Diagnostic approach of anemia in ruminants

KATSOGIANNOU E. Department of Medicine, Faculty of Veterinary Science, University of Thessaly, Greece

ATHANASIOU L. Department of Medicine, Faculty of Veterinary Science, University of Thessaly, Greece

CHRISTODOULOPOULOS G. Department of Medicine, Faculty of Veterinary Science, University of Thessaly, Greece

POLIZOPOULOU Z. Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece

http://dx.doi.org/10.12681/jhvms.18866

Copyright © 2018 E. G. KATSOGIANNOU, L. V. ATHANASIOU, G. CHRISTODOULOPOULOS, Z. S. POLIZOPOULOU

To cite this article:

Diagnostic approach of anemia in ruminants

E.G. Katsogiannou1, L.V. Athanasiou1, G. Christodoulopoulos1, Z.S. Polizopoulou2

1 Department of Medicine, Faculty of Veterinary Science, University of Thessaly
2 Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece

ABSTRACT. Anemia in ruminants is an abnormal condition characterized by the decrease of the hematocrit (Packed Cell Volume, PCV), the mass of erythrocytes (Red Blood Cells, RBCs) and/or hemoglobin. Anemia is classified as hemolytic, hemorrhagic or anemia caused by the decreased production of erythrocytes; the first two categories are characterized by a regenerative response. Hemorrhagic anemia can be caused by ectoparasites or parasites of the gastrointestinal system, hemorrhagic bowel syndrome, abomasal ulcers, vena cava thrombosis as well as from the genitourinary tract. In addition, primary and secondary hemostatic disorders can be accompanied by hemorrhagic anemia. Hemoparasites, toxins produced from Clostridium perfringens type D and Clostridium hemolyticum and leptospirosis are some of the causes of hemolytic anemia. Furthermore, certain plants, drugs or heavy metals and lack of certain trace elements can cause hemolysis. Immune-mediated hemolytic anemia has also been reported in ruminants. The reduced production of erythrocytes can be caused by deficiency of vitamin B12 or iron, as well as by chronic diseases. Pathologic conditions of bone marrow like inflammatory or neoplastic cells filtration and hypoplasia or aplasia of bone marrow are related to reduced production of erythrocytes. After laboratory confirmation by complete blood count analysis, history taking, clinical examination
of the animal and specific test depending on the case, are required for the diagnostic approach of anemia and especially for etiological diagnosis. Tachycardia, tachypnea, icterus, mucosal pallor as well as specific symptoms of the underlying disease are observed during the clinical examination of the animal. FAMACHA technique is widely used for the clinical diagnosis and the assessment of the severity of anemia. With respect to complete blood count, apart from the hematocrit, hemoglobin concentration, erythrocytes indices as Mean Corpuscular Volume (MCV) and Mean Corpuscular Hemoglobin Concentration (MCHC) are contributing to the classification of anemia. The size and the shape of the erythrocytes, the appearance of inclusions and reticulocytes, which are indicative of regenerative anemia, are evaluated in blood smear. Rarely, examination of bone marrow is carried out, for the differentiation of anemia as regenerative or non-regenerative. In particular, the confirmation of immune-mediate anemia is based on Coomb’s test for the detection of autoagglutination. Except from hemorrhage, blood loss is detected at urinalysis or feces microscopy for the presence of blood and/or parasites. Finally, serological and molecular techniques for the detection of infectious agents, as well as specific toxicological analysis are performed in various biological materials.

