmatic-desired” are terms that may resemble well-known
theoretical frameworks and ideas of the ‘French theory’ (for example,
Foucault, 1989; Lacan, 1982), it should be stressed that in our proposed
approach these ideas are stemming from a systemic perspective and, hence,
the ideas presented should be discussed within this framework (avoiding, for
example, a Lacanian discussion about the ‘symbolic’ or Foucault’s ideas
about ‘power’). Moreover, considering mathematics educational research,
apparently similar ideas may be found; notably ‘espoused beliefs’,
‘intentions of practice’ and ‘actual practice’ as proposed by Liljedahl
(2008), but our approach crucially differs in being systemic and ‘top-down’.
For example, though Beswick’s (2006, 2012) discussion about belief
systems and her research shares elements with our approach, we wish to
note that we attempt to map a network of views for specific aspect of
mathematics by employing an inter-systemic, multi-focussed approach,
rather than first identifying views about mathematics considered in different
systems and then link them (see §2.4-2.5).

2.4 A systemic research instrument

The aforementioned theoretical considerations have been co-developed
with a compatible methodology. Our efforts stemmed from the following
axes:

HMS i JME, Volume 7. 2015 — 2016 (97 — 119)



Systemic approaches to the complexity in mathematics education research 107

—  The methods employed should be in line with the aforementioned inter-
systemic, tri-focussed approach.

— Bearing in mind that the field is relatively under-researched, we
preferred to a methodology that would appropriately and adequately
map the existing school realities.

— The obtained data should be able to provide insights about the till then
hidden convergences and divergences about these realities.

— The results should be relatively easily to be communicated to the
protagonists, in order to maximise the effect of our approach.

We wish to stress that the latter may seem to be of minor importance,
but it is at the crux of our approach, since we posit that it is exactly through
the appropriate communication of the diverse co-existing realities that the
communication space (which facilitates the systems’ learning) emerges. The
appropriate communication tool allows for the potential tenses within and
amongst the protagonists to appear, thus allowing their efficient
management. The purpose of our approach is to accept that we don’t choose
our differences, but we can choose to converse about them.

Consequently, a quantitative, questionnaire-based, approach is
proposed:

a) Each system was investigated with different questionnaire sections

b) The disciplines system was investigated with items with appropriate
wording in order to emphasise the relational and comparative nature of
the questions asked. For example, “Do you think that mathematics more
than other disciplines promotes the development of logical reasoning?”.

c) The school system was investigated with a triplet of question for each
topic of investigation, in accordance with the three foci of our approach.

Hence, each topic was investigated with three items with the same

ending phrase and three different beginning phrases. For example, for a

topic investigating the school principal’s allocation of the school budget

three items were constructed with the end phrase “...a bigger part of the
budget in materials for the teaching of mathematics in relation with
other courses?” matched with three beginnings “According to your
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opinion, should the official regulations allocate...”, “Do you think that
in reality in schools...”, and “As a school principal and assuming you
had the power, would you allocate ...”.

d) The analysis allows investigations between the two systems, as well as
within the school system. In cases where more than one protagonists are
included further inter-systemic and intra-systemic investigations may be
conducted.

e) The results of the analysis are summarised in a hybrid symbolic-figural
representation allowing both holistic and analytical interpretations (see
Figure 4 and Figure 5).

2.5 Applications of the proposed approach

In order to gain deeper understanding in the proposed approach, two
studies are briefly presented in the following section, with an emphasis on
the school unit system.

2.5.1 One topic, two countries

The purpose of this study (discussed in detail in Moutsios-Rentzos, da
Costa, Prado & Kalavasis, 2015) was to investigate whether or not
sociocultural, economic and structural differences are evident in the
professed views and practices of in-service principals. At the same time, we
wished to investigate whether or not the proposed approach is useful in
inter-cultural, comparative studies. Twenty-nine in-service school principals
from Brazil and thirty from Greece (N=59 in total) participated in the study.

The results of the conducted comparisons suggested convergences and
divergences in the epistemic views about mathematics held by the principals
of the two countries, which were also evident in their views about
mathematics as a school course, thus revealing intra- and inter- systemic
interactions. For example, considering the system of all disciplines, the
principals of both countries appear to consider that mathematics more than
other disciplines promotes reasoning, that its epistemic value spans across
the spectrum of disciplines, and that it has a real world value. Nevertheless,
the Greek principals’ ‘mathematics-is-special” mix is skewed towards more
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absolutistic and utilitarian aspects (Ernest, 1991), whilst the Brazilian
principals’ ‘mathematics-is-special’ is characterised with a more fallibilistic
aspect.

Considering the school unit systems and the intra-cultural inter-foci
comparisons, in most cases it seems that the mathematics school course is
considered to be ‘special’ in terms of the way that both the Greek and the
Brazilian principals would intend to act assuming their having the power
about: ways of assessment and of teaching, as well as about their own
professional development. Focussing on the inter-cultural comparisons,
divergences were found, amongst others, in the allocated class hours to
mathematics and their professional development. In Figure 4 these two
results are summarised with a symbolic-figural representation.
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Figure 4. Mathematics as a course within the school unit system (both inter-
and intra- cultural comparisons, values range ‘-4’ to ‘“+4’; Moutsios-Rentzos
etal., 2015, p. 17).

In Figure 4, the green triangle represents the neutral border: the ideal
‘neutral’ views on a subject for each of the three foci, since its vertices lie
on the zero of each axis-focus. The views of each population (Brazil-
Greece) are represented with a point in each of the three axes-foci, thus
forming their triangular experience space. The comparisons between each
experience space and the neutral border, as well as between the two
experience spaces offer a wholistic, qualitative, yet structured view of the
identified complexity. At the same time, we are offered a qualitative
perspective of the communication space: the space within which interactions
occur and upon which educational engineering may act. These qualitative
aspects are coupled with quantitative statistical measures (tests) to
investigate their statistical significance.

Overall, the proposed approach appears to be useful in an inter-cultural,
comparative study, allowing our realising this complexity and meaningfully
investigating the interactions amongst and within different systems,
including the disciplines, the school unit, the two countries-systems.
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2.5.2 One topic, three protagonists

In this study (discussed in detail in Moutsios-Rentzos, Kalavasis &
Sofos, in press), we investigated the views that in-service primary school
teachers and principals hold about the interrelationships of globalisation and
internet social networks with the teaching of mathematics and with teaching
in general. Importantly, we wished to explore whether or not our approach
is useful in comparing the experience spaces of different protagonists. The
sample included 108 in-service primary school teachers, 31 principals and
vice-principals and 30 school advisors (N=169 in total).

Considering the system of disciplines, mathematics is considered by all
three protagonists to hold a special place in comparison with other
disciplines: in everyday life, in reasoning and in requiring systematic
teaching. With respect to the school system, the participants of the study
appeared to be willing to incorporate social networking sites in the school
teaching, though they think that these sites are not actually used and
especially that the formal regulation are against their use (see Figure 5).
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Figure 5. Mathematics within the school unit system (both inter- and intra-
role comparisons, values range ‘-4’ to ‘“+4’; Moutsios-Rentzos et al., in
press).

In conclusion, our approach seemed to help in more validly identifying
the views and practices of the Greek teachers, principals and school
advisors. Such information is crucial for all the protagonists for class or
school level decisions, but we posit that it is especially useful for policy
makers who wish to identify the communication space that essentially
shows the systems’ potential receptiveness to change, as well as the
potential direction of that change.

3. Concluding remarks: systems, roles and complexity in
mathematics education

The observer as projected in the act of observation becomes
unavoidably a part of the observed phenomenon, thus participating in its
evolution. In our approach, the phenomenology of the teaching and learning
mathematics is interconnected with the development of the school unit as a
learning organisation. We conceptualise the learning of mathematics, as an
emergent continuously re-negotiated equilibrium, stemming from
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continuous reconstructions of the cognitive, sentimental and social links
between each protagonist and mathematics.

This multi-construction is influenced by respective links and relational
constructions (bridges) concerning mathematics between the school unit, the
family and the broader community. Inversely, the internal links and the
external relationships of the school unit are influenced by the dynamics of
the relationships (within the spectrum ranging from antagonism to
cooperation) between the educational protagonists’ roles, as well as by each
protagonist’s emerging internal reflective equilibrium about mathematics.

In this frame of complexity, the mathematics is involved both as a
discipline and as a school course. The valorisation of the school course may
be related with the beliefs about the importance of the discipline and may be
observed in, amongst others, the number of the allocated teaching hours in
the curriculum, in the placement in the school horary, in the importance and
in the sense of responsibility given by the protagonists (including students,
teachers, principals, advisors, policy makers, parents and others). The
research instrument that we propose may help to make visible significant
aspects of the mental procedures constituting the equilibrium of the complex
construction. By being visible, it is possible for the construction to be the
object of our conscious, intentional thinking (cf. Husserl’s conceptualisation
of intentionality; for example, Zahavi, 2003). Hence, it is possible for the
educational designers to manage a multiplicity of options and actions, in
alignment with the ethical imperative, as stated by von Foerster (1988) to
act in a manner that increases the number of possible choices. It makes
possible to re-think about and reflect upon the epistemological obstacles, the
social representations, the alternative learning networks and/or the
fragmented constructions, as well as to re-organise teaching practices, in
order to construct the much needed teaching bridges linking the seemingly
incongruent learning paths (Moutsios-Rentzos, Kalavasis & Sofos, in press).

The inter-systemic and intra-systemic investigation spans across the
individual, the community and the structure, with the purpose to crucially
identify a communication space amongst the diverse experience spaces, the
lived realities. Within these realities, both visible and invisible
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interconnections emerge amongst disciplines acknowledging their dual, co-
existing yet discrete, construction as a scientific domain and as a school
course. In this context, the notion of interdisciplinarity helps in approaching
the complex educational systems, in particular as a type of ethics of the
didactical complexity. Interdisciplinarity involves the concepts and methods
of each discipline within a dialectic and transforming interconnection,
enriching each discipline (Piaget, 1974) through a cooperating experience
crucially inclusive to the diversity of the communicating disciplines. Hence,
interdisciplinarity traces the direction of the research of the complex
phenomenon, by the revalorisation of each disciplinary in the emerging
frame of interdisciplinarity.

