Submandibular and parotid abscess due to Nocardia sp. and therapy with danofloxacin in sheep

S. KIRKAN, K. URAL, U. PARIN, O. ORTLEK, C. BALIKCI, M. GULTEKIN, U. KARADEMIR, I. AKIN

doi: 10.12681/jhvms.15552

Copyright © 2018, S KIRKAN, K URAL, U PARIN, O ORTLEK, C BALIKCI, M GULTEKIN, U KARADEMIR, I AKIN

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0.

To cite this article:

Submandibular and parotid abscess due to *Nocardia* sp. and therapy with danofloxacin in sheep

Kirkan S.ª, Ural K.b, Parin U.a,ª, Ortlek O.b, Balikci C.b, Gultekin M.b, Karademir U.c, Akin I.d
ªAdnan Menderes University Faculty of Veterinary Medicine Department of Microbiology, AYDIN, TURKEY
bAdnan Menderes University Faculty of Veterinary Medicine Department of Internal Medicine, AYDIN, TURKEY
 cAdnan Menderes University Faculty of Veterinary Medicine Department of Pharmacology and Toxicology, AYDIN, TURKEY
dAdnan Menderes University Faculty of Veterinary Medicine Department of Surgery, AYDIN, TURKEY

Correspondence: U. Parin
Adnan Menderes University Faculty of Veterinary Medicine Department of Microbiology, AYDIN, TURKEY
E-mail address: uparin@adu.edu.tr

ABSTRACT. The aim of the present study was to report detection of *Nocardia* sp. from cutaneous lesions of sheep. Abscess material was collected from submandibular and parotid lesions in sheep for identification of *Nocardia* sp., which is well known as a causative agent for cutaneous or subcutaneous abscesses, disseminated disease, mastitis, and pneumonia. *Nocardia* sp. are Gram-positive, delicate, non-motile, branching filamentous bacteria that found in soil, dust, organic materials, water and aquatic environmental. *Nocardia* species generally yield a large variety of diseases in both normal and immunocompromised humans and animals. In the present study, bacterial staining methods and biochemical identification methods were applied for identification of *Nocardia* sp. in four sheep in Aydin. All cases had superficial abscesses in the submandibular and parotid region, mostly invading the head and neck regions. Neutrophilic leukocytosis was evident in three out of four sheep, and there was evidence of moderate anemia in two of the sheep. Samples were stained with Gram and modified Ziehl-Neelsen staining and streaked onto sheep blood agar, incubated at 37°C for 48-72 hours under aerobic condition, Sabouraud Dextrose Agar, incubated for one week under aerobic condition. *Nocardia* sp. was isolated from based on bacteriological investigation confirming numerous thin, Gram-positive, filamentous and nonacid fast organisms, and biochemical tests. *Nocardia* sp. strains were confirmed with 16s rRNA PCR method. Based on clinical appearance, hematological findings, and molecular analysis a definitive diagnosis cutaneous *Nocardiosis* was made in the sheep. Initial therapy involving danofloxacin, with regard to antibiogram, for 10 days and local iodine solutions, resulted in clinical recovery on 35-45 days post-treatment. This is the first reported case of cutaneous *Nocardiosis* and its effective danofloxacin therapy in sheep in Turkey.

Keywords: *Nocardia* sp., sheep, goat, abscess, identification.
INTRODUCTION

Nocardia sp. are Gram-positive, delicate, non-motile, branching filamentous bacteria that found in soil, dust, organic materials, water and aquatic environment. These catalase-positive organisms are partially acid fast by Kinyoun’s (modified Ziehl-Neelsen) technique (Brown-Elliott et al., 2006; Songer and Post, 2005). Nocardia infections occur in several species including humans, cattle, sheep, goats and other relevant species (Brown-Elliott et al., 2006; Ramos-Vara et al., 2007; Ribeiro et al., 2008; St Leger et al., 2009). Cutaneous-subcutaneous abscesses, pneumonia, and mastitis are common clinical presentations of Nocardiosis in animals. Nocardia sp. comprise of at least 12 different species involving pathogenic species i.e. Nocardia asteroides, N. brasiliensis, N. transvalensis, N. nova, and N. otitidis-caviarum (formerly N. caviae). N. asteroides is suggested as the most important pathogenic species for human and animal Nocardiosis, followed by N. brasiliensis and N. otitidis-caviarum (Eshraghi and Amin, 2001; Menendez et al., 1997). Nocardial species generally yield a large variety of diseases in both normal and immunocompromised humans and animals (Malladi et al., 2010). Infections due to Nocardia sp. are generally acquired through milk, inhalation, ingestion and trauma (Martinez, 2008).

This report presents the Nocardiosis in four sheep in terms of its bacteriological characteristics and clinical features. According to the authors’ knowledge, this is the first reported case series of cutaneous Nocardiosis in sheep resided in Aydin province, Turkey.