Keywords: anemia, ruminants, diagnostic approach

ΠΕΡΙΛΗΨΗ. Η αναιμία στα μηρυκαστικά είναι παθολογική κατάσταση, η οποία χαρακτηρίζεται από τη μείωση του αιματοκρίτη (Packed Cell Volume, PCV), του αριθμού των ερυθροκυττάρων (Red Blood Cells, RBCs) ή/και της αιμοσφαιρίνης. Η αναιμία χαρακτηρίζεται ως αιμολυτική, αιμορραγική ή αναιμία που οφείλεται στη μειωμένη παραγωγή των ερυθροκυττάρων, με τις δύο πρώτες κατηγορίες να χαρακτηρίζονται από αναγεννητικότητα. Η αναιμία λόγω απώλειας αίματος μπορεί να οφείλεται σε εξωπαρασίτωση ή ενδοπαρασίτωση του γαστροintestinal συστήματος, στο σύνδρομο του αιμορραγικού εντέρου, σε έλκη του ηνύστρου, σε έμφραξη της οπίσθιας κοίλης φλέβας καθώς και σε αιμορραγία από το αιμοσφαιρινικό σύστημα. Ακόμη, πρωτογενείς και δευτερογενείς διαταραχές της αιμοσφαιρίνης μπορεί να συνοδεύονται από αιμορραγική αναιμία. Στα αίτια της αιμολυτικής αναιμίας περιλαμβάνονται τα αιμοπαράσιτα, οι τοξίνες που παράγεται από τα *Clostridium perfringens* τύπου D και *Clostridium hemolyticum* και η λεπτοσπείρωση. Επιπλέον, ορισμένα φυτά, φάρμακα ή βαρέα μέταλλα μπορούν να προκαλέσουν αιμόλυση των ερυθροκυττάρων καθώς και η έλλειψη ιχνοστοιχείων. Η ανοσολογικής αιτιολογίας αιμολυτική αναιμία έχει επίσης αναφερθεί στα μηρυκαστικά. Η μειωμένη παραγωγή ερυθροκυττάρων αντιστοιχεί στη μείωση της βιταμίνης Β12 ή του σιδήρου, καθώς και σε χρόνια νοσήματα. Παθολογικές καταστάσεις του μυελού των οστών όπως η διήθηση από φλεγμονικά ή νεοπλασματικά κύτταρα καθώς και η υποπλασία ή απλασία του μυελού των οστών σχετίζονται με μειωμένη παραγωγή ερυθροκυττάρων. Για τη διαγνωστική προσέγγιση της αναιμίας μετά την εργαστηριακή επιβεβαίωση με τη γενική εξέταση του αίματος και κυρίως για την αιτιολογική διάγνωση απαιτείται η λήψη ιστορικού, η κλινική εξέταση του ζώου, καθώς και ειδικές κατά περίπτωση εξετάσεις. Κατά την κλινική εξέταση του ζώου παρατηρούνται ταχυκαρδία, ταχύπνοια, ίκτερος, ωχροί βλεννογόνοι αλλά και τα ειδικότερα συμπτώματα του υποκείμενου νοσήματος. Η τεχνική FAMACHA έχει ευρέως χρησιμοποιηθεί για την κλινική διάγνωση και τον προσδιορισμό της βαρύτητας της αναιμίας. Από τις παραμέτρους της αιματολογικής εξέτασης, πέρα από τον αιματοκρίτη, η συγκέντρωση της αιμοφυτοπετρίνης, οι δείκτες των ερυθροκυττάρων μέσως όγκου ερυθροκυττάρων (Mean Corpuscular Volume, MCV), και μέση συγκέντρωση αιμοφυτοπετρίνης (Mean Corpuscular Hemoglobin Concentration, MCHC) συμβάλλουν στην ταξινόμηση της αναιμίας. Στο επίχρισμα του αίματος αξιολογείται το σχήμα και το μέγεθος των ερυθροκυττάρων, η παρουσία εγκλείστων, καθώς και η παρουσία δικτυοερυθροκυττάρων ενδεικτικών αναγεννητικής αναιμίας. Στη διάφορα βιολογικά υλικά πραγματοποιούνται ορολογικές και μοριακές τεχνικές για την ανίχνευση τοξινών.
INTRODUCTION

Anemia, by definition, corresponds to the reduction of blood oxygen and it is characterized by a decrease in hematocrit, erythrocyte mass and/or hemoglobin concentration leading to tissue hypoxia. In practice anemia is defined as the concentration of hemoglobin below the lower reference limit.

Anemia can be classified either based on the ensuing pathogenetic mechanisms thus characterized as hemorrhagic, hemolytic and anemia caused by the decreased production of erythrocytes or based on the regenerative response of bone marrow and consequently characterized as regenerative or non-regenerative anemia.

The presence of hypoxia in renal erythropoietin producing cells, as a consequence of anemia, dynamically alters the concentration of circulating erythropoietin. Erythropoietin is an early identified humoral factor, an erythropoietic glycoprotein hormone that induces proliferation and differentiation of erythroid progenitors, leading to red blood cell production (Souma et al., 2015).

At first, anemia is always non-regenerative because it takes some days for mature erythrocytes to be released to the peripheral blood. Therefore, evidence of regeneration should become apparent within 4-5 days.

Regeneration is mainly observed in acute blood loss or in hemolytic anemia while it is rather unlikely in cases where anemia is related to a chronic disease or by impaired erythrocyte production by the bone marrow (Ogilvie, 1998).

