Assessment of titanium dioxide nanoparticle as treatment of Aeromonas hydrophila infection in Oreochromis niloticus

SHERIF A.H.
Fish diseases, Kafr El-Sheikh provincial Lab Animal Health Research Institute (AHRI) Agriculture Research Center (ARC), Egypt

ALSOKARY E.T.
Department of Biochemistry, Kafr El-Sheikh provincial Lab Animal Health Research Institute (AHRI) Agriculture Research Center (ARC), Egypt

ESAM H.A.
Department of Microbiology, National Research Center, Egypt

http://dx.doi.org/10.12681/jhvms.21796

Copyright © 2019 A.H. SHERIF, E.T. ALSOKARY, H.A. ESAM

To cite this article:

ABSTRACT. Nanoproducts became widely used materials all over the world. Antimicrobial properties of titanium dioxide (TiO$_2$) nanoparticle (NP) were examined against Aeromonas hydrophila (A. hydrophila) bacteria and the minimum inhibitory concentration (MIC) was found to be 20 µg/ml of TiO$_2$NP. In addition, the treatment efficacy of TiO$_2$NP was examined in Oreochromis niloticus (O. niloticus) infected with A. hydrophila. One hundred and eighty fish (54±2.4 g b.w.) were divided into six groups (G). O. niloticus in G1, G2 and G3 were fed for 30 days with 0, 20 and 100 µg/g b.w. TiO$_2$NP, respectively, while G4, G5 and G6 were i.p. injected with 0.2 ml distilled water, 20 and 100 µg/g b.w. TiO$_2$NP, respectively, for three times with ten days of interval. The blood parameters as well as some of the biochemical parameters of O. niloticus that received high dosage of TiO$_2$NP were significantly affected regardless to the administration route. Elevation of the activities of glutathione peroxidase (GPx) and metallothionine (MT) were recorded with the high dosage. Furthermore, O. niloticus subjected to high dosage of TiO$_2$NP had the lower survival rate (SR%) especially with the injection route (50%). On the other hand, no significant changes were demonstrated with the perceived TiO$_2$NP MIC. The mortality rate (MR%) of challenged O. niloticus against A. hydrophila was decreased in case of TiO$_2$NP MIC exposure, as G2 and G5 revealed 20 and 30%, respectively. Therefore, the 20 µg/g b.w. of TiO$_2$NP could safely protect O. niloticus against A. hydrophila infection since no health hazards was observed. Meanwhile, health status of O. niloticus was adversely affected with high dosage of TiO$_2$NP irrespective to the route of administration.

Keywords: TiO$_2$, nanoparticles, Oreochromis niloticus, Aeromonas hydrophila, antioxidant.
INTRODUCTION

Nanotechnology has provided the global market with novel nano-products with unique properties and functions that have emerged rapidly affecting economic sectors (Boar et al., 2015). Nano-products have different physicochemical properties than their bulk forms; they are defined as materials with a size between 1 and 100 nm on at least one dimension, which provides surface area to volume ratio. Titanium nanoparticles (TiO$_2$NP) is one of the most manufactured NP worldwide; its production was expected to reach 201,000 tons during 2015 (Markets, 2015). TiO$_2$NP is widely used in the production of paints, coatings, plastics, papers, inks, foods, pharmaceuticals, cosmetics and toothpaste (Menard et al., 2011 and Shi et al., 2013).

The most frequently isolated bacterial pathogen in warm freshwater fishes is *A. hydrophila*, a Gram-negative motile rod bacterium that always associated with diseases outbreaks in the aquatic environment (Angka, 1990; Esteve et al., 1993). *A. hydrophila* infection causes a systemic disease resulting in ulcerative dermatitis, tail or fin rot, ocular ulceration, which leads to hemorrhagic septicemia, the most common cause of mortality in the acute form is rapid septicemia (Cipriano, 2001).

Fish producers have used antibiotics and chemicals (malachite green, formalin, methyl blue, potassium permanganate and copper sulphate) as treatments for fish diseases, which unfortunately have severe impacts on fish consumers and environment. Therefore, a demand for new antibacterial agents that can avoid such hazards become essential (Sakr et al., 2014). Ravikumar et al. (2011) claimed that metal oxide nanoparticles antimicrobial property could be due to the reactive oxygen species mechanism. Nano-TiO$_2$ is a safe product (Rowe et al., 2003; Jacobs et al., 2010) and could be used as an additive in protocols for removal of arsenic from drinking water (EPA 2010). However, nano-TiO$_2$ had immune suppressive effect on fish health that enhance mortalities in fish exposed to infectious bacteria (Iovanovic et al., 2015). Despite the high investments in nanotechnology the studies related with the antimicrobial property of metal oxide nanoparticle against bacterial fish diseases are too limited (Vale et al., 2016). Therefore, this study was designed to investigate the potential antimicrobial role of TiO$_2$NP. Furthermore, the impacts of TiO$_2$NP on *O. niloticus* health were evaluated.

