The use of multiple ovulation, embryo cryopreservation and embryo transfer techniques to facilitate movement of genetic material between countries

K. STAMATARIS (Κ. ΣΤΑΜΑΤΑΡΗΣ), K. DELIGIANNIS (Κ. ΔΕΛΗΓΙΑΝΝΗΣ), T. LAINAS (Θ. ΛΑΪΝΑΣ), G. ARSENOS (Γ. ΑΡΣΕΝΟΣ)

doi: 10.12681/jhvms.15378

Copyright © 2018, K STAMATARIS, K DELIGIANNIS, T LAINAS, G ARSENOS

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0.

To cite this article:

The use of multiple ovulation, embryo cryopreservation and embryo transfer techniques to facilitate movement of genetic material between countries

Stamataris K.1, Deligiannis K.2, Lainas T.3, Arsenos G.1

ABSTRACT. The objective of the study was to evaluate the use of multiple ovulation and embryo transfer techniques in an indigenous Greek dairy breed of sheep. We stimulated selected donor ewes of the Karagouniko breed to produce large numbers of embryos after the induction of multiple ovulations by gonadotropin treatment (superovulatory response). A total of 50 Greek Karagouniko ewes were synchronised into oestrus using progesterone pessaries and superovulated for embryo transfer using ovine FSH. Six days following laparoscopic insemination with fresh semen, embryos were flushed surgically and embryos collected. Subsequently, the embryo recovery along with embryo cryopreservation, embryo survival and quality were assessed. The Karagouniko donor ewes achieved a mean ovulation rate of 11.9 (SE. 0.89). The ovum Recovery rate was 80.9% and 87.6% of the ova recovered being fertilised. A total of 327 (77.5%) of the viable embryos were assessed as being of sufficient quality for cryopreservation. The embryos ranged from late morulae to expanded blastocyst and were frozen via a 3-step process in 1.5 M ethylene glycol following repeated washing and trypsination. Cryopreserved embryos were frozen and then transported to Scotland, UK. There, embryos were thawed rapidly and re-hydrated via a 2 step sucrose/ethylene glycol gradient. A total of 92.4% of embryos frozen remained suitable for transfer semi-surgically into synchronised Scottish Blackface ewes. 183 embryos were transferred in total with a 66.1% survival rate. The survival rate of frozen thawed blastocysts (75%) was significantly greater than (P<0.01) that for morulae (48%). It was concluded that MOET could be successfully applied in Greek dairy breeds of sheep as a means for genetic improvement. Frozen embryos could be a successful medium for the transportation of ovine genetic material from and to Greece, however, most likely the choice of embryonic stage for cryopreservation is crucial.

Keywords: sheep, MOET, superovulation, embryo freezing, embryo transfer.
ΕΙΣΑΓΩΓΗ

Η τεχνική της πρόκλησης πολλαπλής ουσιαστικής και της μεταφοράς εμβρύων (ΠΠΕΟ) στα πρόβατα είναι γνωστή από τις αρχές του περισσότερου αιώνα (Ishwar and Memon 1996). Θεωρητικά, η τεχνική είναι μάλλον απλή και περιλαμβάνει την πρόκληση πολλαπλής ουσιαστικής ατομικώς σε κάθε προβάτινα (προβατίνα-δότης), την εφαρμογή τεχνικής σταματικής και, τέλος, τη συλλογή των εμβρύων τα οποία, μετά από έλεγχο της καταληψίας τους και αξιολόγηση, μεταφέρονται σε προβατίνες δέτες. Τα έμβρυα μπορούν να μεταφερθούν εμέσως σε προβατίνες-δέτες που έχουν κατάλληλα προ­

eπιφορικείται ή καταφέρονται για να χρησιμοποιηθούν μελ­

dιεθνώς (Cognie 1999, McKelvey 1999). Αποτελεί μια καινοτομία που ανακύπτουν από την ανατομία του γενετικού υλικού, που μεταφέρεται στις προ­