MATERIALS AND METHODS

Sample collection

The sheep were referred to Adnan Menderes University Faculty of Veterinary Medicine Department of Internal Medicine Clinics for evaluation of swellings. In all cases, there were superficial abscesses within the submandibular and parotid region, mostly invading the head and neck regions. Tissue samples were collected by puncturing the specified lesions of submandibular and parotid abscesses. Abscessed materials were initially excised surgically and collected samples were brought to Adnan Menderes University Faculty of Veterinary Medicine Department of Microbiology Laboratory. All authors hereby declare that “Principles of laboratory animal care” (NIH publication No. 85-23, revised 1985) were followed, as well as specific national laws where applicable.

Bacterial identification

Samples were stained with Gram and modified Ziehl-Neelsen staining. Thin, Gram-positive, branching, beaded, filamentous and non-acid fast organisms were visualized at first under light microscope. After that, the samples were streaked onto 5% sheep blood agar, MacConkey agar and EMB agar, incubated at 37°C for 48-72 hours under aerobic condition, Sabouraud Dextrose Agar, incubated at 25°C for one week under aerobic condition.

After growth period, the preliminary evaluation of the bacterial colonies was made on the grounds of colony appearance and preparation staining after Gram and modified Ziehl-Neelsen method. The cultures were observed as white, dry, wrinkled, and had chalk like appearance.

The organisms were identified on the basis of growth, morphological and biochemical properties as well as microscopic examination. Thin, Gram-positive, branching, beaded, filamentous and non-acid fast organisms were visible under the microscope with Gram’s and modified Ziehl-Neelsen (ZN) staining, respectively. The bacterial cultures were identified with conventional biochemical and carbohydrate fermentation tests following the standard procedures described previously (Koneman et al., 1999).

All Nocardia sp. (n=4) strains were confirmed by PCR using a Nocardia genus-specific 590 bp fragment of 16S rRNA primers (Laurent et al., 1999). Nocardia sp. DNAs were extracted with Ultraclean Microbial DNA Isolation Kit® (MO BIO Laboratory, Inc.) as recommended by manufacturer. DNA extracts were used in PCR. 16S rRNA primers (NG1 5’-ACCGACCACAAGGGG-3’ and NG2 5’-GGTTGTAAACCTTTC TTGC-3’) were designed according to Laurent et al. (1999). As a positive control Nocardia asteroides ATCC 19247 strain was used in the PCR. PCR amplification was carried out using final volumes of 50 µl PCR master mixes which contains 10 µl template DNAs as previously described (1999). Ten microliters of each amplification reaction mixture was analyzed by agarose gel electrophoresis performed with a 1% (wt/vol) agarose gel stained with ethidium bromide (0.7 µg/ml). After electrophoresis, PCR products were visualized and analyzed with UV trans-illuminator (Vilber Lourmat Infinity VX2®). PCR products of 590 bp for Nocardia sp. was considered evidence for identification.

Antimicrobial Sensitivity of the Nocardia Strains

All the Nocardia strains were tested for their sen-
Clinical findings
At physical examination all cases had superficial abscesses in the submandibular and parotid region, mostly invading the head and neck regions.

Hematological and serum biochemical analysis
Regarding neutrophilic leukocytosis WBC:min-max 12.44-14.33 x 10^9/L (reference ranges 4-12x10^9/L); neutrophil: min-max 7.49-11.18 (reference ranges 0.7-7.3x10^9/L) was evident in 3 out of 4 sheep, and there was evidence of moderate anemia (PCV: 20.2-24 % (reference ranges 27-45 % in 2 of those sheep.

Microbiological findings
Clinical, hematological and molecular findings allowed us to detect cutaneous Nocardiosis from 4 sheep in Aydin province, Turkey. On first admission the abscesses were surgically excised, and then were analyzed microbiologically. The bacterial strains were identified as *Nocardia* sp. by biochemical examination and confirmed by PCR. Agarose gel electrophoresis of PCR products is shown below in Figure 1.

Therapy
The antibiogram tests revealed that all the isolates
were susceptible only to danofloxacin. Hence, therapy was initiated by application of danofloxacin (Advocin® flk, 50 ml, Zoetis) at a dose of 6 mg/kg s.c. daily (for 10 days) and local iodine solutions were applied by draining of the abscess for 15 days. Complete recovery was seen after 35-45 days (Figure 2). No side effect was noticed during drug administration.

DISCUSSION

Nocardiosis occurs in a large variety of animals as well as in humans. In mammals, six forms have been distinguished, such as pulmonary, central nervous system, extrapulmonary, cutaneous and subcutaneous or lymphocutaneous, actinomycetoma and systemic. Actinomycetoma is a distinct subcutaneous nodule and the systemic form involves several sites (St Leger et al., 2009).

