Effects of testosterone administration and feeding level on reproductive activity in sexually inactive goat bucks

doi: 10.12681/jhvms.18032

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0.

To cite this article:

Effects of testosterone administration and feeding level on reproductive activity in sexually inactive goat bucks

A. de Santiago¹, J.F. Alvarado¹, A.G. López¹, G. Trujillo², M.M. Álvarez², M. Mellado³*

¹Department of Veterinary Medicine, Agrarian Autonomous University Antonio Narro, Torreon, Mexico
²Center for Biotechnoloy-FEMSA, Technological Institute and University Studies of Monterrey, Monterrey, Mexico
³Department of Animal Nutrition, Agrarian Autonomous University Antonio Narro, Saltillo, Mexico

ABSTRACT. The aim of this study was to investigate the effect of the administration of testosterone to a well-fed or underfed sexually inactive goat bucks on their sexual behavior and semen characteristics. Twenty sexually experienced mixed-breed goat bucks (1.5 years of age) were randomly assigned to one of four treatments for a period of 71 days. Treatments consisted of diets with amount of nutrients to meet 1.0 times the nutrient maintenance requirements with the application of 25 mg testosterone every third day during 21 d (treatment 1T) or saline (treatment 1C). A third and fourth treatments received a diet 1/2 times the nutrient maintenance requirements with testosterone (1/2T) or saline (1/2C). Bucks on 1T and 1C had higher body weight, body condition score and scrotal circumference compared to 1/2T and 1/2C (P<0.05). Also, bucks on 1T and 1/2T had higher sexual odor compared to 1C and 1/2C (P<0.05). Mean serum testosterone concentrations were highest in 1T (4.78 ± 6.78 ng/ml) and lowest in 1/2C (0.56 ± 0.96 ng/ml; P<0.01). Semen volume, sperm concentration, and mass motility were not affected by treatments, but sperm progressive motility was lower (P<0.05) in 1/2C (46%) than the other treatments (52 to 57%). Courtship traits and mounts were more frequent (P<0.05) in 1T compared with the other treatments. Likewise, bucks in the 1T group had the shortest latency to first mount (82 seconds) compared to other treatments (110 to 164 seconds). These results indicate that testosterone administration to well-fed sexually inactive bucks provokes clearly defined sexual activity during the non-breeding season. However, these benefits are overridden by underfeeding goat bucks.

Keywords: Semen characteristics; Flehmen; Sexual odor; Sperm motility; Scrotal circumference
INTRODUCTION

Most goats in developing countries are exploited on pastures, managed under traditional extensive systems. Grazing goat bucks need an even and continuous supply of feed for their maintenance, and other productive processes, such as reproduction. Goat bucks on arid and semi-arid rangelands subsist solely on native vegetation throughout the year, which implies successive periods of shortages and surfeits of forage. Under these circumstances nutrient supply and body energy reserves vary widely during the year, affecting the reproductive activity of goat bucks (Zarazaga et al., 2009). Another consequence of underfeeding goat bucks is a significant detrimental effect on the testicular development and semen quality in these animals (Almeida et al., 2007; Zarazaga et al., 2009).

Another important factor affecting buck sexual drive is the season of the year. In temperate zones, libido, fertility, and semen quality and volume are better in late summer and fall (Roca et al., 1992; Karagiannidis et al., 2000; Barkawi et al., 2006). As the daylength gets longer, sperm concentration is lower, whereas it is noticed that the percentage of morphologically abnormal spermatozoa may be increased. (Barkawi et al., 2006; Ramadan et al., 2009). Recent reports indicate that the administration of testosterone to bucks during the non-breeding period (Spring) elicits a strong sexual behavior in goat bucks (Luna-Orozco et al., 2012; Ángel-García et al., 2015a), which in turn induces ovulation in anestrous goats. However, it is unknown if the effect of exogenous testosterone is modified by the nutritional status of bucks. Therefore, the objective of this study was to determine whether nutritional status combined with the administration of testosterone influence the sexual behavior and semen quality of goat bucks during the non-breeding season.

MATERIAL AND METHODS

Study area and animal housing and management

The Autonomous Agrarian University Antonio Narro ethics committee approved all the experimental work. This study was carried out in northern Mexico (25° N, mean annual temperature 23.5°C). The climate is semi-arid, with hot spring and summer and mild winters. Most of the precipitation occurs during the summer and fall.