INTRODUCTION

The technique of multiple ovulation and embryo transfer (MOET) in sheep has existed from the begging of the last century (Ishwar and Memon 1996). The procedure is rather simple involving super-ovulation of an individual ewe (the ‘donor’), inseminating her, and collecting the resulting embryos that are then transferred into recipient or surrogate ewes. The embryos can be transferred ‘fresh’ or can be frozen for transfer at a later date (Ishwar and Memon 1996). However, commercial application to the sheep industry did not occur until late 80’s (Ishwar and Memon 1996, Naqvi et al 2001). In principal, MOET is a tool for genetic improvement aiming to identify genetically superior female animals and enabling them to have more offspring than would be possible naturally (Ishwar and Memon 1996, Loi et al 1999, Cognie 1999, Bari et al 2000). McKelvey (1999) stated that MOET has the potential to double the rate of genetic improvement in a given population through increasing selection intensities and decreasing generation intervals. Moreover, MOET can also be used as the main component to a low cost route of exporting genetic material across international boundaries (Cognie 1999, McKelvey 1999). The latter is widely acknowledged as the best available option to control disease transmission during imports of genetic material into a particular country and hence to ensure the health status of the national stock (Singh 1988, Foote et al 1993, Singh et al 1997, Parker et al 1998, Thibier and Guerin 2000). MOET has the added advantage of allowing imported stocks to develop in recipients well adapted to local conditions and can be used as a means for disease resistance in the breeding objectives and breeding strategies in either indigenous or other susceptible sheep (Saberivand and Outteridge 1996).

An appreciation of the potential benefit of MOET, briefly reviewed above, was perhaps best demonstrated in dairy cows where it has been applied with considerable success (Wilmut et al 1992, Lohuis 1995, Callesen 1996). However, the application of MOET techniques to small ruminants has been much more slower mainly due to the lower economic value of these animals but also due to difficulties as a result of the reproductive anatomy of such animals (Armstrong and Evans G 1983, McKelvey et al 1985, McKelvey 1986, Ishwar and Memon 1996, Loi et al 1999). Overcoming such difficulties is therefore important not only as a method of increasing the number of elite animals in a herd but also from an economical and practical point of view provided that limitations are understood. For example, although, cryopreservation has become an integral part of the commercial embryo transfer industry its application in sheep embryos is based on comparatively few studies (Boundy et al 1985, McKelvey and Simm 1995, Ishwar and Memon 1996) and the process continues to be improved and simplified (McGinnis et al 1993, Naqvi et al 2001). To date the information on the success rate of such cryopreservation techniques is scarce, particularly when applied to the large-scale movement of sheep embryos.

YAIKA KAI METHODOI

Συγχρονισμός οίστρου και πρόκληση πολλαπλής ωοθυλακιορρηξίας

Πενήντα (50) προβατίνες ηλικίας 4-6 ετών της φυλής Καραγούνικυο χρησιμοποιήθηκαν ως δώρορροι. Τα ζώα επιλέχτηκαν από το ημερήσιο Ιδρύματο Αγροτικών Ερευνών της Καρδίτσας στην αρχή της αναπαραποιητικής καταστάσεως ήταν 2,75. Όλες είχαν πραγματοποιήσει τον πρόβειο χρυσίαργησιον έγινε με ενδομυϊκή χορήγηση (oFSH, Ovagen, Immuno-Chemical Products Ltd) αντικείμενο της συγκεκριμένης εργασίας, στην αρχή της αναπαραποιητικής καταστάσεως ήταν 2,75. Όλες είχαν πραγματοποιήσει τον πρόβειο χρυσίαργησιον κατάψυξης εμβρύων από την εισαγωγή ζωντανών ζώων με την προϋπόθεση ότι είναι κατανοητά τα μειονέκτημα της. Για το συγχρονισμό του οίστρου χρησιμοποιήθηκε Cronolone, Chronogest, Intervet Laboratories Ltd, με ενδομυϊκή χορήγηση σε ορισμένους εμβρύων με την προϋπόθεση ότι είναι κατανοητά τα μειονέκτημα της. Το μέσο σωματικό βάρος (Σ.Β.) των προβατίνες ήταν 80 κιλά, και ο μέσος δείκτης θρεπτικής κατάψυξης του προβείου 2,75. Όλες είχαν προηγούμενα χρησιμοποιήσει τον προγεσταγόνα πρόβειο κατάψυξης. Ειδικότερα, το αντικείμενο της συγκεκριμένης εργασίας ήταν να εκτιμηθεί η δυνατότητα χρησιμοποίησης τεχνικών πολλαπλής ωοθυλακιορρηξίας κατάψυξης και μεταφοράς εμβρύων από προβατίνες της Καραγούνικης φυλής.