ETIOLOGY

Hemorrhagic anemia

Anemia due to blood loss can be caused by intense ectoparasitism (Stromberag and Gyillot, 1987; Shemanchuk et al., 1960). Similarly, parasitism of the gastrointestinal tract is a common cause of blood loss anemia in ruminants as in other species. Different parasitic phyla have been identified as causative agents of anemia such as nematodes in small ruminants (Baldissera et al., 2015; Bordoloi et al., 2012; Vatta et al., 2002) and in cattle (Favero et al., 2016; Van Aken et al., 1997) with Haemonchus contortus referred as the most common species causing blood loss anemia as well as trematodes including Fasciola hepatica in small ruminants (Saleh, 2008; Maltinez- Moreno et al., 1997; Knight, 1980) and in cattle (Lotfollahzadeh et al., 2008; Ross et al., 1966) and Paramphistomum cervi, as well (Dorny et al., 2011). In severe cases of winter dysentery, a disease with unconfirmed causative agent, fresh blood clots have been reported to be evidenced in the feces of affected calves (Divers and Peek, 2008). Other clinical conditions of the gastrointestinal tract associated with blood loss anemia are the hemorrhagic bowel syndrome caused by Clostridium perfringens type A (Braun et al., 2010) and abomasal ulcers (Ok et al., 2001; Vatn and Ulvund, 2000).

Vena cava thrombosis in adult dairy cattle or in feedlot cattle fed a high-carbohydrate diet is also clinically manifested by pale mucous membranes, hemoptysis, and epistaxis (Breeze et al., 1976). Blood loss is also evident from the genitourinary tract presented as hematuria as in the case of enzootic hematuria caused by urinary bladder tumors secondary to chronic bracken fern toxicity (McKenzie, 1978) as well as in pyelonephritis caused by Corynebacterium renale and E.coli in cows (Braun et al., 2008). Moreover, acute blood loss, sometimes severe, can result from injuries caused by obstetrical manipulations more often in cows that have been in labor for several hours and when the birth canal is dry and non-lubricated (Radostitis et al., 2006).

In addition, anemia can be caused by tumors (Stock et al., 2011). Rupture of an ovarian granulosa cell tumor followed by hemoperitoneum or spleen rupture after infiltration by lymphosarcoma (Divers and Peek, 2008), is a rather uncommon condition in cows (Masseau et al., 2004). Body cavity effusions usually result from hemostatic disorders (Radostitis et al., 2006). Internal hemorrhages caused by massive thrombocytopenia have been attributed to Bovine Virus Diarrhea- Mucosal Disease (BVD- MD) virus (Dabak et al., 2007). Secondary hemostatic disorders such as rodenticide intoxication are very rarely reported in ruminants. A case of rodenticide toxicity in lambs that accidentally gain access to baits for rodent control was reported as sudden death followed epistaxis, respiratory distress and edemas in different body parts (Del Piero and Poppenga, 2006). Experimentally dosing of carbon tetrachloride, in goats resulted in hepatic damage and decreased of blood clotting activity (Smith and Sherman, 2009).

The most frequent causes of blood loss anemia per ruminant species are presented in Table 1.
Hemolysis also results from toxins produced by Clostridium perfringens type D causing yellow lamb disease (Gianniti et al., 2014) and Clostridium hemolyticum that causes bacillary hemoglobinuria in sheep and cows (Tagaki et al., 2009; Randhawa et al., 1995).

The primary lesions of the pathogenic Leptospira spp circulating in the bloodstream, concern the endothelium of small blood vessels, which leads to localized ischemia in organs mainly kidney and liver. Apart from vasculitis, Leptospira spp hemolysins have been implicated in the pathogenesis of anemia; in calves Leptospira spp hemolysin has been reported as responsible for yielding holes in the erythrocyte cellular membrane (Lee et al., 2002).

Hemolytic anemia can be caused by parasites implicated in tick born fever including piroplasms that invade red blood cells like Babesia spp in small (Esmaeilnejad et al., 2012; Yeruham et al., 1998) and large ruminants (Bal et al., 2016; Trueman and Blight, 1978) and Theileria spp in lambs (Alani and Herbert, 1988) and cattle (Omer et al., 2002; Moll et al., 1986) and rickettsiae, mainly Anaplasma spp that infect granulocytes up to 90% in the peak of bacteremia as it is referred in sheep (Yasini et al., 2012), goats (Gokce and Woldehiwet, 1999) and cattle (Ashuma et al., 2013; Henniger et al., 2013). Furthermore, protozoa like Trypanosoma (Biryomumaiso et al., 2013; Katunguka- Rwakishaya et al., 1997; Anosa et al., 1992) and certain Mycoplasma species (Genova et al., 2011; Suzuki et al., 2011) can also be found in plasma and/or in erythrocytes. In addition, microfilaria, the larval stage of stephanofilarial worm, the causative agent of the bovine stephanofilarial dermatitis, enters peripheral blood circulation causing anemia by increasing erythrocytic fragility (Singh et al., 2011).