Learning mathematics is an inherent interdisciplinary phenomenon that
emerges through the collective mind’s ability to continuously reflect upon
experience, with the purpose for the experience to disappear with a trace that
is the initial sketch of the ‘mathematical idea’. Intentionalities and
necessities seem to be the force that drives our species to actions and
endeavours that go beyond the externally set biological survival, to the
internally and socio-culturally developed internal consistency and
communication (Skemp, 1979; Moutsios-Rentzos, 2009; Moutsios-Rentzos
& Simpson, 2011). We posit that the empirical investigations that drew
upon our proposed approach suggested both its theoretical and practical
usefulness for the involved protagonists, notably the learners, the teachers
and the policy makers. Complexity may be impossible to be modelled in the
traditional sense, but we hope that the proposed approach is in line with the
effort to reconcile ‘ingenio’, designo’ and ethics (Le Moigne, 2013).
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Abstract

Value in itself as a culturally-specific notion has a vital role to play in
classroom mathematics learning. In this paper, we report on a study that
explored the structure of the Greek students’ values through the use of a
values questionnaire in order to have a better understanding of what the
students find important in mathematics learning. The nature of the various
mathematics and mathematics education value dimensions were validated
and fine-tuned using an exploratory analysis. The data analysis revealed
nine key factors valued by Greek students in their mathematics learning.
Importantly, the analyses revealed inter-cultural aspects of mathematics
values and specific to the Greek students’ value aspects. The effect of grade
level and gender was also considered to further our understanding of the
students’ values structure.

Keywords: mathematics values, values classification, value structure
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1. Introduction

Following a socio-cultural perspective, according to which learning is a
collaborative social endeavour, values are considered as the window
through which a person views the world, “situated as being characteristic of
particular sociocultural contexts, drawing their form and meaning from the
discourses, practices and norms of participants and of the interactions
amongst themselves” (Seah & Wong, 2012, p. 36). In the learning process,
values determine the students’ ways of utilising their cognitive abilities and
their affective dispositions for learning, contributing to the students’
practices; their decisions, actions and evaluations (Andersson & Seah,
2012).

It is sensible to argue that the successful in-class communication of
values depends of the teachers’ valid knowledge regarding which values
should be fostered for their students. The teachers’ professional classroom
experience will provide then with this information. Nevertheless, to the
extent that the identification of these values is accurately and timely realised
(for example, in the beginning of the academic year), the potential value-
related conflicts may jeopardise the teachers’ design with respect to both its
cognitive and affective learning aspects. Thus, it is crucial to accurately and
validly identify and explore the students’ values.

The nature of values may be the reason why the various educators
choose to methodologically approach values research through a time-
consuming, qualitative perspective, usually including observations and
interviews (Law, Wong, & Lee, 2012; Yauch & Steudel, 2003).

In this study, we analyse and discuss aspects of the findings of an
international research project entitled ‘What | Find Important (in
mathematics education)’ (WIFI) focused on Greek high-school students.
WIFI is an international project that was conceptualised in 2010. The
participating countries are the following: China, Hong Kong, Taiwan,
Greece, Australia, Sweden, South Africa, Japan, Malaysia, Thailand and
Turkey. The research instrument was a values questionnaire that the
researchers of the WIFI project constructed with the purpose of utilising it
with different students in different cultures. It is argued that such an
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instrument allows the effective and valid identification of the students’
values about learning mathematics. Furthermore, by establishing a
satisfactory cross-cultural reliability and validity of the questionnaire,
comparative studies may be conducted amongst different parts of the world
in order to gain deeper understanding about the cultural effect on the
students’ values about learning mathematics.

2. Theoretical framework

2.1. Values and beliefs

Beliefs and values are constructs which are closely related. Krathwohl,
Bloom and Masia (1964) taxonomy positions values as having developed
from beliefs. Clarkson, Bishop, FitzSimons and Seah (2000) expressed the
relationship in terms of the volitional aspect of values:

‘values are beliefs in action’. That is, the values that teachers are
teaching in the mathematics classroom are not only beliefs the
teacher holds, but their behaviour in the classroom actually point to
these beliefs. (p. 191)

However, one may ask if values are necessarily expressed as actions.
Might it be that in some cultures, what is valued may not be expressed as an
action since there are more important values which are prioritized?

Yet, another perspective emphasizes the difference in nature between
beliefs and values, although each affects the development of the other
within an individual. According to Seah, Atweh, Clarkson and Ellerton
(2008), beliefs relate to what is considered to be true (or false), whereas
values relate to what is considered important (or unimportant). Thus, two
teachers may value, say, information and communication technology ICT,
but the beliefs that they have can be very different. One teacher may value
the use of four-function calculators in the early years so as to free up more
time for students to think. The other teacher who also values ICT, however,
may feel very strongly against this belief, and instead subscribes to another
belief that the adoption of data-loggers facilitates the collection of authentic
data. Certainly, some different values are represented by these two beliefs as
well. While the teachers’ common valuing of ICT might have helped
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develop the two different beliefs, it can be observed that the belief
statements support the valuing of authenticity in the second teacher (for
example).

2.2. Classifying mathematics values

Bishop (1996) theorised that the students’ values about school
mathematics could be classified in three categories: a) mathematical values,
b) mathematics educational values, and c) general educational values.

The ‘mathematical values’ concern the degree that mathematics are
values in the Western culture. In earlier expositions of his views, Bishop
(1988) theorised the existence of three complementary pairs of mathematics:
rationalism and objectism; control and progress; mystery and openness.
Following these, it was revealed that different students may, for example,
value mystery and openness in different degrees.

The ‘mathematics educational values’ express the degree that the
various aspects of classroom mathematics teaching practices are valued. For
example, different teachers may vary in their valuing of different teaching
techniques considering the importance that they ascribe to each technique
(and the values they hold) with respect to the teaching of mathematics.
These values have been investigated through several studies coordinated by
the Third Wave Project (Seah & Wong, 2012), a consortium of international
research groups comprising eleven countries/regions, including such as
Australia, Hong Kong, Singapore, Malaysia and Sweden. These studies
have been interested in understanding how values and valuing shape
mathematics pedagogy (Law, Wong & Lee, 2012; Seah, 2011). The
underlying values of such ‘moments of effective learning’ were examined
with the students through interviews. These interviews had led to the
identification of the following mathematics educational value continua:
Ability — Effort; Wellbeing — Hardship; Process — Product; Application —
Computation; Facts - ldeas; Exposition — Exploration; Recalling -
Creating; ICT - Paper-and-pencil.

Bishop’s (1996) third category of values, ‘general educational values’
concerns the values that characterise the students as they experience school
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education. They may include cultural values (such as honesty, politeness
and collaboration), while in some school settings and cultures they may also
include religion-related values.

The aforementioned values categories are of educational character, in
the sense that that they reflect what is considered to be important in the
scientific, educational and social context of the school experience. The
school class is settled within a sociocultural context: the teachers’” practices
and the students’ learning are affected by the evaluations and the
assessments of the parents, the state and the broad social context. It is
posited that the teachers; values are affected in a similar manner. The social
interaction within the school class is part of the micro-context and is directly
observable, whereas the interaction with the broader sociocultural context is
part of the macro-context, thus demanding a wider investigation in order to
be identified. And it is through this investigation of the dialectic between the
two contexts where mathematics learning occurs that the advancement of
the mathematics education is realised (de Abreu, 2000).

Seah (2005) suggested that a societal category could be added as a
fourth category of values in the mathematics classroom, to allow us to fully
account for the principles and convictions that are valued and co-valued
amongst the players within the classroom. In this respect, it has been useful
to refer to Geert Hofstede’s proposal that each culture (which he defined
generally to include classroom cultures as well) can be uniquely defined in a
five-dimensional space (Hofstede, 1997). There are five cultural
dimensions, namely: power distance, collectivism/individualism,
femininity/masculinity, uncertainty avoidance, and life orientation. Take
power distance, for example, in which a country’s index score shows the
extent to which subordinates and the less powerful members of the
community expect and accept that power is shared unequally. Thus, the
level of power distance associated with any country is characteristic of that
country, and reflects the cultural tradition of the region in which the country
is located. In this sense, then, it is a societal value.
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2.3. Values, grade level and gender

Educational research in general and mathematics education in particular
are used to adopting the factors of age and gender as two important
demographic variables (Jabor, Machtmes, Kungu, Buntat & Nordin, 2011)
with which their effects on some educational outcomes (such as self-
perception and achievement in subjects such as Mathematics) are
investigated.

From the developmental perspective, age and/or grade level is an
important issue of concern in our investigation into the value structure as
exhibited by Hong Kong students. On the one hand, as the students get more
matured, their beliefs and values about mathematics became stabilised. On
the negative side, when the students accumulated more and more unpleasant
experience with mathematics, the belief that ‘math is not for me’ becomes
crystallised (McLeod, 1992). The more they begin to think along those
lines, the less effort they are willing to invest, and the poor result that is
subsequently obtained would reinforce the above beliefs, creating a vicious
circle. On the other hand, when one moves up the grade levels, mathematics
presented in the school curriculum moves gradually from mathematics
encountered in real-life experiences to mathematics as a discipline.

Mathematics as a discipline is more symbolic, abstract and formal. The
students would naturally begin to decide whether they will select the subject
of mathematics (or how much mathematics) in their future studies (for
example, in college and university).

All these might have an impact on the values they attach to
mathematics. This was confirmed in a large scale study of some 10,000
students in Hong Kong, which found that the students’ interests about
mathematics dropped significantly from Grade 3 to Grade 6. A marked
proportion of students become aware of learning difficulties in Grade 9,
while the number of students thinking of giving up Mathematics notably
increased in Grade 10 (Wong, Wong, Lam & Zhang, 2009).

Gender is another issue of concern in mathematics education research
which can be traced back to the 1990s or even earlier (Fennema & Leder,
1990). Findings from TIMSS and PISA have also stimulated much more
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recent research in this area (Else-Quest, Hyde & Linn, 2010). Although
there are broad similarities between boys and girls in mathematics
achievement, the intricate link between the valuing of mathematics
achievement and its effect on the formation of positive mathematics
attitudes as a values component deserves further investigations. Such a
comment is indeed consistent with the literature (Leder, 1992; Leder,
Forgasz & Solar, 1996) that urges us to pay particular attention to the
affective constructs and values, including attitudes, beliefs, confidence,
attribution of mathematical success and how the intersection of these
notions demonstrate a complex interaction among themselves.

Attempts have been made in explicating how these factors would have
influences on the learning of mathematics with regards to differences in
gender. These include the studies using biological, school, teacher, and
parent as variables, as well as those with the focus being drawn on the effect
of affective factors on problem-solving heuristics and the influence of
teachers (Gunderson, Ramirez, Levine & Beilock, 2012; Leder, 1992).
While the findings of these studies revealed the trend that there seems to be
a narrowing in mathematics achievement with gender differences, it remains
unclear what exactly the students value in terms of their mathematical
engagement in the activities.