MATERIAL AND METHODS

Synchronisation and Superovulation of donor ewes

A total of 50 mature (4-6 crop) Karagouniko ewes of the National Institute for Agricultural Research in Karditsa, Greece, were prepared as donor ewes at the beginning of their breeding season (early June). All donor ewes were kept under semi-extensive husbandry conditions and were fed on a maintenance diet (ARC 1990). The mean live weight and condition score of donor ewes was 63 kg and 2.75, respectively. Their immediate past lambing was December of the preceding year with a weaning period that lasted for 6 weeks. The donor ewes were housed in groups of 10 and were prepared for embryo collection on consecutive days.

Donor ewes were synchronised in oestrus using intravaginal progestagen pessaries impregnated with 45 mg of Cronolone (Chronogest: Intervet Laboratories Ltd) inserted on day 0 and then left in situ for a period of 12 days. Superovulation was induced by treatment with ovine follicle stimulating hormone, FSH (Ovagen, Immuno-Chemical Products Ltd) that was administered in 8 equal doses at 12-hourly intervals (total dose equivalent to 9 mg NIADDK-oFSH-17) commencing 60 hours prior to the end of progestagen treatment. At the last ovagen injection all sponges were removed. All donors were also given prostaglandin F2α (0.5 ml Estrumate: Coopers Animal Health Ltd) at the time of the first injection of Ovagen.

Semen collection and Artificial Insemination

Fresh semen was collected on insemination days from two 4-year-old Karagouniko rams (average live weight 90 kg). Rams were allowed to mount an ovaroctomised ewe treated with oestradiol benzoate (50 μg). Semen was collected using an artificial vagina and was diluted with phosphate buffered saline (PBS) to give a minimum concentration of 10x10^6 spermatozoa per ml. Intrauterine insemination was conducted at 48 hours after the end of progestagen treatment, using the laparoscopic method of McKelvey, et al (1985), with a dose of 0.1 ml diluted fresh semen for each uterine horn, containing approximately 10 x 10^6 sperm.

Ova recovery and evaluation

Embryos were recovered by the laparoscopic/surgical technique across international boundaries.
ΣΤΑΜΑΤΑΡΗΣ, Κ. ΔΕΛΗΓΙΑΝΝΗΣ, Θ. ΛΑΪΝΑΣ, Γ. ΑΡΣΕΝΟΣ

στοιχείο από 9 mg NIADDK-oFSH-17) ξεκινώντας την πρώτη δόση 60 ώρες πριν από την αραιώση των ενδοκολπικών σπόγγων. Σε όλες τις προβατίνες, ταυτόχρονα με την πρώτη δόση ονάγανο, γίνοντας και αραιώση 0,25 ml φωσφορικό ρυθμιστής είχε χορηγηθεί η απαραίτητη ποσότητα (50 μg) βενζοϊκής πενικιλλινς, προβατοστάσιο για λίγες μέρες μετά την επέμβαση, ώστε η αεράλειψη με ηπαρινισμένο ορό. Στη συνέχεια σε ποίμνιο.

Συλλογή εμβρύων και αξιολόγηση

Η συλλογή των εμβρύων έγινε την έκτη ήμερα μετά τη σπερματέγχυση. Τα εμβρύα συλλέχτηκαν σε PBS με έκλειση των κερατών της μήτρας, συμφωνά με τη λαπαροτομία προβατοστάσιο που της είχαν αφαιρεθεί οι ωοθήκες και η έκδοση κριάριων. Στη συνέχεια σε πότε εμβρύα ταξινομήθηκαν με βάση την ποιότητά τους. Τα κριτήρια για την ποιότητά τους ήταν: (i) η κανονικότητα του σχήματος του εμβρύου, (ii) ο χώρος που καταλάμβαναν τα βλαστομεριδια, (iii) οι διαφορές στο κυτταρικό μέγεθος, (iv) χρωματισμός και νυφή του κυτταροπλάσματος, και (v) η διάμετρος των εμβρύων. Ανάλυση με το στάδιο ανάπτυξης των εμβρύων κατάταχταν σε: (1) στάδιο πρώιμου μορίδιου και μορίδιο, (2) στάδιο συμπαγούς μοριδιού, (3) στάδιο συμπαγούς μοριδιού, και (4) στάδιο εκτεινώμενης βλαστοκύστης και εκκολαφθεισάς βλαστοκύστης. Διάθεση ιδιαίτερη προορισμό την αποφυγή σε εμβρύων στη μήτρα μετά την επέμβαση. Το εξωτερικό της τομής ήταν να αναφερθεί με ιδιαίτερα προειδοποιητικά παραδείγματα.