Table 1. Causes of blood loss anemia in sheep, goats and cattle

<table>
<thead>
<tr>
<th>Ectoparasites</th>
<th>Sheep</th>
<th>Goats</th>
<th>Cattle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linognathus spp</td>
<td></td>
<td></td>
<td>A, Y</td>
</tr>
<tr>
<td>Gastrointestinal tract</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haemonchus concortus</td>
<td>A, Y</td>
<td>A</td>
<td>Y</td>
</tr>
<tr>
<td>Meicocircirus spp</td>
<td></td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>Fasciola hepatica</td>
<td>A, Y</td>
<td>A</td>
<td>A, Y</td>
</tr>
<tr>
<td>Paramphistomum cervi</td>
<td></td>
<td></td>
<td>A, Y</td>
</tr>
<tr>
<td>Abomasal ulceration</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemorrhagic bowel syndrome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter dysentery</td>
<td></td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>Respiratory tract</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caudal vena cava thrombosis</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>and pulmonary embolism</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genitourinary tract disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enzoonotic hematuria</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injuries</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Tumor</td>
<td></td>
<td></td>
<td>A, Y</td>
</tr>
<tr>
<td>Hemostatic disorders</td>
<td>Y</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Sheep: Young (Y) < 12 months, Adult (A) >12 months; Goats: Young (Y) < 12 months, Adult (A) >12 months; Cattle: Young (Y) < 12 months, Adult (A) >12 months

Hemolytic anemia

Anemia due to hemolysis can be caused by parasites implicated in tick born fever including piroplasms that invade red blood cells like Babesia spp in small (Esmaeilnejad et al., 2012; Yeruham et al., 1998) and large ruminants (Bal et al., 2016; Trueman and Blight, 1978) and Theileria spp in lambs (Alani and Herbert, 1988) and cattle (Omer et al., 2002; Moll et al., 1986) and rickettsiae, mainly Anaplasma spp that infect granulocytes up to 90% in the peak of bacteremia as it is referred in sheep (Yasini et al., 2012), goats (Gokce and Woldehiwet, 1999) and cattle (Ashuma et al., 2013; Henniger et al., 2013). Furthermore, protozoa like Trypanosoma (Biryomumaiso et al., 2013; Katunguka- Rwakishaya et al., 1997; Anosa et al., 1992) and certain Mycoplasma species (Genova et al., 2011; Suzuki et al., 2011) can also be found in plasma and/or in erythrocytes. In addition, microfilaria, the larval stage of stephanofilarial worm, the causative agent of the bovine stephanofilarial dermatitis, enters peripheral blood circulation causing anemia by increasing erythrocytic fragility (Singh et al., 2011).
experimentally induced toxicosis has been reported. It seems that oxytetracycline may penetrate erythrocytes interacting with hemoglobin and thereby significantly reducing the erythrocyte count and hemoglobin concentration (Chi et al., 2010).

Moreover, natural occurring cases of anemia associated with toxicosis by heavy metals such as copper (Cregar et al., 2012; Bundza et al., 1982; Stogdale, 1978), zinc (Allen et al., 1983) and arsenic (Keshavarzi et al., 2015; Rana et al., 2010) have been reported in ruminants. Although, anemia has been reported in natural cases of lead poisoning in cows (Schlerka et al., 2004), it has not been observed in experimentally lead poisoned sheep were low doses of lead where administered (Polizopoulou, 1991). In addition, poisoning by nitrate resulted in methemoglobinemia with methemoglobinuria, in sheep (Hindson and Winter, 1996). On the other hand, nutritional deficiency in copper and selenium has been associated with formation of Heinz bodies indicative of erythrocyte oxidative damage in lambs. Moreover, copious exercise seems to further reveal the hematological impact of these trace element deficiencies (Draksler et al., 2002; Suttle et al., 1987). Similarly, anemia with Heinz body presence has been reported in hypophosphatemic cows (Jubb et al., 1990).