2.4. Research question

Following these, in this study we address the question: What are the
values regarding mathematics and mathematics learning that characterise
the Greek students? Drawing upon the aforementioned discussion, we
considered the students’ gender and their grade level as factors that may
affect the students’ values about mathematics learning.

3. Methodology

This is a cross-sectional, quantitative study, part of an international
collaboration. A questionnaire consisting of 64 5-point Likert type item was
employed for the purposes of the study (see Appendix). The students
indicate the degree of importance they ascribe to each item, ranging from
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‘1’ (‘absolutely important’) to ‘5’ (‘absolutely insignificant’). The
questionnaire is the result of discussions involving all the countries/regions
participating in the project, in order to strengthen the cross-cultural
reliability and validity of the instrument and to respect the cultural diversity.
725 high-school students (13-15 years old) participated in the study (397
boys and 328 girls), studying in the second grade (Grade B) and third grade
(Grade C) of the Greek Gymnasio in schools located in the Attica region of
Greece (which includes the capital Athens). The quantitative data analyses
were conducted with SPSS 22, including: Principal Component Analysis
(PCA), Cronbach’s alphas and Analyses of variance.

4. Results

4.1. Validity and reliability of the Greek version of the questionnaire

The conducted PCA with Varimax rotation resulted in a 9-component
solution with eigenvalues greater than 1 (in line with the Scree plot),
accounting for 57.20% of the variation (first component 12.32%). After
examining the 51 items (with loadings over 0.40) retained for each
component, the following titles were assigned (see Table 1): C1 Problem
solving with mathematical understanding; C2 Feedback and interaction; C3
ICT in mathematics; C4 Communication (exploration — output); C5 Routine
problem solving; C6 Mathematics and mathematicians’ practices; C7
Practice and evaluation; C8 Real-life mathematics; C9 Communication
(collaboration — input).

Component

Iltem Loading

C1 Problem solving with mathematical understanding

Q64 Remembering the work we have done 0.683
Q58 Knowing which formula to use 0.654
Q56 Knowing the steps of the solution 0.636
Q63 Understanding why my solution is incorrect or correct 0.620
Q59 Knowing the theoretical aspects of mathematics 0.603
Q54 Understanding concepts / processes 0.584
Q33 Writing the solutions step-by-step 0.522
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Component
Iltem Loading
Q32 Using mathematical words 0.515
Q52 Hands-on activities 0.502
Q55 Shortcuts to solving a problem 0.494
Q51 Learning through mistakes 0.472
Q38 Given a formula to use 0.468
Q53 Teacher use of keywords 0.434
Q28 Knowing the times tables 0.425
C2 Feedback and interaction
Q41 Teacher helping me individually 0.626
Q47 Using diagrams to understand maths 0.551
Q49 Examples to help me understand 0.548
Q48 Using concrete materials to understand mathematics 0.543
Q44 Feedback from my teacher 0.540
Q46 Me asking questions 0.512
Q35 Teacher asking us questions 0.452
Q45 Feedback from my friends 0.445
C3 ICT in mathematics
Q23 Learning maths with the computer 0.799
Q24 Learning maths with the internet 0.749
Q22 Using the calculator to check the answer 0.741
Q4 Using the calculator to calculate 0.712
Q27 Being lucky at getting the correct answer 0.452
C4 Communication (exploration — output)
Q21 Students posing maths problems 0.583
Q30 Alternative solutions 0.560
Q19 Explaining my solutions to the class 0.493
Q29 Making up my own maths questions 0.421
Q40 Explaining where rules / formulae came from 0.400
C5 Routine problem solving
Q15 Looking for different ways to find the answer 0.560
Q8 Learning the proofs 0.501
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Component
Iltem Loading
Q14 Memorising facts 0.463
Q13 Practising how to use maths formulae 0.447
Q2 Problem-solving 0.414
C6 Mathematics and mathematicians’ practices
Q61 Stories about mathematicians 0.765
Q60 Mystery of maths 0.621
Q17 Stories about mathematics 0.610
Q18 Stories about recent developments in mathematics 0.559
C7 Practice and evaluation
Q37 Doing a lot of mathematics work 0.788
Q57 Mathematics homework 0.712
Q62 Completing mathematics work 0.523
Q36 Practising with lots of questions 0.427
C8 Real-life mathematics
Q12 Connecting maths to real life 0.680
Q11 Appreciating the beauty of maths 0.520
Q10 Relating mathematics to other subjects in school 0.514
C9 Communication (collaboration — input)
Q7 Whole-class discussions 0.592
Q3 Small-group discussions 0.587
Q5 Explaining by the teacher 0.420

Table 1: PCA results and item loadings.

The identified value structure is in line with studies conducted in other
participating countries/regions (including China, Hong-Kong and Taiwan).
Importantly, through the number of the identified components differs (nine
instead of six), it appears that there was a conceptual correspondence
amongst the different studies. For example, considering the results presented
by Seah, Zhang, Barkatsas, Law and Leu (2014), most of the items appear to
either load in conceptually related components (for example, their ‘ICT” and
our ‘ICT in mathematics’) or to load in conceptual sub-components (for
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example, their ‘achievement’ is broken down to our ‘Problem solving with
mathematical understanding’ and ‘Routine problem solving’).

The reliability (internal consistency) of each of the nine factors was
investigated through the computation of Cronbach’s alphas (see Table 2).
Most of the components showed acceptable internal consistency (>0.60),
except for ‘Real-life mathematics’ and ‘Communication (collaboration —
input)’, which nevertheless were found to be less reliable in the respective
study in Hong-Kong (unpublished data analysis results in a study conducted
by the second author).

Component Greece  Hong-Kong

C1 Problem solving with mathematical understanding 0.859 0.91

C2 Feedback and interaction 0.769 0.85
C3 ICT in mathematics 0.756 0.86
C4 Communication (exploration — output) 0.646 0.79
C5 Routine problem solving 0.597 0.79
C6 Mathematics and mathematicians’ practices 0.719 0.79
C7 Practice and evaluation 0.761 0.82
C8 Real-life mathematics 0.560 0.72
C9 Communication (collaboration — input) 0.446 0.70

Table 2: Internal consistency of the questionnaire (including Hong-Kong
comparisons).

4.2. The grade level and the gender effect

Considering the fact that we would investigate the effect of gender and
grade level, further reliability analyses were conducted (see Table 3). It was
revealed that the lower reliability of the internal consistency of ‘Real-life
mathematics’ and ‘Communication (collaboration — input)’ was mainly due
to the younger students of Grade B, while the younger girls appeared to be
the cause of the marginally acceptable reliability of ‘Routine problem
solving’.
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Component Girls Boys
GradeB  GradeC GradeB Grade C
C1 Problem solving with mathematical 0.787 0.873 0.876 0.901
understanding
C2 Feedback and interaction 0.674 0.816 0.770 0.818
C3 ICT in mathematics 0.765 0.783 0.646 0.830
C4 Communication (exploration — 0.637 0.722 0.644 0.583
output)
C5 Routine problem solving 0.422 0.642 0.634 0.690
C6 Mathematics and mathematicians’ 0.638 0.763 0.713 0.763
practices
C7 Practice and evaluation 0.749 0.749 0.753 0.792
C8 Real-life mathematics 0.502 0.521 0.598 0.620
C9 Communication (collaboration — 0.352 0.550 0.351 0.532
input)

Table 3: Internal consistency of the questionnaire (the gender and grade

level effect).

Subsequently, the students’ mean responses for each component were
computed to conduct gender and grade level comparisons. In Table 4, we
outline the mean scores (with standard deviations) and the results of the
two-way Analyses of Variance (considering gender and grade level). Notice,
that the mean scores range from ‘1’ to ‘5’ and that the lower the score, the
higher the students’ agreement with a component.

Girls Boys

GradeB  GradeC GradeB  Grade C  Analysis of Variance: effects
M SD M SD M SD M SD Gender

Grade level

Gender x

Grade Level

Cl 188 047 2.03 061 182 0.65 185 0.63 **
C2 225 051 242 0.65 2.16*0.67 2.24 0.62 **
C3 285 092 3.14 086 3.13 0.88 3.04 0.84
C4 242 0.66 2.58 0.69 241 0.67 2.51 0.63

**

**

**
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C5 224 057 229 061 210 0.66 2.10 0.65 ***
C6 3.08 0.88 3.16 0.86 3.01 0.89 3.08 0.87
C7 228 090 2.16 0.85 2.14 0.87 2.13 0.89
C8 269 092 2.76 081 2.63 0.84 2.69 0.88
C9 226 0.72 2.27 0.72 2.02 0.57 2.05 0.67 ***

*p<0.05 **<0.01 *** p<0.001
Table 4: Mean responses for each component (the gender and grade level
effect).

First, it is noted that the students seem to adopt the vast majority of the
values expressed in the questionnaire (as indicated by the lower than 3
identified mean scores). Moreover, it appears that the students agree more
with the values that are linked with C1 (‘Problem solving with mathematical
understanding’) and less with the values expressed by C3 (‘ICT in
mathematics’) and C6 (‘Mathematics and mathematicians’ practices’).
Furthermore, the order of the mean scores for each component remains
roughly the same in each combined category of grade level and gender.

The Analyses of Variance revealed statistically significant gender
differences with respect to C1 (‘Problem solving with mathematical
understanding’), C2 (‘Feedback and interaction’), C5 (‘Routine problem
solving’) and C9 (‘Communication (collaboration — input)’), with the boys
appearing to be agree more than the girls with the expressed values.
Moreover, considering the grade level effect, the Grade B students appeared
to agree with the values expressed in components C1 (‘Problem solving
with mathematical understanding’), C2 (‘Feedback and interaction’), and C4
(‘Communication (exploration — output)’) than the Grade C students.
Finally, the effect of the interaction of gender and grade level was
statistically significant only in C3 (‘ICT in mathematics’) with the girls’
agreement as they progress from Grade B to Grade C appearing to diminish,
while the boys’ agreement increases.
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5. Discussion and concluding remarks

The conducted analyses revealed that component structure of the
questionnaire corresponds with the structure found in studies conducted in
other countries/regions collaborating in the project. The internal consistency
of seven out of the identified factors was acceptable, with the two
components with lower reliability (C8 and C9) to also show comparatively
lower reliability in the other studies. Moreover, the descriptive statistics
(means and standard deviations) support that the Greek students in general
agree with the values expressed by the questionnaire components.