Embryo cryopreservation

All frozen embryos were transferred in the UK. There, they were thawed and re-hydrated via a 2 step sucrose/ethylene glycol gradient. After thawing, 89% of frozen embryos remained suitable for transfer into recipient ewes. A total of 100 Scottish Blackface ewes were used as recipients. They synchronised in oestrus by the use of intravaginal pessaries impregnated with 30 mg of cronolone (Chronogest, Intervet Laboratories Ltd). The pessaries were inserted on day 0 and then left in situ for a period of 12 days. At sponge removal 300 IU PMSG (Intervet Laboratories Ltd) was administered by intramuscular injection. The method of McKelvey et al (1985 and 1986), 182 embryos were transferred, generally in pairs, into 82 recipient ewes. Any return to service was recorded using teaser rams, with marking colours. The confirmation of pregnancy to the transferred embryos was done by ultrasound scanning at day 55 after transfer.

Embryo transplantation

All frozen embryos were transferred after 5 washes with phosphate buffer saline into a new heparin medium that was prepared by adding one million units of benzyl penicillin sodium, 1 g streptomycin sulphate and 5,000 units of heparin to 1 litre of normal saline. Subsequent freezing was carried out as follows. Firstly they were transferred to 0.5 M ethylene glycol for 10 minutes, followed by 10 minutes in 1.0 M ethylene glycol and finally 20 minutes in 1.5 M ethylene glycol. The embryos were stored in straws and were frozen using a programmable freezer (see Table 1 for detail). Thereafter all straws were plunged into liquid nitrogen (-196°C) where they were kept until their use.

STATISTICAL ANALYSIS

All statistical analyses were performed using the GENSTAT 5 (Lawes Agricultural Trust, 1993). Embryo recovery and embryo survival were calculated on an individual ewe basis. Chi-square analyses were used to
* Superovulation rate depends on starting temperature.
Πίνακας 2. Αντίδραση των προβατίνων στην πρόκληση πολλαπλής ουσιαστικής ορρηξίας

<table>
<thead>
<tr>
<th>Αριθμός προβατίνων</th>
<th>Μέσος όρος (±s.e.)</th>
<th>Εύρος</th>
<th>Σύνολο</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ωοθυλακιορρηξίες</td>
<td>50</td>
<td>11.9(±0.87)</td>
<td>0-27</td>
</tr>
<tr>
<td>Ωάρια που συλλέχτηκαν</td>
<td>46</td>
<td>10.5(±0.84)</td>
<td>0-26</td>
</tr>
<tr>
<td>Ωάρια που γονιμοποιήθηκαν</td>
<td>46</td>
<td>9.2(±0.79)</td>
<td>0-23</td>
</tr>
<tr>
<td>'Εμβρύα που καταψύχτηκαν</td>
<td>46</td>
<td>7.1(±0.74)</td>
<td>0-21</td>
</tr>
</tbody>
</table>

αγωγή πρόκληση πολλαπλής ουσιαστικής ορρηξίας (< 4 ουσιαστικές ορρηξίες) και δεν χρησιμοποιήθηκαν για τεχνητή σπερματέγχυση.

Συλλογή οωρίων και ποσοστό γονιμοποίησης

Η μέση τιμή του αριθμού των οωρίων που συλλέχτηκαν ανά προβατίνα ήταν 10,5 (s.e. 0,84) που αντιπροσώπευε το 80,9% των οωθυλακιορρηξιών (πίνακας 2). Το ποσοστό γονιμομοποίησης 87,6% είχε ως αποτέλεσμα μια μέση απόδοση σε έμβρυα 9,2 (s.e. 0,79) (πίνακας 2). Μόνο μια προβατίνα δότης δεν γονιμοποιήθηκε, και στο 74% των προβατίνων (34/46) το ποσοστό γονιμομοποίησης έφτασε το 100%.

Κατάψυξη εμβρύων

Από το σύνολο των εμβρύων που συλλέχτηκαν, 327 (77,5%) θεωρήθηκαν κατάλληλα (στάδιο 1 ή 2) για κατάψυξη. Από τα 95 εμβρύα, που δεν καταψύχθηκαν, τα 17 βρίσκονταν σε πολύ προχωρημένο στάδιο ανάπτυξης και κατά συνέπεια κρίθηκαν ακατάλληλα για κατάψυξη, τα υπόλοιπα (78) ήταν εκφυλισμένα ή κακής ποιότητας.