Rarely autoimmune hemolytic anemia is reported in young, as well in adult ruminants after vaccinations; a polyvalent botulism vaccine has been incriminated for such a condition in a cow (Yeruham et al., 2003). Similarly, antigens of the BVD- MD vaccine seem to elicit antibodies that bind not only to peripheral blood

<table>
<thead>
<tr>
<th>Table 2. Causes of hemolytic anemia in sheep, goats and cattle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infectious Agents</td>
</tr>
<tr>
<td>Babesia spp</td>
</tr>
<tr>
<td>Theileria spp</td>
</tr>
<tr>
<td>Anaplasma spp</td>
</tr>
<tr>
<td>Trypanosoma spp</td>
</tr>
<tr>
<td>Mycoplasma spp</td>
</tr>
<tr>
<td>Bovine stephanofilarial dermatitis</td>
</tr>
<tr>
<td>Yellow lamb disease</td>
</tr>
<tr>
<td>Bacillary hemoglobinuria</td>
</tr>
<tr>
<td>Leptospira spp</td>
</tr>
<tr>
<td>Toxic agents</td>
</tr>
<tr>
<td>Allium spp</td>
</tr>
<tr>
<td>Brassica spp</td>
</tr>
<tr>
<td>Ipomoea carnea</td>
</tr>
<tr>
<td>Long-acting oxytetracycline</td>
</tr>
<tr>
<td>Copper</td>
</tr>
<tr>
<td>Zinc</td>
</tr>
<tr>
<td>Arsenic</td>
</tr>
<tr>
<td>Lead</td>
</tr>
<tr>
<td>Nutrition deficiency</td>
</tr>
<tr>
<td>Copper</td>
</tr>
<tr>
<td>Selenium</td>
</tr>
<tr>
<td>Phosphorus</td>
</tr>
<tr>
<td>Immune Mediated Conditions</td>
</tr>
<tr>
<td>Vaccination</td>
</tr>
<tr>
<td>Bovine colostrum fed to sheep</td>
</tr>
<tr>
<td>IMHA</td>
</tr>
</tbody>
</table>

*Sheep: Young (Y) < 12 months, Adult (A) >12 months; Goats: Young (Y) < 12 months, Adult (A) >12 months; Cattle: Young (Y) < 12 months, Adult (A) >12 months
cells but also to the stem cells in the bone marrow of neonates (Deutskens et al., 2011). These antigens cause opsonization of the affected cells which enhance phagocytosis by bovine macrophages. After vaccination with Lumpy Skin Disease Virus in cows, mild regenerative hypochromic macrocytic anemia has recently been reported, probably because of slight hemolysis (Katsoulos et al., 2017). Immune-mediated hemolytic anemia has been reported in juvenile lambs fed with cow colostrum (Winter and Clarkson, 1992) while idiopathic immune mediate anemia has been diagnosed in cases where hemolysis could not be attributed to any of the above-mentioned agents (Nassi et al., 2011).

The causes of hemolytic anemia in ruminants are presented in Table 2.

Anemia due decreased production of RBCs

Decrease of RBCs production is metabolically relative to essential nutrients such as cobalt which is converted by ruminal microflora to vitamin B12. Vitamin B12 acts as an essential cofactor of several enzyme systems promoting red blood cell synthesis. Thus, a vitamin B12 deficiency results to anemia. In case of sheep, it has been reported (Ulvund, 1990) that white liver disease attributed either to B12 deficiency or to hepatotoxic disease in deficient lambs was associated with a decrease in hemoglobin concentration. Similar findings have been reported in cobalt deficient goats (Al-Habsy et al., 2007). Iron deficiency is usually observed in young animals, because of their rapid growth and the large amount of iron needed for the production of hemoglobin, myoglobin and other iron-containing compounds (Green et al., 1997) as well as in ewes after parturition (Cihan et al., 2016). The most frequent cause of iron deficiency is endo- and ectoparasitism (Singh et al., 2014).

However, iron is also implicated in the pathogenesis of anemia of the chronic disease. Although, iron stores are adequate for erythropoiesis, they are sequestrated making iron unavailable for hematopoiesis leading to normocytic, normochromic non regenerative anemia. (Radostits et al., 2006). Anemia of chronic disease has been reported in cattle affected by lumpy skin disease due to the chronic inflammatory response to Capripoxvirus infection, that disturbs iron metabolism. Therefore, anemia is usually mild and slowly progressive and the main hematological abnormalities concern the indexes Mean Corpuscular Volume (MCV), Mean Corpuscular Hemoglobin (MCH) and Mean Corpuscular Hemoglobin Concentration (MCHC) (Abutarbush, 2015). Similarly, ovine paratuberculosis is associated with macrocytic normochromic anemia due to the chronic inflammation (Hemalatha et al., 2013), while in goats, anemia is non-regenerative (Smith and Sherman, 2009). Although, anemia is not a common finding in Bluetongue infected sheep, few cases have been reported in sheep attributed either in vasculitis caused by the virus or chronic disease (Vasilieou et al., 2016). Apart from inflammation, neoplasia has been reported to cause anemia of chronic disease. Bracken