A total of 20 mature mixed-breed (native x dairy breeds) goat bucks, initially averaging 41 ± 3.7 kg body weight (BW) and 2.9 ± 0.3 body condition score (5-point scale), with similar testis size at the start of the study were used. Prior to the experiment, the goat bucks were kept under rangeland conditions. Then the goat bucks were housed in a 4 x 10 m outdoor roofed pens with dirt floors, under ambient temperature and lighting. The trial was carried out over a period of 71 days (February 3 to April 15, 2014).

The bucks were randomly allotted to 4 experimental groups: 1.0 x the maintenance nutrient requirements with (1T, n= 5) or without (1C, n=5) administration of testosterone, and 0.5 x the maintenance nutrient requirements with (1/2T, n= 5) or without (1/2C, n=5) testosterone. The goat bucks on the 1.0 x the maintenance nutrient requirements diet were offered 500 g day$^{-1}$ of alfalfa hay, 1100 g of oat hay, 200 g of molasses and 300 g day$^{-1}$ of concentrate (14% crude protein). Those on the 0.5 diet were offered half of the feed previously described. The different nutritional planes were based on NRC (2007) and the goat bucks were provided with these diets for 71 days. Water and salt-mixed trace minerals were offered ad libitum. From March 24 to April 14, bucks on the 1T and 1/2T received 25 mg testosterone (Testosterona 50®, Brovel Laboratory, Mexico D.F., Mexico) i.m. every third day. Bucks on the 1C and 1/2C groups received saline injections.

Collection of data

The change in body weight and body condition score on each treatment was recorded weekly. Body condition score (BCS) was assessed by palpating the muscle mass at the lumbar region of goat bucks, and values were assigned based on a 1–5 points scale (1= very thin, 5= very fat; Detweiler et al., 2008). Scrotal circumference measurements were recorded weekly on all goat bucks throughout the experimental period. Measurements were done by using a flexible measuring tape placed in the widest part of both testicles.

The intensity of the odor was recorded weekly for each buck, by smelling the dorsum of the neck.
approximately 15 cm behind the caudomedial border of each horn base (Walkden-Brown et al., 1999). The score scale used was from 0 (neutral odor, not different from a female) to 3 (strong male odor).

Ejaculates were successfully collected on all bucks during 5 consecutive weeks, at the middle of the supplementation period (5 weeks after the beginning of the feed supplementation), by means of an artificial vagina. The total volume of the ejaculate was measured using a calibrated test tube. Sperm mass motility of undiluted semen was subjectively estimated by a light microscope (x 400) at 37 °C. Three different microscopic fields for each semen sample were observed and the mean of these estimations gave the motility score using a scale from 0 (no activity) to 5 (rapid swirling motion). Sperm concentration was evaluated by a spectrophotometer calibrated for goat bucks (Minitube, Tiefenbach, Germany) following the protocol described by Prathalingam et al. (2006). Furthermore, progressive motility was assessed by a light microscope (x400) at 37°C.

On 14 and 15 of April of the experimental period, a sexual behavior test was conducted. Goat bucks from all experimental groups were individually exposed to one unrestrained estrogenized female for 20 min in an isolated pen. The sexual behaviors were recorded uninterrupted during the test period by an observer positioned outside the pen at a distance of approximately 2.5 m. Each buck was used in only one test per day. Two females were estrogenized by administering 2 mg estradiol cypionate i.m. every third day (ECP®, Lab. Pharmacia & Upjohn, Mexico) during 3 consecutive weeks. The behavioral components recorded were: latency to first mount, number of vocalizations, anogenital sniffing, flehmen response, approximations to females, mount attempts, mounts without ejaculation, mounts with exposed penis, mounts with ejaculation (buck thrusting forward and leaping off the ground, propelling the doe forwards). Total serum testosterone was assessed using an ELISA assay according to the kit protocol (Neogen Corporation #402510; Lexington, KY, USA). Ten blood samples (5 ml) were collected weekly during the study period into Vacutainers (Corvac Kendall Health Care, St. Louis, USA) from the jugular vein of each goat buck, and allowed to clot at room temperature during 30 min. Serum was separated by centrifugation at 5000 g for 10 min, immediately transferred to polypropylene micro tubes (Axygen Scientific, Union City, USA) and stored at -20°C until further analysis.