Πίνακας 3. Βιωσιμότητα εμβρύων σε σχέση με τον αριθμό των εμβρύων που μεταφέρθηκαν σε προβατίνες-δέκτες

<table>
<thead>
<tr>
<th>Αριθμός εμβρύων που επιβίωσαν</th>
<th>Διπλή μεταφορά</th>
<th>Τριπλή μεταφορά</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φοτεινός άρτησης</td>
<td>Twin transplants</td>
<td>Triplet transplants</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>38</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

assessed as being of sufficient quality (Grade 1 or 2) for cryopreservation. These embryos ranged from late morula to expanded blastocyst and following freezing were transported to the UK by airmail. Of the 95 embryos not frozen, 17 were of a too advanced embryonic stage (hatched or collapsed blastocyst) for freezing and the remainder (78) were degenerated or of poor quality.

Embryo thawing and survival

Table 3 shows embryo survival in relation to number of embryos transplanted. Of a total of 198 embryos thawed, 15 embryos (7.8%) had not survived the cryopreservation procedure. Of the 183 embryos deemed viable for transfer, 20 embryos (10.9%) were considered to have been deteriorated in quality below grade 2. The results of ultrasonic scanning, 55 days after implantation, revealed that 69 out of the total of 82 recipient ewes were pregnant. Moreover, prior to lambing, 2 recipient ewes aborted and 1 died (all identified as carry twin pregnancies at the time of scanning). The 66 recipient ewes, which lambed successfully, produced 115 lambs of which 4 were stillborn.

Effect of embryonic stage on embryo survival

Table 4 shows the rate of embryo survival as influenced by their stage of development. The analysis of the embryo survival rate in relation to the embryonic stage frozen
Πίνακας 4. Βιωσιμότητα εμβρύων σε σχέση με το στάδιο ανάπτυξής τους

<table>
<thead>
<tr>
<th>Στάδιο ανάπτυξης</th>
<th>Αριθμός εμβρύων που μεταφέρθηκαν</th>
<th>Αριθμός εμβρύων που επιβίωσαν (%)</th>
<th>Ποσοστό επιβίωση (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Όριο μορίδιο</td>
<td>23</td>
<td>11</td>
<td>47.8</td>
</tr>
<tr>
<td>Πρόοψη μορίδιο</td>
<td>49</td>
<td>39</td>
<td>79.6</td>
</tr>
<tr>
<td>Πρώην εμβρύων</td>
<td>45</td>
<td>30</td>
<td>66.7</td>
</tr>
<tr>
<td>Γεννήματα</td>
<td>47</td>
<td>37</td>
<td>78.7</td>
</tr>
</tbody>
</table>

Στάδιο ανάπτυξης και βιωσιμότητα των εμβρύων

Στον πίνακα 4 δίνεται ο αριθμός των εμβρύων που επιβίωσαν σε σχέση με το στάδιο ανάπτυξής τους. Η στατιστική ανάλυση των δεδομένων που αφορούν στη βιωσιμότητα των εμβρύων σε σχέση με το στάδιο ανάπτυξής τους, αποδεικνύει ότι η βιωσιμότητα των βλαστοκύστεων, που αποψύχτηκαν (75%), ήταν σημαντικά (P<0.001) μεγαλύτερη από ό,τι εκείνη των μοριδίων (48%).

Πίνακας 5. Μέση διάρκεια θηριοφορίας, σωματικό βάρος αρνιών στη γέννηση και ρυθμός ανάπτυξης των μονοδύμων και δίδυμων αρνιών

<table>
<thead>
<tr>
<th>Σελίδα ανάπτυξης</th>
<th>Μέση διάρκεια θηριοφορίας (χρόνος)</th>
<th>Μέσο βάρος στη γέννηση (κ.γ.)</th>
<th>Ρυθμός ανάπτυξης (κ.γ./ημέρα)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Μονόδυμα Single</td>
<td>150.6</td>
<td>3.50</td>
<td>0.240</td>
</tr>
<tr>
<td>Δίδυμα Twins</td>
<td>150.5</td>
<td>3.40</td>
<td>0.182</td>
</tr>
</tbody>
</table>