Table 3. Causes of anemia of decreased erythrocyte production in ruminants

<table>
<thead>
<tr>
<th>Nutrition deficiency anemia</th>
<th>Sheep</th>
<th>Goats</th>
<th>Cattle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobalt/ folate</td>
<td>Y</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>A, Y</td>
<td>A, Y</td>
<td></td>
</tr>
<tr>
<td>Anemia of chronic disease</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Lumpy skin disease</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Mycoplasma paratuberculosis</td>
<td>A</td>
<td>A, Y</td>
<td></td>
</tr>
<tr>
<td>Chronic toxicity</td>
<td>A</td>
<td>A, Y</td>
<td></td>
</tr>
<tr>
<td>Bluetongue</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

Anemia secondary to bone marrow dysfunction or dysplasia

| Neoplasia | A | | |
| Bovine neonatal pancytopenia| Y | | |

* Sheep: Young (Y) < 12 months, Adult (A) >12 months; Goats: Young (Y) < 12 months, Adult (A) >12 months; Cattle: Young (Y) < 12 months, Adult (A) >12 months
picion of anemia, clinical manifestations of anemia as well as other laboratory findings are essential in order to reach etiological diagnosis. Furthermore, classification of anemia offers clinicians a diagnostic algorithm to compile a list of differentials with the ultimate goal to reach a definite diagnosis of the underlying cause (Figure 1).

Clinical manifestations and severity

Clinical signs derive from inadequate oxygen supply when compensatory mechanisms fail or even because of these mechanisms. Among them, mucous membrane pallor, exercise intolerance, tachypnea and/or dyspnea are the most commonly signs observed in anemic ruminants. Heart auscultation reveals an increased heart rate as well as functional murmurs due to blood cell turbulence disturbances (Radostits et al., 2006).

Symptoms of the underlying disease are also present and they can be either non-specific such as anorexia, fever and weight loss or specific to the certain disease. The severity of clinical signs is negatively related to the chronicity of anemia and positively to the amount of blood loss. Therefore, chronic diseases as well as bone marrow insults are manifested by mild symptoms such as weight loss in adults and decrease of weight gain in lambs, reduction of foraging or

Table 4. Infectious agents that have been associated with anemia * in ruminants in Greece

<table>
<thead>
<tr>
<th>Infectious agents</th>
<th>Species</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haemonchus contortus</td>
<td>sheep, goats</td>
<td>Kouam et al., 2014</td>
</tr>
<tr>
<td>Besnoitia besnoiti</td>
<td>cattle</td>
<td>Papadopoulos et al., 2014</td>
</tr>
<tr>
<td>Fasciola hepatica</td>
<td>sheep, goats</td>
<td>Kantzoura et al., 2011; Katsoulos et al., 2011</td>
</tr>
<tr>
<td>Anaplasma spp</td>
<td>sheep, cattle</td>
<td>Giadinis et al., 2011; Giadinis et al., 2015</td>
</tr>
<tr>
<td>Babesia spp</td>
<td>sheep, goats, cattle</td>
<td>Papadopoulos et al., 1996</td>
</tr>
<tr>
<td>Theileria spp</td>
<td>sheep, cattle</td>
<td>Papadopoulos et al., 1996</td>
</tr>
<tr>
<td>Mycobacterium paratuberculosis</td>
<td>goats</td>
<td>Angeldonu et al., 2014</td>
</tr>
<tr>
<td>Leptospira spp</td>
<td>sheep, cattle</td>
<td>Burriel et al., 2003</td>
</tr>
<tr>
<td>Yellow lamb disease</td>
<td>sheep</td>
<td>Gkiourtzidis et al., 2001</td>
</tr>
<tr>
<td>BVDV</td>
<td>cattle</td>
<td>Billinis et al., 2005</td>
</tr>
<tr>
<td>Bluetongue</td>
<td>sheep</td>
<td>Vasileiou et al., 2016</td>
</tr>
<tr>
<td>Lumpy skin disease</td>
<td>cattle</td>
<td>Tasioudi et al., 2016; Katsoulos et al., 2017</td>
</tr>
</tbody>
</table>

Although the documentation of a cause-effect relationship between infection agent and anemia was not the main objective of all these publications, anemia has been observed in the affected ruminants.
grazing, reduced exercise tolerance and subcutaneous edema (Gianniti et al., 2014).

To the contrary severe acute hemorrhage or blood destruction is usually presented with a more severe clinical picture, even sudden deaths, depending on the cause of anemia.

Hemorrhage is evidenced during physical examination as epistaxis, hematuria and melena (Ok et al., 2001; Xu, 1992) or denoted by the presence of ectoparasites. Hemolysis is manifested by icterus, splenomegaly and abnormal urine color (Gianniti et al., 2014; Ashuma et al., 2013; Braun et al., 2008) due to hemoglobinuria or bilirubinuria. Moreover, in case of hemostatic disorders, petechiae and ecchymoses or body cavity effusions are observed (Dabak et al., 2007).