Statistical analyses

The Shapiro Wilk W-test was used to analyze data for normality. Heterogeneity of variance was found for courtship behaviors, mount attempts, and mounts with ejaculations using Bartlett’s Box F-test specifying this option in the MEANS Statement in SAS (SAS Inst. Inc., Cary, NC). The data for courtship behaviors, mounts, and mounts with ejaculations were transformed to the reciprocal of square root of X + 1, log of X + 1, and square root of X + 0.1, respectively, which stabilized the variances among goat bucks for the fixed effects. Data of sperm motility were arcsine transferred prior to analysis. The effect of feeding level and testosterone administration on goat buck body weights and BCS was determined using mixed-model methodology using PROC MIXED in SAS. Within these analyzes, goat buck was treated as a random effect and feeding level and administration of testosterone were included as fixed effects in the model.

Odor intensity data were analyzed using the Wilcoxon non-parametric tests (NPAR1WAY procedure; SAS) to test for differences between groups of goat bucks. Plasma testosterone data were analyzed using mixed model procedures of SAS (SAS Inst. Inc., Cary, NC) for specific repeated measures, considering 10 blood collection times. Data for testosterone showed heterogeneous variance using Bartlett’s Box F-Test in SAS. To normalize variances among goat bucks for fixed effects, testosterone values were transformed to the inverse square root. Testosterone means were changed back to their original units after analysis.

A total of 5 ejaculates, each from the 20 goat bucks, were examined by repeated measures ANOVA using a general linear model (PROC GLM of SAS) procedure. The statistical model included the effects of feed level, testosterone administration and their first-order interactions on sperm characteristics. Differences were considered to be statistically significant at P<0.05.
RESULTS
The mean values of body weight, body condition score, sexual odor intensity and scrotal circumference throughout the study are presented in Table 1. Body weight was lower (P<0.05) for underfed groups than for well-fed goat bucks. Likewise, BCS increased when animals were adequately fed compared with the underfed goat bucks. The intensity of sexual odor was greater (P<0.05) in goat bucks treated with testosterone, regardless of the feeding level, compared to bucks non-receiving testosterone. Bucks fed adequate levels of nutrients had larger mean scrotal circumference (P<0.05) after 70 d of the trial (Table 1). No feed level x testosterone treatment interactions were detected for the aforementioned variables.

A beneficial effect of improved feeding and exogenous testosterone administration was observed on serum testosterone levels. Serum testosterone levels of group 1T were 5.7 times higher(P<0.05) than 1C bucks (Table 2). Likewise, serum testosterone levels in 1T bucks were about twice that observed in 1/2T bucks (P<0.05). The feed level x testosterone treatment interaction was important (P<0.05), with better response of well-fed bucks to the testosterone treatment compared to underfed bucks. However, higher plane of nutrition and exogenous testosterone did not increase the flehmen reaction of bucks. Likewise, the flehmen reaction was expressed at similar frequencies in well-fed and underfed bucks.

Approximations to does were performed more often (P<0.05) by the well-fed testosterone-treated bucks compared with all other groups. There was no difference in approximations neither between well-fed and underfed bucks nor between bucks treated with or without testosterone. Regarding the act of mounts attempts, there was a greater frequency in bucks treated with testosterone compared to bucks not treated with testosterone and no effect of nutritional status was observed. However, neither feeding level nor testosterone treatment influenced number of complete mounts. Both mounts with the penis exposed and mounts with ejaculation were greater (P<0.05)

Table 1: Body traits, sexual odor intensity and scrotal circumference of well-fed or underfed mixed-breed goat bucks treated with exogenous testosterone or saline during the non-breeding season. Values are means ± standard deviation.