ΣΤΑΜΑΤΑΡΗΣ Κ., ΔΕΛΙΓΙΑΝΝΙΣ Κ., ΛΑΙΝΑΣ Τ., ΑΡΣΕΝΟΣ Γ. 243

ΣΥΖΗΤΗΣΗ

Στην παρούσα εργασία έγινε αξιολόγηση της εφαρμογής τεχνικών πολλαπλής ωοθυλακιορρηξίας και μεταφοράς εμβρύων από μια εγχώρια φυλή γαλακτοπαραγωγών προβάτων με στόχο τη μεταφορά τους σε άλλα προβάτινα. Χρησιμοποιήσαμε ένα πρωτόκολλο πολλαπλής ωοθυλακιορρηξίας σε επιλεγμένες προβατίνες - δότριες της φυλής Karagouniko, στοχεύοντας στην παραγωγή μεγάλου αριθμού εμβρύων. Σημειώθηκε (P<0.01) διαφορά όμως βρέθηκε στο ρυθμό ανάπτυξης μεταξύ μονοδύμων και δίδυμων αρνιών.

DISCUSSION

The main objective of this study was to test the possibilities of using multiple ovulation and embryo transfer techniques in an indigenous Greek dairy breed of sheep. We stimulated selected donor ewes of the Karagouniko breed, to produce large numbers of embryos after the induction of multiple ovulation by gonadotropin treatment (superovulatory response). Subsequently, the embryo recovery, along with embryo cryopreservation, embryo survival and
οφείλεται σχεδιαστικά με την εφαρμογή της ΠΟΜΕ σε προβάτινες εγκύων φιλιών, οι οποίες επιτρέπονται κάτω από ιδιώτες που συνεχίζει, όπως αυτός της χώρας μας.

Based on the results we suggest that MOET could be used as a tool to force the genetic improvement in dairy sheep production. It is worth noted that, up to now in Greece, MOET has been applied only in dairy cows and only recently few studies have been focusing in sheep (Amiridis et al 1999, Lymberopoulos et al 2001). To our knowledge this is the first attempt to test the technique in indigenous dairy breeds of Greek sheep together with exploring the potential of superior animals to produce more offspring. There is no doubt that the main reasons for the slower uptake of MOET in sheep production is due to the lower economic value of sheep and the technical difficulties

Συμπερασματικά φαίνεται ότι τα κατεψυγμένα έμβρυα είναι επιτυχές μέσο διεθνούς μεταφοράς πρόβειου γενετικού υλικού, αλλά η επιλογή του σταδίου ανάπτυξης των εμβρύων είναι αποφασιστικής σημασίας. Αν και η παρούσα μελέτη έγινε, κυρίως, για ερευνητικούς σκοπούς, φαίνεται ότι τα αποτελέσματα μπορούν να συμβάλουν θετικά σε μια περαιτέρω πρακτική προσέγγιση στο μέλος. Με δεδομένη την κατάσταση της ελληνικής προβατοτροφίας (Zygoyiannis 1999), θα πρέπει να δέχομαι ότι οι τεχνικές μεταφοράς εμβρύων σε προβατινές εγχώριες φυλές πρέπει να διερευνηθούν σε μεγαλύτερη κλίμακα, αφού δίνουν τη δυνατότητα για τη μεταφορά γενετικού υλικού από και προς τη χώρα μας. Επιπλέον, για τη στήριξη της προβατοτροφίας με τη νέα τεχνική, θα πρέπει να δοθεί ιδιαίτερη σημασία στην εκπαίδευση των καταγωγών και εργαζομένων. Κατά την ίδια συνεδρία, η Ευρωπαϊκή Επιτροπή υπέβαλε μια πρόταση έργου για την ανάπτυξη του κλάδου της προβατοτροφίας στην Ελλάδα, την οποία τοποθετήσαμε η Ελληνική Κτηνιατρική Εταιρεία και ζητήσαμε τη συμμετοχή των προβατοτρόφων στην επανένωση της ελληνικής προβατοτροφίας.
Ελλάδας και της Ισπανίας. Ενημερωτόμυον όλως όσους συμμετέχουν κατά τα διάφορα στάδια της παρούσας εργασίας. Ειδικότερα, θέλουμε να ενημερώσουμε την εφευρετική ομάδα του κέντρου γενετικών ερευνών του Ελιβρουνόγρου για την πολύτιμη βοήθεια τους κατά τη σύλλογη και τη μεταφορά των εμβρύων.

ΒΙΒΛΙΟΓΡΑΦΙΑ - REFERENCES

Singh EL, Dulac GC, Henderson JM (1997) Embryo transfer as a means of controlling the transmission of viral infections. Failure to transmit bluetongue virus through the transfer of embryos from viremic sheep donors. Theriogenology, 21:266.