Bearing in mind that this was not a comparative study per se, the fact
that the identified value components correspond well with the components
found in the studies conducted in other countries/regions participating in the
project may also be interpreted as indication of the existence of a core of
mathematics values that pertain different cultures. At the same time, the fact
that differences amongst the various studies are evident suggests and,
importantly, identifies the cultural effect on the students’ value structure.
For example, the ‘achievement’ component identified in the studies in
mainland China, Taiwan and Hong Kong (Seah et al., 2014) was divided in
two components, which embodies the fact that for the Greek students the
different qualitative characteristics of ‘achievement’ that are incorporated in
each component are valued differently. This is further supported by the
gender and grade level contrasts, which differ in these two conceptually
linked (yet valued differently) components. Nevertheless, specially designed
comparative studies should be conducted to investigate the veracity of these
claims, in order to identify the specific and the general (if any) of the
mathematics values conceptualisations.

Notwithstanding the aforementioned concerns, these results may be
linked with the current curriculum and the mathematics teaching practices in
Greece, which though claiming to adopt contemporary mathematics
education findings, the everyday classroom teaching practices has not been
clearly affected yet. The broader mathematics goals set within the school
context are concentrated in fostering ‘surface’ mathematical abilities
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favouring procedures and rote learning (for the sake of national exam
success), rather than ‘deeper’ metacognitive, social and affective abilities.
The teaching techniques in most cases remain compatible with traditional
teaching models, without utilising novel teaching approaches (Kasimatis &
Gialamas, 2001).

In regards to gender and grade level differences, the analyses revealed
that the boys and the younger students agree more in some components than
respectively the girls (in C1, C2, C5 and C9) and the older students (in C1,
C2 and C4). Considering the interaction of gender and grade level, it was
revealed that agreement of boys and girls for C2 (‘Feedback and
interaction’) follows opposite directions by revealing an increase in the
boys’ agreement and a decrease in the girls’ agreement. These findings may
be linked with special characteristics of each grade, since in Grade C the
students first encounter important mathematical results in a more
traditionally identified as ‘mathematical’ way, which, combined with a
traditional teaching model, may cause the students; valuing less these three
components (C1, C2 and C4) that express ‘deeper’ mathematical values
(such as problem solving with mathematical understanding, feedback,
interaction, exploration and communication). At the same time, these
‘deeper’ mathematical values appear to be adopted by boys more than the
girls which may be linked with the broader socio-cultural stereotypical view
of boys outperforming girls and/or having deeper mathematics
understanding than the girls (Chronaki, 2009). These results may be also
linked with developmental factors or with the students’ social experiences,
including the school unit, their family and the broader socio-cultural context
(Kafousi & Chaviaris, 2013; Moutsios-Rentzos, Chaviaris & Kafousi, 2015;
Moutsios-Rentzos, Kalavasis & Sofos, 2013). Nevertheless, these claims
require further studies to be conducted (including qualitative and/or
longitudinal designs).

Finally, though this study was conducted within a specific region in
Greece, we maintain that the adopted quantitative methodology appeared to
help in our gaining deeper understanding about the values that the Greek
students hold about mathematics and mathematics learning. The gender and
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grade level differences revealed aspects of the development of the Greek
students’ values useful to teachers, researchers and curriculum designers as
they highlight the nature of their effects on the students’ values about
mathematics.
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Appendix

For each of the items below, tick a box to tell us how important it is to you when you learn mathematics

juepodwi AjaInjosqy

juepodw|

juepodwiun

J1ou Juenodwi JaylaN

juenodwiun

juepodwiun Ajsinjosqy

1. Investigations

2. Problem-solving

3. Small-group discussions

4. Using the calculator to calculate

5. Explaining by the teacher

6. Working step-by-step

7. Whole-class discussions

8. Learning the proofs

9. Mathematics debates

10. Relating mathematics to other subjects in school

11. Appreciating the beauty of maths

12. Connecting maths to real life

13. Practising how to use maths formulae

14. Memorising facts (eg Area of a rectangle = length X breadth)

15. Looking for different ways to find the answer

16. Looking for different possible answers

17. Stories about mathematics

18. Stories about recent developments in mathematics

19. Explaining my solutions to the class
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20.

Mathematics puzzles

21.

Students posing maths problems

22

. Using the calculator to check the answer

23.

Learning maths with the computer

24.

Learning maths with the internet

25.

Mathematics games

26.

Relationships between maths concepts

27.

Being lucky at getting the correct answer

28.

Knowing the times tables

29

. Making up my own maths questions

30.

Alternative solutions

31.

Verifying theorems / hypotheses

32.

Using mathematical words (eg angle)

33.

Writing the solutions step-by-step

34.

Outdoor mathematics activities

35.

Teacher asking us questions

36.

Practising with lots of questions

37.

Doing a lot of mathematics work

38.

Given a formula to use

39.

Looking out for maths in real life

40.

Explaining where rules / formulae came from

41.

Teacher helping me individually

42.

Working out the maths by myself

43.

Mathematics tests / examinations
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44.

Feedback from my teacher

45.

Feedback from my friends

46.

Me asking questions

47.

Using diagrams to understand maths

48.

Using concrete materials to understand mathematics

49.

Examples to help me understand

50.

Getting the right answer

51.

Learning through mistakes

52.

Hands-on activities

53.

contrasting ‘solve’ and ‘simplify’)

Teacher use of keywords (eg ‘share’ to signal division;

54.

Understanding concepts / processes

55.

Shortcuts to solving a problem

56.

Knowing the steps of the solution

57.

Mathematics homework

58.

Knowing which formula to use

59.

definitions of triangles)

Knowing the theoretical aspects of mathematics (eg proof,

60.
678 987 654 321)

Mystery of maths (example: 111 111 111x111 111 111=12 345

61.

Stories about mathematicians

62.

Completing mathematics work

63.

Understanding why my solution is incorrect or correct

64.

Remembering the work we have done
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encouragement on this paper. Any mistakes and any non-traditional or
misapplied interpretations of Gorgias are my own.

Abstract
Lessons for elementary mathematics concepts may be developed from a
heritage reading of an early Greek text, On the Nonexistent, by the fifth-
century B.C.E. Greek Sophist philosopher and rhetor Gorgias. The history
versus heritage source distinction made by Ivor Grattan-Guinness defines
the novel approach taken. It is argued here that this work by Gorgias, not
considered as a historical mathematics text by historians of mathematics,
can be probed successfully for rational language and teaching ideas useful to
elementary mathematics education. However, it must be understood that, as
explained by Grattan-Guinness, such heritage use does not mean similar
math lessons were taught by Gorgias. The historical origins of math
concepts are not the concern of this paper. The goal is to encourage

1 In the sense of Grattan-Guinness; see section 1.
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elementary math teachers to read Gorgias’s text for the potential to improve
the descriptions they use in several challenging math lessons.

Therefore, descriptions for math concepts that were inspired by reading
On the Nonexistent by Gorgias are shared by the author with colleagues in
the hope that reading Gorgias could offer them similar intellectual
invigoration. These descriptions are as follows: (1) Language terms used by
Gorgias, such as “nonexistent,” “beginning,” and “continuum,” can help to
describe the rationale of the basic lesson in math that a continuum may have
a beginning point which potentially extends to infinity. A teacher’s
reflection on how to explain the concept of a beginning point may also help
students learn how to determine whether the set of natural numbers begins
with 0 or 1; (2) The historical term “nonexistent,” as used by Gorgias some
2,500 years ago, is discussed in terms of its contemporary meanings, which
include null, nil or zero. In addition, the word “magnitude” as used by
Gorgias is related to contemporary use of the word in the math concept
orders of magnitude; (3) The idea of the nonexistent is considered for its
potential to aid in describing the division of fractions. A statement by
Gorgias, that anything that exists is not indivisible, inspires further thoughts
about a fraction that is considered to be not allowed or to have no well-
defined meaning, namely, why zero cannot be the denominator of a fraction;
(4) Gorgias explains in On the Nonexistent that there are distinctions to be
made about what is existent, in terms of container and contained, and the
conceptualization of such measurement. He demonstrates that a body is
three-dimensional because it has length, breadth and depth. ? In math
teaching in our era, instruction compares and contrasts the formulae for a
right-angle rectangular prism or parallelepiped and for volume measured in
cube units, which can be one and the same, namely Length x Width x
Height. * Lessons incorporating the descriptive language of Gorgias, as well
as the Classical heritage as the context for such language, could provide
mnemonic associations that could aid in teaching essential formulae for
geometry, volume, and the cube unit.

% As an expert reviewer notes, the term used by Gorgias in Greek means “triple,” although
the term is translated as “three-dimensional”” in English versions of the text.

%It has been suggested by an expert reviewer to include “parallelepiped.” I use “rectangular
prism” or “right-angle rectangular prism” because I think their volume formula of Length x
Width x Depth is used by Gorgias. While the parallelepiped formula encompasses this
formula, it is given as Base x Height, which is broader in its definition and allows for
polygons whose base area is not found only through Length x Width. But for universal
clarity, I have included the term parallelepiped.
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1. Introduction

The work of philosophy known as On the Nonexistent,” by the fifth-
century Greek Sophist philosopher Gorgias (circa 485-380 B.C.E.), is
recommended reading in the search for fresh ideas about language and
proofs to use when teaching early mathematical concepts. This paper invites
elementary school teachers who seek intellectual engagement with rigorous
thought to imagine how this ancient text can be plumbed for inspiration.

Gorgias is believed to have moved from Leontini, Sicily, to Athens in
427 B.C.E., where he subsequently achieved fame as a teacher through his
public speeches. He is considered a transitional figure in the history of fifth-
century Athens, because his speeches are known to be the first Sophist
works recorded and handed down to posterity as texts. Studied as a
historical source in rhetoric and composition studies, his explanations of
rational language (logos, “rational language” being only one of the
meanings the word has in Greek)®> and his rhetorical demonstrations or
proofs are still given considerable scholarly attention. On the Nonexistent
also continues to be important in the study of philosophy as a source work
for the exploration of philosophical problems such as the meaning of
existence.

2. The ‘Heritage’ Approach of Ivor Grattan-Guinness

If this paper were to be criticized, or rejected, as an anachronistic
attempt to suggest that Gorgias might have done mathematical thinking or
teaching of elementary mathematics concepts, it should be understood that |
qualify the suggestion to read Gorgias for the purpose of improving
mathematics education in light of the insights offered by the historian of
mathematics Ivor Grattan-Guinness, who distinguishes between “history”
and “heritage” studies of any historical texts. Although Grattan-Guinness
never discusses Gorgias as a history or as a heritage source, as | do herein,
his approach shapes this paper. Apart from the history of mathematics,

* The text of On the Nonexistent by Gorgias of Leontini is widely available in many
languages. In English translation (see “References”), the title is sometimes translated as On
Nature or On Negation. The ancient Greek original text can be found in Daniel W. Graham
(Ed.), “The Texts of Early Greek Philosophy: The Complete Fragments and Selected
Testimonies of the Major Presocratics.” Cambridge University Press, 2010, Part I, Ch. 16.