Scoring systems of the severity of clinical patent anemia as manifested by mucous membrane pallor have been developed in ruminants. The most widely used system is called FAMACHA (FAO, 1998), an acronym of the name of the originator of the system. This system had been initially developed to identify small ruminants with anemia caused by haemonchosis, in order to selectively administer antiparasitic

Figure 1. Algorithm for investigation of anemia in ruminants
compounds only in the infected and not all animals of an infected farm. This system is an easy to perform and of low cost method.

FAMACHA is based on the examination of the lower eyelid mucous membrane color against a laminated color chart presenting 5 color categories where 1 is the normal mucous membrane color and 5 is the white color. The score 3 is the borderline for starting medical treatment. The system has been validated using PCV as gold standard. The sensitivity was found to be higher in sheep than in goats negatively related to the cut off value of the PCV that was used to differentiate anemic from non-anemic animals (Sotomaior et al., 2012). Furthermore, conjunctiva color varies in different breeds therefore; modifications of the color in the chart based on breed specific colors are suggested (Moors and Gauly, 2009).

In bovine, FAMACHA was used to score anemia predominantly caused by Trypanosoma congoense. The system was found adequate to identify moderate and severely anemic cattle with a FAMACHA score of 4 and 5, respectively (Grace et al., 2007).

Despite the subjectivity of color estimate, FAMACHA remains a convenient rough estimate of anemia in ruminants prior to laboratory testing.

Laboratory evaluation
Blood testing
Complete blood count (CBC)
Clinical suspicion of anemia is confirmed by a complete blood count, mainly the hematocrit and red blood cell count. It is worth mentioning that in neonates, hematocrit value is relatively high at birth, while, till the age of 6 months, it decreases below the lower reference interval for adults. Different reference intervals are provided in literature reflecting differences in populations and equipment used for their determination. For instance, according to Schalm’s hematology textbook (Weiss and Wardrop, 2010), hematocrit reference interval is 21-30%, 27-45% and 22-38% for cow, sheep and goat, respectively.

For the classification of anemia and the assessment of regenerative response, reticulocyte count along with blood smear evaluation should be performed. In regenerative anemia, the number of reticulocytes is increased in peripheral blood therefore serial monitoring of blood parameters is required. In case of low number of reticulocytes, monitoring is essential to find out if the anemia is non-regenerative or if there is an acute regenerative anemia. Repeating of CBC analysis is important as well as in the case of high number of reticulocytes, in order to see if the anemia does no anymore exists or if the anemia is changing from regenerative to non-regenerative. Reticulocytes in sheep and goats with basophilic stippling are easily detected in EDTA anticoagulated blood stained by Giemsa. Regeneration in ruminants is also demonstrated by macrocytosis and polychromasia while anisocytosis is quite common in healthy ruminants (Weiss and Wardrop, 2010). In response to severe anemia red blood cells contain nuclear fragments, the Howell-Jolly bodies (Alani and Herbert, 1988). Macrocytosis, is determined by calculating the Mean Corpuscular Volume (MCV) (Alani and Herbert, 1988). To the contrary, microcytosis (decreased MCV) is indicative of chronic disease (Abutarbush, 2015) as well as nutrition deficiencies. Furthermore, a diagnosis of iron deficiency anemia is very likely when microcytosis coexists with a decreased mean cell hemoglobin concentration (MCHC) (Green et al., 1997). On the other hand, an increase in the MCHC is observed in hemolytic anemia because of the released of hemoglobin from the ruptured erythrocytes in blood (Radosits et al., 2006).

Apart from the detection of reticulocytes and the presence of polychromasia, blood smear evaluation is needed in order to identify morphological abnormalities such as spherocytosis in case of both immune mediated hemolytic anemia and toxicity (Bundza et al., 1982). In diseases that cause physical injury to red blood cells, usually hemoparasitoses (Trypanosoma spp, Mycoplasma spp), schistocytes are observed (Gladden et al., 2016; Anosa et al., 1992). Moreover, oxidative damage of hemoglobin associated with onion toxicosis (Heidarpour et al., 2013) is denoted by the presence of Heinz bodies in the cytoplasm of red blood cells and/or eccentrocytes, where hemoglobin has been eccentrically accumulated (Borrelli et al., 2009).

Finally, parasitic inclusions such Babesia spp, Theileria spp, Mycoplasma spp and Anaplasma spp (Gladden et al., 2016; Henniger et al., 2013; Izzo et
al., 2010) can be found.