<table>
<thead>
<tr>
<th>Item*</th>
<th>1C ± 0.4a</th>
<th>1T ± 0.4b</th>
<th>1/2C ± 0.4c</th>
<th>1/2T ± 0.4c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight, kg</td>
<td>42.8 ± 0.4a</td>
<td>45.8 ± 0.4b</td>
<td>39.1 ± 0.4c</td>
<td>39.7 ± 0.4c</td>
</tr>
<tr>
<td>Body condition score*</td>
<td>2.4 ± 0.4a</td>
<td>2.5 ± 0.4b</td>
<td>2.1 ± 0.4c</td>
<td>2.2 ± 0.4b</td>
</tr>
<tr>
<td>Sexual odor intensity**</td>
<td>0.15 ± 0.4a</td>
<td>0.29 ± 0.4b</td>
<td>0.12 ± 0.4c</td>
<td>0.26 ± 0.4b</td>
</tr>
<tr>
<td>Scrotal circumference, cm</td>
<td>26.8 ± 0.4a</td>
<td>26.9 ± 0.4b</td>
<td>25.1 ± 0.4c</td>
<td>1.9 ± 0.4b</td>
</tr>
</tbody>
</table>

1C=100% nutrient requirements for maintenance; 1T= 100% nutrient requirements for maintenance plus testosterone; 1/2C= 50% nutrient requirements for maintenance; 1/2T= 50% nutrient requirements for maintenance plus testosterone.
*5-point scale; **0 to 3-point scale.
For all variables, no feeding level x testosterone treatment interactions (P>0.05) were found.

a,b,c Means in the same raw with different superscript differ (P<0.05).
in group 1T than in the other groups. Latency to first
mount of 1T goat bucks was half the time recorded
from the 1C goat bucks.

DISCUSSION

At the beginning of the study (spring; increasing
daylength), the goat bucks were sexually quiescent
with low serum testosterone, no male sexual odor,
and few signs of peripheral androgen stimulation.
Underfed animals under these conditions presented
retardation in body development and scrotal circum-
cference shared this retardation. This study confirms
earlier reports that have indicated a significant associa-
tion between plane of nutrition, body weight and scro-
tal circumference (Mellado et al., 2012; Ghorbankhani
et al., 2015). The fact that testosterone administration
did not affect scrotal circumference indicates that
changes in testicular size could be induced solely by
diet. The lack of nutrients was apparently associated
with changes in gonadotrophin secretion, suggest-
ing that there is an effect of nutritional status on the
hypothalamic-pituitary axis regarding the testicular
development of mixed-breed goat bucks (Martin et al.,
1994; Blache et al., 2000). Scrotal circumference was
enhanced with the higher feeding level, which is con-
trary to findings of Tufarelli et al. (2011) and Bielli et
al. (1999), who found no significant effect of improved
diets on scrotal dimensions. However, findings of the
present study are consistent with data of Hötzel et al.
(2003) and Fernández et al. (2004). These differences
can mainly be attributed to greater amounts of sub-
cutaneous fat in the scrotal skin in goat bucks fed the
100% maintenance diet, as it has been observed by
Fourie et al. (2004).

Sexual odor intensity was strongly affected by
the administration of testosterone, regardless of the
nutritional status of goat bucks. This finding can be
ascribed to the fact that the primer pheromome respon-
sible for the male effect is produced in the sebaceous
glands (primarily in the cornual gland; Van Lancker
et al., 2005) under the control of testosterone (Iwata
et al., 2000). Thus, apparently, the sebaceous glands
developed during the course of the testosterone treat-
ment inducing the pheromone (odor) production.

The serum testosterone levels were clearly much
higher in the well-fed testosterone-treated bucks,
confirming the findings of previous studies showing
that serum testosterone levels are three times higher
in testosterone-treated bucks compared to control
during the non-breeding season (Ángel-García et al.,
2015b). The fact that testosterone levels were lower
in underfed bucks compared to the well-fed bucks
indicates that diets significantly affected the blood
testosterone patterns. The interaction between feeding
regime and testosterone treatment further shows that
the energy body reserves alters the serum testosterone
levels of bucks during the non-breeding season. Other
studies have demonstrated that testosterone secretion
in goat bucks is influenced by feed (Al-Sobayil et al.,
2008). Therefore, it could be hypothesized that these
differences in serum testosterone could be related to
the alteration of body mass between the experimental
groups of bucks.

Table 2: Serum testosterone levels and semen quantitative and qualitative characteristics of mixed-breed goat bucks
during the non-breeding season, regarding nutritional status and testosterone treatment. Values are means ± standard
deviation.