® As an expert reviewer of this paper elaborates, “logos in ancient Greek has (and still
retains in Modern Greek), several meanings (among others; word, speech, talk, oration,
discourse, ratio, logic, cause, rationale) thus making it a key concept of philosophical
thinking.”
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within the field of the history of rhetoric studies, the scholar Edward
Schiappa has suggested Gorgias may be a fifth-century exemplar of
“predisciplinary” scientific thinking; Schiappa’s suggestion has also
informed my decision to read and think about the ideas in On the
Nonexistent for inspiration when teaching elementary mathematics
(Schiappa 1999, p.12).°

The heritage approach defined by Grattan-Guinness enables a teacher to
think about teaching with a text as a source of inspiration today rather than
about a text as a historical foundation. Therefore, to be clear, I am not
attempting to suggest that Gorgias provides a foundation for mathematical
theories that appeared later, or that his works should be considered a new
addition to mathematics history, to be “laid down as the platform” upon
which mathematics theory should be built; that would be an entirely
inappropriate and mistaken view of this analysis (Grattan-Guinness,
2004(a), p.171). No claim whatsoever is being made herein that the
historical author Gorgias was a knower of terms in use by contemporary
mathematicians and math educators, such as sequence, set, number line,
natural numbers, orders of magnitude, fractions, volume, rectangular prism,
or parallelepiped.

Why, then, this paper? It is offered because, | argue, that as a heritage
text, Gorgias’s On the Nonexistent provides much useful “description”
language for teaching, but that such language must be distinguished from
mathematics “explanation” (Grattan-Guinness, 2004(a), p.173). Grattan-
Guinness thinks that too often math teachers teach math history by going
“backward in time,” so to be clear, this paper does not constitute a plea to
include Gorgias in the modern math curriculum (Grattan-Guinness, 2004(a),
p.171). Nonetheless, Grattan-Guinness notes that giving attention “to the
broad features of history may well enrich the inheritance” of mathematics
education (Grattan-Guinness, 2004(a), p.168). Talking about the fifth
century of Athenian civilization as a place and time where math concepts
were part of the Greek cultural zeitgeist would be, for some students, like
medicine that’s easier to swallow when coated with honey. As I consider
reasons to use Gorgias’s language and proofs in the modern math
classroom, my goal is to give credit to the civilization that fostered and
recorded many basic mathematical, philosophical, and rhetorical ideas. But
since Gorgias is not numbered among ancient Greek mathematicians, | only

® Schiappa’s suggestion that the text reveals predisciplinary scientific thinking is considered
controversial by many scholars within the field of rhetoric studies.

HMS i JME, Volume 7. 2015 - 2016 (145 — 156)



Inspiration for Elementary Mathematics Descriptions
from a “Heritage” Reading of On the Nonexistent by Gorgias 149

recommend reading what Gorgias teaches in On the Nonexistent because |
believe the text’s contents can refresh and inspire a teacher’s thoughts about
how to teach certain math lessons, not what to teach. | think there may be
many possibilities for such results when reading Gorgias, beyond those |
feel most confident about giving here.

Therefore, 1 am making the case that math teachers, when reading
Gorgias, can attain an overall positive result, without going beyond
mathematics in education and trespassing into the history of mathematics,
the history of Sophist philosophy, or the history of Sophist rhetoric.
Teachers should, however, be warned by Grattan-Guinness’s concerns about
notions “photocopied onto the past” (Grattan-Guinness, 2004(a), p.165). If
mathematics educators do as | suggest and delve into Gorgias’s intricate
thoughts, they must be content to find their own intellectual rewards, rather
than any historical basis in fact for their mathematics lessons, when
grappling to understand this great Sophist teacher.

3. ‘Heritage’ Math Language and Proofs Inspired by On the

Nonexistent

3.1 While equating the use and meaning of the word “nonexistent” with
the use and meaning of zero taught today, I am not suggesting that Gorgias
was teaching anything original about zero, a math concept whose origin and
use in ancient times has been identified in many cultures. But | do think that
his explanation of “nonexistent” can help a teacher clarify the use of zero in
the universal math curriculum. The historical term “nonexistent,” however it
was understood and used by Gorgias some 2,500 years ago, includes in its
contemporary synonyms the words null, nil and zero. My conclusion is that
his acclaimed text can, therefore, be accessed as a heritage source for
descriptive language when teaching when to use zero.

Gorgias states that

everything which is generated has some beginning, but the eternal,
being ungenerated, did not have a beginning. And not having a
beginning it is without limit. (Section 69)

This statement can help a teacher to describe the basic idea of a
sequence, whose beginning must always be determined and which continues
indefinitely unless an end point is determined. Elementary mathematics
education nowadays begins with the study of numbers placed in sequences
and sets. Teachers may appreciate Gorgias’s statements about everything
having a beginning, by comparing them to their own descriptions about
where a number line may begin. In elementary math classrooms, the number
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line is advised to be visible and used frequently. While Gorgias himself did
not teach about “number line” in his text, teachers may appreciate the
challenge of thinking about his explanations of “beginning” and
“continuum” when demonstrating how to determine the beginning of a
sequence, set, or number line.

The question of whether there is a “nothing” that exists as a beginning
point is conceptualized by Gorgias as follows:

If it exists, it is either one or many. But it is neither one nor many,
as will be set forth. Therefore, the existent does not exist. For if it is
one, it is an existent or a continuum or a magnitude or a body. But
whatever of these it is, it is not one, since whatever has extent will
be divided, and what is a continuum will be cut. And similarly,
what is conceived as a magnitude will not be indivisible. (Section
73)

An elementary mathematics educator may find it useful to take the
word continuum and then draw upon contemporary knowledge of the goals
of math education to develop lessons that describe how the natural numbers
must begin with either zero or one. The word continuum, in any heritage
dictionary, always includes the definition that it is a mathematics term for
the set of real numbers. Real numbers include 0 and negative numbers. A
set of numbers that represents only zero, {0}, “is neither one nor many”;
although there is one number in that set, the number does not represent the
existence of one or many things that exist. To be a real number, it can be
included to represent the existent that does not exist in a place, sometimes
termed the place-holder number. To be a natural number, however, requires
understanding what exists or does not exist as the beginning number in the
set of natural numbers.

Now, it is a fact that there is sometimes a question in the contemporary
math curriculum about when to include 0 in the set of natural numbers.
Although 0 is always in the set of real numbers, 0 is not necessarily the
number that should begin the set of natural numbers. When deciding
whether to begin the set of natural numbers with 0 or 1, students must be
taught to ask and then determine, which natural number is needed as the
beginning, from the set {0, 1}? I suggest that the experience of reading and
grappling with Gorgias’s difficult philosophy will end up helping the
primary or elementary grades teacher describe this problem of how and
when to choose whether to begin the set of natural numbers with O.
Teachers must teach and students must learn when zero must be the
beginning point. They must find the beginning place for that nonexistent,
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uncounted, number, in the set of natural numbers. When a number is
determined to be the beginning point, it is never a matter of random choice
between the two numbers {0, 1}, as if a student is asked to take a side and
choose a number in a dispute about the beginning point, but rather a
decision that requires knowing when and why to select one of the two
numbers from the beginning set {0, 1}. While Gorgias may not be speaking
about this decision, comprehending the word distinctions he makes in his
text may help a teacher describe when the nonexistent, or zero, exists as the
beginning point in the set of natural numbers.

Students are shown how when there is no count, no amount, or nothing
that will exist in number at all, the null set {0} represents this math fact. If
the beginning point is 1, such as for counting in the earliest arithmetic
lessons, or there is only the possibility of 1 as a number, then the set of
natural numbers begins with 1, or {1}. However, when they are ready to
learn measurement, they must comprehend that all measurement begins at 0
and not at 1 and so the set of numbers, such as on a one-meter ruler, for
example, will be {0 . . . 100}. The confusion to avoid is when students see
these numbers as equivalent to the total. Even though the ending number of
centimeters is 100, if a student were to count the numbers in the set they
would total 101; yet, regardless of the total of the numbers in the set, there
are not 101 available to arrive at the total number of centimeters to be
measured. Students are not asked to measure O centimeters, rather O
represents that nothing exists to be measured. This might seem self-evident
to most students. Nonetheless, | have seen instances where learners do count
the beginning number as they move along the ruler, pointing at 0 and saying
or counting 1. But beyond that inaccuracy, some students find it difficult to
determine any other number as being a conceptual beginning point
equivalent to 0, even though that conceptualization is the basic requirement
for measurement math. For example, in a beginning problem where a
student uses a ruler to measure the distance between 1 and 3 centimeters, the
total may be answered as 3, rather than 2 centimeters, because the
measurement ends on 3. So it must be demonstrated to students how to
make the distinction between a beginning point that literally exists as 0, or a
point that is designated as the beginning point O from which to move to 1,
realizing that movement from the first number to the next is counted as 1.
This counting occurs no matter what the actual numeral may be to label that
beginning point along the ruler, the line, or the continuum. The total is
determined by where the measurement ends, or borrowing from Gorgias, to
be cut, by moving from one number to the next, or from point to point along
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the continuum. The total does not come from counting static numbers or
points along the way. Such counting and measurement concepts are
demonstrated in pre-school and kindergarten, taught before addition or
subtraction are introduced; however, | have found that without
demonstrating that the beginning point in measurement is conceptually
always zero and that the measurement moves in a continuum from the
designated beginning point, some students unfortunately lag in future
lessons involving any measurement much later in elementary school.

To summarize, it can be difficult for a beginning student to understand
how to distinguish between a point that does not exist as a number to be
counted (the conceptual 0 beginning point) and a point that does exist as a
number (the conceptual beginning point of 1). Wrestling with how to
explain a continuum in the relative terms provided by Gorgias could help
teachers clearly describe and demonstrate this distinction about whether
zero or one begins the working set of natural numbers.

3.2 Mention of the word “magnitude” in Section 73 of On the
Nonexistent can be resourced by elementary math educators for good
language to utilize when they teach about orders of magnitude. Again, what
follows is a heritage use of the historical text. But, it is argued, by studying
Gorgias, an elementary school teacher can develop stronger descriptions of
how and when zero can exist as a power within the orders of magnitude. For
example, any number to the zero power, or x°, always equals one, x° = 1,
except when the number is 0, in which case 0° is explained as having no
well-defined meaning or as being undefined.