The incidence of human Nocardiosis is not well established in Turkey and comprises mostly case reports and small case series (Yildiz et al., 2005; Mentes et al., 2006; Elmaci et al., 2007; Arslan et al., 2007; Karakan et al., 2007). Pulmonary Nocardiosis is the most common presentation, with dissemination to other parts of the body, especially the brain. Nine pulmonary and/or cerebral Nocardiosis cases in humans (Yildiz et al., 2005) were defined on the basis of a positive culture and consistent clinical presentation in a retrospective study which performed at Erciyes University Teaching Hospital. Long term treatment of cases was started with ceftriaxone plus amikacin. According to the susceptibility, antibiotic choice modified to amoxyclillin–clavulanate, trimethoprim–sulphamethoxazole, iminepem or meropenem (Yildiz et al., 2005).

A rare cutaneous nocardiosis case as a superficial infection with cellulitis, on the right lower leg presented in a woman from with a history of travel to Turkey. This case was treated with trimethoprim–sulphamethoxazole for three months (Wong et al., 2003). On the other hand in animals, Nocardiosis was reported in some case series in cats (Erturk and Alibasoglu, 1974; Haziroglu et al., 2006).

Nocardiosis in ruminants have been well recognized in cattle (Pal, 1997; Ribeiro et al., 2008) and in sheep (Kheirandish et al., 2013) worldwide. Reports regarding localized Nocardiosis were composed of pneumonia, mastitis and dermatitis (Pal, 1997; Ramos-Vara et al., 2007; Ribeiro et al., 2008; Nahed et al., 2011). Hitherto, neither cutaneous Nocardiosis/submandibular and parotid abscess due to Nocardia species, nor danofloxacin treatment have never been reported in sheep in Turkey.

In sheep most subcutaneous abscesses exist as a result of trauma relevant skin penetration of invading microorganisms such as Staphylococcus aureus, Staphylococcus haicus, Staphylococcus epidermidis, A. pyogenes (AL-Tuffyli and Shekhan, 2012), C. pseudotuberculosis (Ural et al., 2008; AL-Tuffyli and Shekhan, 2012), Pasteurella sp., E. coli and Klebsiella pneumonia (Menzies and Muckle, 1989; Al-Harbi 2011; Tavassoli et al., 2012). The vast majority of the samples cultured revealed S. aureus as a major etiological reason, followed by Arcanobacterium pyogenes and C. pseudotuberculosiis (Tadayon et al., 1980; Menzies and Muckle, 1989; Gezon et al., 1991; AL-Tuffyli and Shekhan, 2012). The positive culture of 4 samples in our study based on Gram and modified Ziehl-Nielsen Staining, incubation under aerobic conditions, identification with conventional biochemical and carbohydrate fermentation tests and finally via PCR, all confirmed that the responsible agent was Nocardia sp. in the present study.

In vitro activity of fluoroquinolones against clinical isolates of Nocardia species were tested previously (Mikami and Yazzawa, 1989; Hansen et al., 2008; Mittal and Fernandes, 2012). A previous study in Turkey, investigated variations in antimicrobial susceptibility among several Nocardia species, indicating that all of the strains were susceptible to fluoroquinolones such as moxifloxacin and evofloxacin (Percin et al., 2011). Danofloxacin is another fluoroquinolone, which is preferred in some of the respiratory and gastrointestinal problems among ruminants, in the present authors’ practice, was the drug of choice for treatment of abscesses, based on antibiogram. To the best of our knowledge’ danofloxacin treatment in the present study is the first time that was tested such therapy. There was no apparent side effects due to danofloxacin administration, indicating that the latter compound may be safely used at the recommended dosage used in this study, although only a limited number of cases were involved.

Nocardiosis in animals are either systemic or localized. In ruminants, reports of localized Nocardiosis include mastitis, pneumonia and dermatitis (Nahed et al., 2011; Pal, 1997; Ramos-Vara et al., 2007). Clinical signs of Nocardiosis start with the appearance of firm nodules or pustules, which then rupture and suppurate (Songer and Post, 2005). In the present study enrolled sheep did not reveal the presence of pneumonia, nor mastitis were evi-
dent. Cutaneous lesions were solely present.

CONCLUSIONS

The clinical diagnosis of Nocardiosis is relatively difficult, since the cutaneous lesions are not pathognomonic. Diagnosis is usually based on culture, isolation and microscopic observations and PCR detection of the organisms. Confirmation of diagnosis and identification of species should be performed by biochemical features of the responsible agent. In conclusion, diagnosis of cutaneous Nocardiosis was accomplished based on the presence of gross lesions as well as clinical/hematological findings, besides isolation and identification of Nocardia sp. from the affected abscess materials. This is the first reported case series of cutaneous Nocardiosis for the Aydın province of Turkey. Further studies may be warranted in an attempt to evaluate the efficacy of danofloxacin in a larger sheep herd with Nocardiosis.

CONFLICT OF INTEREST STATEMENT

The authors hereby declare that there is no conflict of interests for this research.

REFERENCES

Incidence of Nocardia species in raw milk collected from different localities of Assiut City of Egypt. Vet World 4:201-204.