Alterations in the number and/or morphology of white blood cells are also observed in case of anemia and they are associated with the underlying disease. Similarly, anemia caused by hemostatic disorders can affect the number and/or morphology of platelets. For instance, thrombocytopenia has been reported in anemic calves with BVD-MD (Dabak et al., 2007).

Agglutination testing
Aggregation of erythrocytes forming irregular shapes is observed either in inflammatory reactions especially in bovine known as rouleaux formation (Weiss and Wardrop, 2010) or in autoimmune diseases where red blood cell clumps are not dissolved if blood is diluted with 0.9% saline (Nassir et al., 2011). Suspected immune- mediate hemolytic anemia is confirmed by direct Coombs’ test which becomes positive when anti- immunoglobulin and anti- complement antibodies are mixed with host erythrocytes (Nassir et al., 2011). Both IgG and IgM reactive antibodies have been implicated in the pathogenesis of idiopathic immune-mediated hemolytic anemia, however, IgG is much more common than IgM. They are mostly considered as warm hemagglutinins since they are reactive at body temperature. Cold hemagglutinin disease (IgM antibodies that bind to erythrocytes below body temperature) results in thrombi formation that lead to ischemic necrosis usually observed at the tips of the ears.

While immune mediated anemia is usually regenerative, it can rarely be non-regenerative when bone marrow progenitor cells are targeted instead or along with mature erythrocytes.

Scoring of anemia without using a blood count analyzer
Efforts to estimate haemoglobin without the use of laboratory equipment and consumables have been made in human medicine and the Haemoglobin Colour Scale (HbCS) has been developed (WHO, 2004). The test requires a drop of blood that is applied on a special chromatographic paper which is compared to a laminated card with different colours related to different haemoglobin concentrations. The performance of this test in cattle was reported to be good for the detection of moderate to severe anemia and less sensitive in cases of mild anemia (Grace et al., 2007).

Other biological material testing
Fecal examination
Feces of anemic ruminants should be examined for color change due to the presence of blood, consistency, amount, shape, odor and the presence of mucous (Braun et al., 2008). Laboratory examination of feces includes microscopy for the detection of parasites, presence of occult blood and microbiology including molecular techniques for the detection of causative agents of the underlying disease (Bott et al., 2009).

Urinalysis
A strong indication for urinalysis in anemic ruminants is the red or dark brown color in urine. Urine sediment microscopy reveals the presence of red blood cells (hematuria). The red color of the supernatant after urine centrifugation either due to the presence of hemoglobin or myoglobin should be further differentiated by chemical analysis (Giannitti et al., 2014; Braun et al., 2008). Certain microorganisms can also be detected in urine employing either microscopy or molecular techniques (Denipitiya et al., 2017).

Bone marrow evaluation
Bone marrow evaluation is not routinely performed in ruminant medicine as it requires sample referral to a specialized laboratory. Bone marrow cytology is used to determine the regenerative response. If there is an increased cellularity in bone marrow, anemia is regenerative, while if there are few cells with morphological abnormalities, bone marrow dysfunction and dyserythropoiesis as well as non-regenerative anemia is more likely to occur (Fukunaka et al., 2010; Steffen et al., 1992). Bone marrow samples can be used for the detection of the causative agents of the underlying diseases.

Additional tests
Serological and molecular techniques are widely used for the etiological diagnosis of diseases that are associated with anemia in ruminants (Sonawane and Tripathi, 2015; Yang et al., 2015; Grova et al., 2011).
Moreover, chemical analysis is used for the detection of heavy metals and toxins in biological material as well as in feed and water (Keshavarzi, 2015).

CONCLUSION

Anemia is a frequent abnormal condition in ruminants. It is usually associated with pathological state of other tissues or organs rather than reflecting primary defects in erythropoiesis. A complete blood count is the indispensable part of the laboratory investigation of every case of anemia. However, a systematic approach includes history taking and clinical examinations followed by laboratory testing targeted to the clinical findings in order to identify possible etiologic factors.

CONFLICT OF INTEREST STATEMENT

The authors declare no conflict of interest.

REFERENCES

Asian Pac J Trop Med pp 139-144.

Martinez-Moreno A, Jimenez V, Martinez-Cruz MS, Martinez-Moreno FJ, Becerra C, Hernández F (1997) Triclabendazole treatment in experimental goat fascioliasis: anthelmintic efficacy and influence in antibody response and pathophysiology of the
E. G. Katsoianou, A. V. Athanasiou, G. Xristouloupoulos, Z. S. Polyzopoulos

J. HELLENIC VET MED SOC 2018, 69(3)

1045