That Gorgias was or was not teaching a lesson about orders of
magnitude becomes a moot point. As a math educator, | have been seeking
ahistorical inspiration, rather than the historical basis, for good, clear
description to use when teaching universally valid concepts. As a teacher, |
have developed better language to describe orders of magnitude, after
having muddling through sections of On the Nonexistent, such as Section
73. When | can show my students the places in the text where Gorgias uses
the word “magnitude” or | can more generally give credit to “Athens in the
fifth century B.C.E.” as a place and time where the word “magnitude” was
in educational use, my perception is that math students will enjoy learning a
word with multiple meanings like “magnitude” is a word known to the
ancients, with a specific example from an early text from ancient Athens.
Whatever Gorgias thought was to be “conceived as a magnitude,” the fact
today is that the word “magnitude” is used to describe earthquakes, star
brightness, amplitude of sound, as well as to describe powers or orders of
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numbers in mathematics. | think it helps teachers to teach a complex
concept like orders of magnitude by keeping an eye out for such
opportunities for broader cultural literacy. But, most of all, it’s the ideal
language, such as the descriptive phrase “conceived as a magnitude,” that |
like to use in my own teaching.

Since orders of magnitude are multiplied, and therefore divisible in an
inverse operation, | would also credit Gorgias for his creativity in writing
the succinct phrase, “what is conceived as a magnitude will not be
indivisible” (73). Magnitude, that which “will not be indivisible” (73), can
then be taught as a word that is, in fact, a synonym for multiplication,
whenever the inverse relationship between multiplication and division is
under discussion.

3.3 Teachers who write lessons about fractions, such as what constitutes
the set of real numbers to use for numerators and denominators, or how the
multiplication and division of fractions are inverse operations, may benefit
from considering Gorgias’s thoughts about how “whatever has extent will
be divided” (73). After all, a fraction conceptualizes a division, with the
fraction bar denoting a division symbol. Furthermore, it would be helpful to
borrow the language of Gorgias and describe how since O represents the
nonexistent, it represents what has no extent and therefore can neither be
divided nor divide.

In fractions, distinctions involving 0 in the numerator and denominator
must be taught. These will include a lesson on numerators about how, when
a numerator is nonexistent, i.e., the number 0, then it does not exist as a
fraction of the denominator. As a result, students proceed from what they
have learned about how to set up a division equation, such as when, if they
see a 0 in the dividend, then the quotient is always 0, i.e., 0 + x = 0. No
matter what x is as the divisor, the presence of the 0 as the dividend
demands the answer for the quotient be 0. Progressing to fractions, in a

problem where the numerator of a fraction is O,%, then students must learn

that the answer is expressed simply as 0. The number 0 only represents the
nonexistent part that exists in relation to an existent x. Therefore, the sets of
real or natural numbers available for numerators, just as for dividends and
quotients in division, may be described as including 0.

Next, just as students have learned in division lessons that they can
never set up an equation such as x + 0 because 0 is never a divisor and so
there is no potential whatsoever for any quotient, students learn that in

fractions the equation % is not allowed. When the whole is nonexistent or 0,
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then there is no relationship or ratio of parts to a whole. There is no
possibility of dividing any numerator x by a denominator of 0, as it would
be absurd to say there could be any parts of a nonexistent whole. The sets of
either real or natural numbers available for divisors in division and for
denominators in fractions do not include O.

Gorgias can be accessed even further for concise language that helps to
conceptualize another rule that must be taught in fractions. His text notes,
“Of course, if the existent is the same as the nonexistent, it is not possible
for both to exist” (76). For fractions lessons, a teacher must describe how,
when the numerator and the denominator are the same number, they always

form the number one, g = 1, because x + x = 1, except x cannot be 0.

Although the numerator and the denominator in a fraction relationship
always equal 1, i.e., they no longer exist as two separate numbers but as the
number 1. If O were taught as existing in a relationship to itself, or as a

numerator 0 that exists in a ratio to a denominator of 0, % , 1t would be

absurd to state that this relationship equals 1, the rationale being that zero as
the numerator cannot be divided by zero as the denominator.

3.4 Finally, studying On the Nonexistent could help an elementary
mathematics teacher to describe how to make the distinction between
container and contained through measurement, how to describe three-
dimensional shapes, and how to measure in cube units.

Gorgias explains that there are distinctions to be made about the
question of whether the existent can be contained in a container:

It [the existent] is not contained in itself. For in that case, container and

contained will be the same, and the existent will become two things,

place and body (the place is the container, body the contained). But that

is absurd. Thus, the existent is not in itself. . . . (Section 70)

This descriptive language could be useful for elementary school teachers, if
only to know that such distinctions were being made in fifth-century
Classical Greece. Teachers, | suggest, are continually seeking to refresh
their teaching about how containers and contents are measured in different
units, such as when the container is measured in cube units and the contents
are measured in solid or liquid weights. In this age of premeasured contents
and uniform-size packages, the opportunities to explain these differences are
usually “off-the-shelf” demonstrations. To describe a Greek bath or a Greek
urn allows for many creative history lessons to shore up necessary lessons.
Furthermore, studying how Gorgias used such logic to make distinctions
could be extended to what can be a difficult lesson for some students the
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differences between mass and weight or other differences. Again, | caution
that I am not saying Gorgias was discussing the different units of
measurements that distinguish between container and contents or anything
to do with mass or its measurement. But | think that the terminology
Gorgias used, “container and contained,” is language relatable to
distinctions that a mathematics teacher must make, so consequently, any
teacher delving into this ancient thought will undergo a challenging yet
invigorating reading and thinking experience that may inspire ideas about
how to go about demonstrating and explaining such distinctions in the
classroom.

Gorgias provides an explicit proof on how to measure space, as follows:
“If it is by chance a body it will be three-dimensional, for it will have
length, and breadth and depth. But it is absurd to say that the existent is
none of these things. Therefore, the existent is not one” (73). Gorgias’s
explanation, that a three-dimensional body is (Length) (Breadth) (Depth), is
usually expressed in elementary school mathematics by saying that it
occupies a region of space measured by its width, length, and height. Then,
this is expressed quantitatively by defining, as a measure of the space
occupied, a unit cube, the product of its Length x Width x Height. This is
equivalent to the conceptualization of volume of a right-angle rectangular
prism or a rectangular parallelepiped, expressed as the number of unit cubes
occupying it completely, from which follows the usual formula for its
volume: (L)x (W) x (H). This passage from Section 73 can also inspire a
lesson for a concept that can be difficult for many young students to grasp,
which is how the volume of a unit cube, namely 13, while resulting
numerically in a product of 1, is actually different from 1, in the sense that
(1 unit of) Length x (1 unit of) Width x (1 unit of) Height = 1 unit of
volume, which is conceptually different from 1 unit of length (or any
number of points on a continuum or existing as a multiple on a plane).
While all of these explanations belong entirely to mathematics today,
Gorgias should be invited into the classroom for credit for an early textual
mention of the equation for volume and parallelepiped and for the early use
of describing a body as three-dimensional (literally speaking, Gorgias argues
that a (730Iid) body “is triple,” in the sense of having length, width, and
depth).

"I have incorporated the editing suggestions made by the expert reviewer throughout
section 3.4, which I must credit for making this section much clearer.
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4. Conclusion

This paper has discussed whether the heritage use of a historical text
might possibly help mathematics educators describe complex concepts like
zero, when studied in terms of the heritage versus history distinctions made
by Grattan-Guinness. For an intellectual adventure, rather than a trudge into
the past, elementary mathematics teachers should consider exploring the text
On the Nonexistent. As readers and thinkers, educators can decide for
themselves whether Gorgias, one of the great teachers in Classical Greek
antiquity, has any relevance for mathematics in education today.
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Abstract

In this paper we apply an improved version of the Trapezoidal Fuzzy
Assessment Model (TRFAM) to evaluate the students’ progress for learning
the topic “Real numbers” with respect to the principles of the Bloom’s
Taxonomy. The TRFAM is a new original variation of the Center of Gravity
(COG) defuzzification technique, which has been properly adapted in earlier
papers by the present authors to be used as an assessment method. The
central idea of TRFAM is the replacement of the rectangles appearing in the
graph of the membership function of the COG technique by isosceles
trapezoids sharing common parts. In this way one treats better the
ambiguous cases of student scores being at the boundaries between two
successive assessment grades. Our model is validated by comparing it with
traditional assessment methods (calculation of the means and GPA index),
based on principles of the bivalent logic.

Keywords: Bloom’s taxonomy, Real numbers, Fuzzy Logic, Center of
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Gravity (COG) defuzzification technique, Trapezoidal Fuzzy Assessment
Model (TRFAM).

1. Introduction

Fuzzy logic, the development of which is based on fuzzy sets theory,
provides a rich and meaningful addition to standard Boolean logic. Unlike
Boolean logic, which has only two states, true or false, fuzzy logic deals
with truth values which range continuously from 0 to 1. Thus something
could be half true 0.5 or very likely true 0.9 or probably not true 0.1, etc. In
this way fuzzy logic allows one to express knowledge in a rule format that is
close to a natural language expression and therefore it opens the door to
construction of mathematical solutions of computational problems which
are inherently imprecisely defined. New operations for the calculus of logic
were also proposed and fuzzy logic showed to be in principle at least a
generalization of classic logic [15, 16]. For general facts on Fuzzy Sets and
Logic we refer to the book [5].

The methods of assessing the individual skills usually applied in
practice are based on principles of the bivalent logic (yes-no). However,
these methods are not probably the most suitable ones in ambiguous cases
characterized by a degree of uncertainty. In Education, for example, the
teacher is frequently not absolutely sure about a particular numerical grade
characterizing a student’s performance. Fuzzy logic, due to its nature of
including multiple values, offers a wider and richer field of resources for
this purpose.

In earlier works the present authors have properly adapted the
corresponding fuzzy system’s uncertainty (e.g. [10, 11], etc) as well as the
popular in fuzzy mathematics Center of Gravity (COG) deffuzification
technique (e.g. [6, 12, 13, 14] etc) to be used as assessment methods of
individual skills. In this paper we apply a trapezoidal fuzzy model
(TRFAM) for assessing the student success for learning mathematics in
accordance to the Bloom’s taxonomy. This taxonomy, which has been
applied in the USA by generations of teachers and college instructors in the
teaching process [2], refers to a classification of the different learning
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objectives serving as a way of distinguishing the fundamental questions
within the educational system.