<table>
<thead>
<tr>
<th>Item</th>
<th>1C</th>
<th>1T</th>
<th>1/2C</th>
<th>1/2T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testosterone, ng/mL(^a)</td>
<td>0.84 ± 1.58</td>
<td>4.78 ± 6.78</td>
<td>0.56 ± 0.96</td>
<td>2.76 ± 4.71</td>
</tr>
<tr>
<td>Semen volume (mL)</td>
<td>0.14 ± 0.06</td>
<td>0.33 ± 0.22</td>
<td>0.22 ± 0.19</td>
<td>0.30 ± 0.28</td>
</tr>
<tr>
<td>Sperm concentration (x10^6 mL(^{-1}))</td>
<td>826 ± 276</td>
<td>1037 ± 380</td>
<td>916 ± 389</td>
<td>1026 ± 307</td>
</tr>
<tr>
<td>Mass motility (1–5 scale)</td>
<td>1.3 ± 1.0</td>
<td>2.3 ± 1.4</td>
<td>1.6 ± 1.1</td>
<td>1.8 ± 1.5</td>
</tr>
<tr>
<td>Sperm progressive motility (%)(^a)</td>
<td>57 ± 11(^a)</td>
<td>58 ± 14(^a)</td>
<td>52 ± 16(^a)</td>
<td>46 ± 15(^a)</td>
</tr>
</tbody>
</table>

\(^a\)Means in the same raw with different superscript differ (P<0.05).

\(^a\)Feeding level x testosterone treatment interaction (P<0.05).

1C=100% nutrient requirements for maintenance; 1T= 100% nutrient requirements for maintenance plus testosterone;
1/2C= 50% nutrient requirements for maintenance; 1/2T= 50% nutrient requirements for maintenance plus testosterone.
Semen volume, sperm concentration and mass motility were not affected by feeding level or exogenous testosterone. This is in contrast to Tufarelli et al. (2011), who reported that semen volume and concentration were positively influenced by concentrate supplementation in rams. Many other studies have found improved semen characteristics when the nutritional condition of rams (Ghorbankhani et al., 2015) and goat bucks (Almeida et al., 2007) was improved. Although Kheradmand et al. (2006) found that neither semen volume nor sperm progressive motility were improved with an enhanced diet in Bakhtiary rams. Many other studies have found improved semen characteristics when the nutritional condition of rams (Ghorbankhani et al., 2015) and goat bucks (Almeida et al., 2007) was improved, although Kheradmand et al. (2006) found no improvement in semen volume with an enhanced diet in Bakhtiary rams. It was expected that semen volume and sperm concentration would be lower in the underfed goat bucks, which had slightly lower scrotal circumference. Kheradmand et al. (2006) argued that in rams, sperm cell concentration was higher after 7 weeks of improved diet administration. However, in the present study, no significant differences among buck groups were recorded for sperm concentrations. An explanation could be found in the fact that this trial only lasted for 29 days, insufficient for the completion of a spermatogenesis cycle in goat bucks of about 7 weeks (Franca et al., 1999). Sperm concentration, in this case, is, therefore, a consequence of the management these animals were subjected prior to the onset of the experiment. Significant differences were observed for sperm cell progressive motility (lowest in the 1/2T group), indicating that the administration of testosterone was not helpful to maintain adequate sperm progressive motility in underfed goat bucks.

In group 1T, goat bucks exhibited more investigatory anogenital sniffing behaviors toward the female stimulus animals compared to the other groups. Likewise, these bucks showed an increased frequency of vocalizations and greater mounts with penis exposed and mounts with ejaculation in response to estrous females. In group 1T, bucks exhibited a notable enhancement of almost all sexual behavior characteristics as it has been demonstrated previously (Ángel-García et al., 2015a,b) following exposure to stimulus females. So, it could be considered that the greater investigatory behaviors exhibited by these goat bucks derived from an enhanced neuroendocrine response due to greater blood levels of testosterone in these animals, in response to testosterone administration.