The rest of the paper is organized as follows: In Section 2 we present
the fundamentals of the Bloom’s taxonomy. In Section 3 we develop our
fuzzy model. In Section 4 we present an application of this model connected
to the teaching of the real numbers. Finally, Section 5 is devoted to our final
conlusions and a short discussion on future perspectives of research on this
subject.

2. The Bloom’s taxonomy

In 1956 Benjamin Bloom with collaborators Max Englehart, Edward
Furst, Walter Hill, and David Krathwohl published a framework for
categorizing educational goals, the Taxonomy of Educational Objectives
[3]". Although named after Bloom, the publication of the taxonomy
followed a series of conferences from 1949 to 1953, which were designed to
improve communication between educators on the design of curricula and
examinations. A revised version of the taxonomy was created in 2000 by
Lorin Anderson [1], former student of Bloom. Since the taxonomy reflects
different forms of thinking and thinking is an active process, in the revised
version the names of its six major levels were changed from noun to verb
forms. The six major levels of the revised taxonomy are presented in Figure
1, taken from [17].

" Bloom’s taxonomy divides educational objectives into three domains: cognitive , affective
and psychomotor, sometimes loosely described as "knowing/head"”, "feeling/heart” and
"doing/hands" respectively. The volume published in 1956 [3] and the revision followed in
2000 [1] concern the cognitive domain, while a second volume published in 1965 on the
affective domain. A third volume was planned on the psychomotor domain, but it was
never published. However, other authors published their own taxonomies on the last
domain. More details can be found in [17].
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Figure 1: The six major levels of the Bloom’s taxonomy

The above six levels in the taxonomy, moving through the lowest order
processes to the highest, could be described as follows :

Knowing - Remembering: Retrieving, recognizing, and recalling
relevant knowledge from long-term memory. eg. find out, learn
terms, facts, methods, procedures, concepts

Organizing - Understanding: Constructing meaning from oral,
written, and graphic messages through interpreting, exemplifying,
classifying, summarizing, inferring, comparing, and explaining.
Understand uses and implications of terms, facts, methods,
procedures, concepts.

Applying: Carrying out or using a procedure through executing, or
implementing. Make use of, apply practice theory, solve problems,
use information in new situations.

Analyzing: Breaking material into constituent parts, determining
how the parts relate to one another and to an overall structure or
purpose through differentiating, organizing, and attributing. Take
concepts apart, break them down, analyze structure, recognize
assumptions and poor logic, evaluate relevancy.

Generating - Evaluating: Making judgments based on criteria and
standards through checking and critiquing. Set standards, judge
using standards, evidence, rubrics, accept or reject on basis of
criteria.
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e Integrating - Creating: Putting elements together to form a coherent
or functional whole; reorganizing elements into a new pattern or
structure through generating, planning, or producing. Put things
together; bring together various parts; write theme, present speech,
plan experiment, put information together in a new & creative way

Most researchers and educators consider the last three levels --
analyzing, evaluating and creating — as being parallel. It is obvious that
using Bloom's higher levels helps the students become better problem
solvers.

Teaching a topic, the teacher should arrange his/her class work in the
order to synchronize it with these six steps of Blom’s Taxonomy. The
typical questions for evaluating the student achievement at the
corresponding level are the following:

Knowing questions focus on clarifying, recalling, naming, and listing:
Which illustrates...?

Write... in standard form....
What is the correct way to write the number of... in word form?

Organizing questions focus on arranging information, comparing
similarities/ differences, classifying, and sequencing:

Which shows... in order from...?

What is the order...?

Which is the difference between a... and a...?
Which is the same as...?

Express... as a...?

Applying questions focus on prior knowledge to solve a problem:

What was the total...?

What is the value of...?

How many... would be needed for...?
Solve....Add/subtract....Find....Evaluate....Estimate....Graph....

Analyzing questions focus on examining parts, identifying attributes/
relationships /patterns, and main idea:
Which tells...?
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If the pattern continues,....

Which could...?

What rule explains/completes... this pattern?
What is/are missing?

What is the best estimate for...?

Which shows...?

What is the effect of...?

Generating questions focus on producing new information, inferring,
predicting, and elaborating with details:
What number does... stand for?

What is the probability...”?
What are the chances...?
What effect...?

Integrating questions focus on connecting/combining/summarizing
information, and restructuring existing information to incorporate new
information:

How many different...?

What happens to... when...?

What is the significance of...?

How many different combinations...?

Find the number of..., ..., and ... in the figure below.

Evaluating questions focus on reasonableness and quality of ideas,
criteria for making judgments and confirming accuracy of claims:
Which most accurately...?

Which is correct?

Which statement about... is true?

What are the chances...?

Which would best...?

Which would... the same...”?

Which statement is sufficient to proven...?

Bloom’s taxonomy serves as the backbone of many teaching
philosophies, in particular those that lean more towards skills rather than
content. The emphasis on higher-order thinking inherent in such
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philosophies is based on the top levels of the taxonomy including analysis,
evaluation, synthesis and creation. Bloom’s taxonomy can be used as a
teaching tool to help balance assessment and evaluative questions in class,
assignments and texts to ensure all orders of thinking are exercised in
student’s learning.

3. The fuzzy assessment model

Reasoning with fuzzy rules is a forward-chaining procedure. The initial
numeric data values are fuzzified, that is, turned into fuzzy values using the
membership functions. Instead of a match and conflict resolution phase
where we select a triggered rule to fire, in fuzzy systems, all rules are
evaluated, because all fuzzy rules can be true to some degree ranging from 0
to 1. The antecedent clause truth values are combined using fuzzy logic
operators. Next, the fuzzy sets specified in the consequent clauses of all
rules are combined using the rule truth values as scaling factors. The result
is a single fuzzy set, which is then defuzzified to return a crisp output value.

There are several defuzzification techniques in use, the most popular
being probably the centre of gravity (COG) method [9]. According to this
method the fuzzy data is represented by the coordinates of the COG of the
level’s section contained between the graph of the membership function
involved and the OX axis.

Here we shall apply an improved form of a recently developed [7, 8]
variation of the above assessment method that we have called Trapezoidal
Fuzzy Assessment Model (TRFAM).

Let G a student group participating in a certain activity (learning,
problem-solving, etc) and let A, B, C, D and F be the linguistic labels of
excellent, very good, good, fair and unsatisfactory performance respectively
with respect to this activity.

Set U={A, B, C, D, F}. Then G can be expressed as a fuzzy set in U in
the form
G= {(x, m(x)): xe U}, where y=m(x) is the corresponding membership function.
The main idea of TRFAM is the replacement of the rectangles appearing in the
graph of the COG technique (e.g. see Figure 1 of [13]) by trapezoids.
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Therefore, we shall have five such trapezoids in the resulting scheme, each
one corresponding to a students’ grade (F, D, C, B and A respectively).
Without loss of generality and for making our calculations easier we
consider isosceles trapezoids with bases of length 10 units lying on the OX
axis. The height of each trapezoid is equal to the percentage of individuals
who achieved the corresponding characterization for their performance,
while the parallel to its base side is equal to 4 units.

We allow for any two adjacent trapezoids to have 30% of their bases (3
units) belonging to both of them. In this way we treat better the ambiguous
cases of individuals’ scores being at the boundaries between two successive
grades. For example, in students’ assessment it is a very common approach
to divide the interval of the specific grades in three parts and to assign the
corresponding grade using + and - . For instance, we could have 75 — 77 =
B-, 78 — 81 = B, 82 — 84 = B+. However, this consideration does not reflect
the common situation, where the teacher is not sure about the grading of the
students whose performance could be assessed as marginal between and
close to two adjacent grades; for example, something like 84 - 85 being
between B, and A-.The TRFAM fits better than the COG technique to this
kind of situations.
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II .l
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Figure 2: The TRAFM’s scheme
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In TRFAM an individuals’ group can be represented, as in the COG
method, as a fuzzy set in U, whose membership function y=m(x) has as
graph the line OBlclH1BQC2H283C3H384C4H4B5C5D5 of Figure 2, which is
the union of the line segments OB;, BiC;, CiHy,........ , BsCs, CsDs.
However, in case of the TRFAM the analytic form of y = m(x) is not needed
for calculating the COG of the resulting area. In fact, since the marginal
cases of the individuals’ scores are considered as common parts for any pair
of the adjacent trapezoids, it is logical to count these parts twice; e.g.
placing the ambiguous cases B+ and A- in both regions B and A. In other
words, the COG technique, which calculates the coordinates of the COG of
the area between the graph of the membership function and the OX axis,
thus considering the areas of the “common” triangles A;HiD;, AsH;Do,
A4H3D3 and AsH4D,4 only once, is not the proper method to be applied in the
above situation.

Instead, in this case we represent each one of the five trapezoids of
Figure 2 by its COG Fj, i=1, 2, 3, 4, 5 and we consider the entire area, i.e.
the sum of the areas of the five trapezoids, as the system of these points-
centers. More explicitly, the steps of the whole construction of the TRFAM
are the following:

1. Let vy;, i=1, 2, 3, 4, 5 be the percentages of students whose
performance was characterized by F, D, C, B, and A respectively; then

Sy, =1 (100%).

2. We consider the isosceles trapezoids with heights being equal to y;,
i=1, 2, 3, 4, 5, in the way that has been illustrated in Figure 2.

3. We calculate the coordinates (x_, y, ) of the COGF;, i=1, 2, 3, 4, 5, of

each trapezoid as follows: It is well known that the COG of a trapezoid lies

along the line segment joining the midpoints of its parallel sides a and b at a

h(2a+b)

distance d from the longer side b given by d= i where h is its height
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_Yi(2*4+10) 3y,

3*(4+10) 7
since the abscissa of the COG of each trapezoid is equal to the abscissa of
the midpoint of its base, it is easy to observe that x=7i-2.

(e.g. see [18])..Therefore in our case we havey, = . Also,

4. We consider the system of the COG’s Fj, i=1, 2, 3, 4, 5 and we
calculate the coordinates (X, Y.) of the COG F. of the whole area S
considered in Figure 2 by the following formulas, derived from the
commonly used in such cases definition (e.g. see [19]):

13 13
XC:gZSchi , Ye= g_ZSiyCi (1).
In formulas (1) Si, i= 1, 2, 3, 4, 5 denotes the area of the corresponding

trapezoid. Thus, Siz%z?yi and S :Zslsi = 7ZS:yi = 7. Therefore,

from formulas (1) we finally get that
1 : S, 13 3 3& ,
XC: 7Z7yi(7|_2)=(7zlyi) -2, YC=7Z7yi(7yi):7Zyi (2)

5. We determine the area where the COG F lies as follows: For i, j=1,
2,3, 4, 5, we have that 0<(y; -y)’=yi’+y;>-2yyy;, therefore yi*+y® >2yy;,

with the equality holding if, and only if, yi=y;. Therefore 1=(iyi )=
5 5 5 5 5 5
VA2 Y SOV 422 (WY )=5y or Yyt >

i,j=1 i,j=1, i=1
i#] i)

(3), with

[N

the equality holding if, and only if, y1 =y, = y3=ys=y5 = % In the case of

equality the first of formulas (2) gives that X. = 7(% + é + g + g + g) -2

= 19. Further, combining the inequality (3) with the second of formulas (2)
one finds that Y, z% Therefore the unique minimum for Y. corresponds to

the COG Fm(19,3—1). The ideal case is when y;=y,=y;= y,=0 and ys=L1.