The ejaculation is the culmination of the recog-

Table 3: Sexual behaviors exhibited by well-fed or underfed goat bucks with or without testosterone administration during the non-breeding season by exposure to estrogensized does. Values are means ± standard deviation

<table>
<thead>
<tr>
<th>Item</th>
<th>1C</th>
<th>1T</th>
<th>1/2C</th>
<th>1/2T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anogenital sniffing</td>
<td>10.0 ± 7.6a</td>
<td>59.8 ± 38.1b</td>
<td>11.2 ± 7.2a</td>
<td>26.0 ± 20.1a</td>
</tr>
<tr>
<td>Flehmen responses</td>
<td>1.0 ± 0.7</td>
<td>5.2 ± 6.3</td>
<td>0.6 ± 1.3</td>
<td>3.6 ± 4.6</td>
</tr>
<tr>
<td>Vocalizations</td>
<td>10.6 ± 12.7a</td>
<td>78.2 ± 30.3b</td>
<td>20.8 ± 33.0a</td>
<td>27.2 ± 18.2a</td>
</tr>
<tr>
<td>Approximations to does</td>
<td>12.6 ± 11.3a</td>
<td>82.6 ± 41.5b</td>
<td>33.0 ± 34.5ab</td>
<td>54.0 ± 34.2abc</td>
</tr>
<tr>
<td>Mount attempts</td>
<td>0.4 ± 0.5a</td>
<td>12.8 ± 11.6a</td>
<td>1.8 ± 1.3a</td>
<td>7.8 ± 5.6b</td>
</tr>
<tr>
<td>Complete mounts</td>
<td>0.0 ± 0.0</td>
<td>0.8 ± 1.3</td>
<td>1.2 ± 1.6</td>
<td>1.8 ± 1.9</td>
</tr>
<tr>
<td>Mounts with penis exposed</td>
<td>0.8 ± 1.7a</td>
<td>4.8 ± 3.4b</td>
<td>0.6 ± 0.5a</td>
<td>2.4 ± 1.5a</td>
</tr>
<tr>
<td>Mounts with ejaculation</td>
<td>0.4 ± 0.9a</td>
<td>4.0 ± 1.2b</td>
<td>0.6 ± 0.5a</td>
<td>2.8 ± 1.6a</td>
</tr>
<tr>
<td>Latency to first mount, sec</td>
<td>164 ± 43a</td>
<td>82 ± 63c</td>
<td>145 ± 51c</td>
<td>110 ± 44b</td>
</tr>
</tbody>
</table>

1C=100% nutrient requirements for maintenance; 1T= 100% nutrient requirements for maintenance plus testosterone; 1/2C= 50% nutrient requirements for maintenance; 1/2T= 50% nutrient requirements for maintenance plus testosterone. Values are expressed as total behavioral events recorded (two days; 20 min per day).

Means in the same raw with different superscript differ (P<0.05).
rition and preparatory behaviors in the courting of does, therefore, it is an important indicator of the libido and motivational state of bucks. In the present study, there was a positive relationship between the precopulatory behaviors and the mounts accompanied with ejaculation, which supports the view that the frequency of precopulatory behaviors in goat bucks reflects their underlying sexual motivation.

The precopulatory response toward estrous does by the underfed and saline-treated bucks could be due, at least in part, to their low body energy reserves and above all, to their low serum testosterone levels. This situation apparently limited their investigatory interest toward the estrogenized does. In low-performing and male-oriented rams, the sensory signals exuded by the estrous females are neither detected nor sufficiently provocative to elicit further investigation by the ram (Alexander et al., 1999).

Latency to the first mount, a good index of libido, was much shorter in the group1T compared to the other groups. The adequate feeding level combined with exogenous testosterone had an enhancing effect on time to first mount. As it has been noted by Zarazaga et al. (2009), in goat bucks, when the level of nutrition increased, sexual activity increased, too. Additionally, testosterone concentrations are directly linked to sexual and aggressive behavior in rams (Ungerfeld and Lacuesta, 2015).

The flehmen reaction was expressed more frequently in the testosterone-treated goat bucks. In this species, flehmen response was displayed when a determination of estrus occurred (Ungerfeld et al., 2006), while goat bucks receive information from females through the primary olfactory mode. Thus, well-fed bucks with higher blood testosterone levels were more competent to detect odorants derived from receptive goats.

CONCLUSIONS

This study provides evidence that high levels of exogenous testosterone administered to sexually inactive mature mixed-breed bucks at 25° N provoke a perceptible sexual activity, which suggests that exogenous testosterone in the non-breeding season stimulates cerebral structures mediating male sexual drive. However, this response is mainly attained in well-fed goat bucks. Therefore, supplementary feed should be supplied in conjunction with testosterone to goat bucks during the nonbreeding season in order to potentiate their sex drive.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.
REFERENCES