Then from formulas (2) we get that X, = 33 and Y. = 3. Therefore the COG
7
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in this case is the point F; (33, 3). On the other hand, the worst case is when
7

y1=1 and y,=y3; = y4= y5=0. Then from formulas (2), we find that the COG
is the point Fy(5, 3). Therefore the area where the COG F. lies is the area
7

of the triangle F,, Fr Fi (see Figure 3).

Figure 3: The area where the COG lies

6. We formulate our criterion for comparing the performances of two
(or more) different student groups’ as follows: From elementary geometric
observations (see Figure 3) it follows that for two groups the group having
the greater X. performs better. Further, if the two groups have the same X;
>19, then the group having the COG which is situated closer to Fi is the
group with the greater Y.. Also, if the two groups have the same X.<19,
then the group having the COG which is situated farther to Fw is the group
with the smaller Y.. Based on the above considerations it is logical to
formulate our criterion for comparing the two groups’ performance in the
following form:

e Between two groups the group with the greater value of X
demonstrates the better performance.

e If two groups have the same X. > 19, then the group with the greater
value of Y. demonstrates the better performance.
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e If two groups have the same X; < 19, then the group with the smaller
value of Y. demonstrates the better performance.

As it becomes evident from the above presentation, the application of
the TRFAM is simple in practice needing no complicated calculations in its
final step. Further, our criterion shows that the assessment of the student
performance is based on the values of X.. But, as it turns out from the first
of formulas 2 calculating the value of X, greater coefficients (weights) are
assigned to the higher scores. Therefore the TRFAM provides a weighted
measure focusing on the student quality performance.

4. An application on teaching the real numbers

4.1 Description

The following application was performed with subjects two groups of
students from two different departments (30 students in each group) of the
School of Technological Applications (prospective engineers) of the
Graduate Technological Educational Institute (T. E. I.) of Western Greece
attending the common course “Mathematics I”” of their first term of studies
and having the same instructor. This course involves an introductory module
repeating and extending the students’ knowledge from secondary education
about the real numbers. After the module was taught, the instructor wanted
to investigate the students’ progress according to the principles of the
Bloom’s Taxonomy. For this, he asked them to answer in the class the
written test presented in the Appendix of this paper, which is divided in six
different parts, one for each level of the Taxonomy. The students’ answers
were assessed separately for each level in a scale from 0 to 100 and the
means obtained correspond to each student’s overall performance.

4.2 Results

Denote by L;, i=1, 2, 3, 4, 5, 6 the levels of Knowing-Remembering,
Organizing-Understanding, Applying, Analyzing, Generating-Evaluating
and Integrating- Creating respectively of the Bloom’s Taxonomy and by P
the student overall performance. Then the test’s results are summarized in
the following two tables:
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Table 1: Results of the first department

Grade L, L, Ls L, Ls Le P
A(85- 8 6 5 3 2 3 4
100)

BB4-75) | 9 11 10 8 7 8 9
c(7a-60) | 10 9 10 12 10 8 10
D(59-50) 3 3 3 5 / 8 5
F(<50) 0 1 2 2 4 3 2

Table 2: Results of the second department

Grade L, L, Ls L, Ls Le
A(85- 9 8 6 4 3 3
100)
B(84-75) 6 7 9 / 7 6 8
C(74-60) | 9 8 10 12 10 8 9
D(59-50) | 6 7 4- 4 7 11 7
F(<50) 0 0 1 3 3 2 1

4.3 Evaluation of the results using the TRFAM
From Table 1 we obtain the following percentages for the level L;:

_ _3 _10 _9 _ 8 . :
y1=0, yg—%, yg—% : y4—% and y5—%. Therefore, applying the first of

formulas (2) one finds that XC:7(£+§+§+4—0)-2:7—24 ~24.13. Similarly
30 30 30 30 30

one finds the following values of X.:
23.2 for L, 20.87 for L3, 20.17 for L4, 18.07 for Ls, 19 for Ls and 20.87 for
the student overall performance P.

In the same way one finds from Table 2 the following values of X.: 23.2
for Ly, 22.73 for L,, 22.5 for L3, 20.17 for Ly, 19 for Ls, 18.3 for Lg and 21.1
for P.

On comparing the values of X; for the two departments and according
to the first case of the criterion stated in section 3 one concludes that the

first department demonstrated a better performance at the levels L;, L, and
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L¢ of the Bloom’s Taxonomy, while the second department demonstrated a
better performance at the levels Ls and Ls. Further, the two departments
demonstrated the same performance at the level L4, while the second
department demonstrated a better overall performance than the first one. In
general, the overall performance of the two departments as well as their
performance at each stage of the Bloom’s Taxonomy can be characterized
as more than satisfactory, since the corresponding values of X; are in all
cases greater than the half of its value in the ideal case, which is equal to

3—23 =16.5 (see Figure 3).

We also observe that the performance of each department is decreasing
from level L; to level L4, which was expected since the success at the higher
levels is based on the lower levels. However, for the first department this
does not happen for the last three levels, a fact which is compatible to the
view that the three higher levels of the Taxonomy are parallel to each other
(see section 2 — Figure 1).

4.4 Comparison of the TRFAM with the traditional assessment
methods

Most of the traditional assessment methods, which are based on the
principles of the bivalent logic, measure the students’ mean performance.
Therefore, the conclusions obtained by applying these methods may differ
from the conclusions obtained by applying the TRFAM, which, as we have
seen in section 3, measures the students’ quality performance by assigning
higher coefficients (weights) to the higher scores. For example, in the
hypothetical case where the students of the last column of Table 1 obtained
the highest scores of the corresponding grade (i.e. 4 students scored 100, 9
students scored 84, etc), while the students of the last column of Table 2
obtained the lowest scores of the corresponding grade (i.e. 5 students scored
85, 8 students scored 75, etc), calculating the means one finds an average
score 64.51 for the first and 53.33 for the second department. Therefore, the
first department demonstrates a much better mean overall performance than
the second one, in contrast to their quality performance measured by
TRFAM.
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One of the few traditional assessment methods - very popular in the
USA- which measures the students’ quality performance is the Grade Point
Average (GPA) index. In terms of the student percentages the GPA index is
calculated by the formula [4]:  GPA=y,+2y3+3y,+4ys  (4)

In the worst case (y;=1 and y,=ys;=y,=ys=0) formula (4) gives that GPA=0,
while in the ideal case (y1=y,=y3=y,=0 and ys=1) it gives that GPA=4.
Therefore we have that 0 < GPA < 4.

Applying (4) on the data of the first column of Table 1 one finds that

GPA=3 +20,21 .32 573 at level L, of the Taxonomy for the first

30 30 30 30

department. Similarly one finds the GPA values 2.6 for L,, 2.43 for L3, 2.17
for L4, 1.87 for Ls, 2 for Lg and 2.17 for the overall performance of the first
department. In the same way working with the data of Table 2 one finds the
GPA values 2.6, 2.53, 2.5, 2.17, 2, 1.9 and 2.3 respectively for the second
department. Therefore, the two departments demonstrate the same
performance at level L, the first department demonstrates a better
performance at levels L;, L, and Lg, while the second department
demonstrates a better performance at levels L3, Ls and a better overall
performance than the first department. These findings agree with the
corresponding ones obtained by applying the TRFAM. However, according
to the GPA index the performance of the first department at level Ls and of
the second department at level Lg were found to be less than satisfactory,
since their GPA values are smaller than the half of its ideal value, which is
equal to 2. This difference with respect to the TRFAM is due to the fact that,
as it can be easily observed on comparing formula (4) with the first of
formulas (2), the TRFAM assigns greater weights and therefore it is more
sensitive than the GPA index to the higher scores.

5. Conclusion

In the present paper we developed an improved version of the
Trapezoidal Fuzzy Assessment Model (TRFAM) and we applied it to
evaluate the students’ progress for learning the real numbers with respect to
the principles of the Bloom’s Taxonomy. In the design of the TRFAM the
rectangles appearing in the graph of the membership function of the COG
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technique were replaced by isosceles trapezoids sharing common parts. In
this way one treats better the ambiguous cases of student scores being at the
boundaries between two successive assessment grades. Our model was
validated by comparing it with traditional assessment methods (calculation
of the means and GPA index), based on principles of the bivalent logic.

Our future plans include the application of the same model for studying
the students’ progress with respect to the principles of the Bloom’s
Taxonomy in other fields of knowledge (not only for mathematics). Also,
since the TRFAM seems to have the potential of a general assessment
method, our research perspectives focus on applying it to evaluate other
kind of human activities in Science, games, decision making, etc.
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Appendix: The test used in our application

Questions

1. Knowing - Remembering:

Give the definitions and examples of a periodic decimal and of an irrational
number (in the form of an infinite decimal).

2. Organizing:

Compare the set of all fractions with the set of periodic decimals. Compare
the set of irrational numbers with the set of all roots (of any order) that have
no exact values.

3. Applying:

Which of the following numbers are natural, integers, rational, irrational and
real numbers?

-2, —g . 0, 908 . 5, 7333.. r=314150... V3. —/4, %
J5 V5 5)

503, Y5 (Be2)(v3-2), ¥, g7-2, H
w0 (B2)e-2) 3 :

4. Analyzing:

Find the digit which is in the 1005th place of the decimal 2.825342342......
Write the number 0.345345345... in the fractional form.

Compare the numbers 5 and 4.9999...

Construct the line segment of length /3 with the help of the Pythagorean
Theorem. Give a geometric interpretation.

5. Generating- Evaluating:

Justify why the decimals 2.00131311311131111..., 0.1234567891011... are
irrational numbers.

Construct the line segment of length 32 by using the graph of the function
f(x)=3/x

6. Integrating- Creating:

Define the set of the real numbers in terms of their decimal representations
(this definition was not given by the instructor in the class before the test).
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