MATERIALS AND METHODS

Chemicals

Titanium dioxide nanoparticles (TiO$_2$NP) (Sigma Aldrich Corp, St. Louis, MO, USA) anatase, nanopowder, < 25 nm, purity 99.7%, average zeta potential of 16.4 mV, conductivity of 16 mS/cm. The aggregate size had an average diameter of 86 nm, zeta potential of 8.87 mV and conductivity of 15.4 mS/cm.

Bacteria isolation and identification

A. hydrophila was isolated from diseased fish that were collected from a private freshwater fish farm. Bacterial swabs were obtained from fish hepatopancreas, spleen and kidneys according to Woo and Bruno (2014). Swabs were inoculated onto tryptic soya broth then the inoculum was streaked onto Rimal Schotts agar and incubated at 37°C for 24 h. *A. hydrophila* was inoculated onto tryptic soy agar (Oxoid, Canada) then incubated in 28°C for 24 h according to Austin and Austin (2012). Bacterial strain was confirmed by the polymerase chain reaction (PCR). DNA extraction from samples was performed using the QIAamp DNA Mini kit (Qiagen, Germany, GmbH) with modifications from the manufacturer’s recommendations. Briefly, 200 µl of the sample suspension was incubated with 10 µl of proteinase K and 200 µl of lysis buffer at 56°C for 10 min. After incubation, 200 µl of 100% ethanol was added to the lysate. The sample was then washed and centrifuged. Nucleic acid was eluted with 100 µl of elution buffer. Primers were used were supplied from Metabion (Germany) and they are listed in Table 1. PCR amplification (35 cycles) was performed in a 25-µl reaction containing 12.5 µl of Emerald Amp Max PCR master mix (TaKaRa, Japan), 1 µl of each primer of 20 pmol concentration, 5.5 µl of water, and 6 µl of DNA template. The reaction was performed in an applied biosystem 2720 thermal cycler. Analysis of the PCR products was performed by a gel documentation system (Alpha Innotech, Biometra) and the data were analyzed through computer software Chip PCR (Rodiger and Burdakiewicz 2013).

Table 1. Primers sequences, target gene, amplicon size and cycling conditions

<table>
<thead>
<tr>
<th>Target gene</th>
<th>Primers sequences 5’-3’</th>
<th>Amplified segment (bp)</th>
<th>Annealing temperature</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. hydrophila</td>
<td>GAAAGGTGTAGCCTAATACGTA</td>
<td>625</td>
<td>50°C</td>
<td>Gordon et al. 2007</td>
</tr>
<tr>
<td>16S rRNA</td>
<td>CGTGCTGGCAACAAAGGACAG</td>
<td>40 sec.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 30/01/2020 23:28:48 |
Determination of TiO_{2}NP minimum inhibitory concentration

Minimum inhibitory concentration (MIC) was performed according to Ravikumar et al. (2011). Briefly, 50 µl of 24h old A. hydrophila inoculum (corresponding to a concentration of 5 x 10^6 CFU) were exposed to a dilution series of TiO_{2}NP ranging from 500 to 10 µg/ml (500, 400, 300, 200, 100, 60, 50, 40, 30, 20 and 10 µg/ml). The culture was allowed to grow at 37°C for 48h and the whole setup was triplicated, while trypic soya broth alone was considered as the negative control. The MIC of the nanoparticles was defined as the lowest concentration of the agent that restricted the growth of bacteria in the culture media.

Experimental design

Two hundred O. niloticus with an average 54±2.4 g b.w. was acclimated for two weeks at laboratory condition; water temperature 25.5±1.5°C, dissolved oxygen 5.2±0.5 mg/L, pH 7.5±0.4. Solid wastes of fish were removed daily with the exchange of one third of aquarium water. Following acclimation, one hundred and eighty O. niloticus were divided into six groups (G1-G6). Each group had three subdivisions (replicates) and fish were randomly distributed into 18 glass aquariums (50x50x40 cm), ten fish per aquarium. The Institutional Aquatic Animal Care and Use Committee, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University have approved the procedures.

Following the detection of the TiO_NP MIC, the nanomaterial was dispersed in distal water by sonication to form a stock solution. Fish groups were either fed (for 30 days) or injected with TiO_{2}NP MIC. G1 (control) was fed a commercial fish diet with no additives, G2 was fed diet contained the revealed MIC of TiO_{2}NP per gram of fish body weight, while G3 was fed with a high dosage (100 µg/ g b.w.) of TiO_{2}NP per gram of fish body weight. On the other hand, fish under anesthesia with tricaine methanesulphonate (MS222; Sigma, St. Louis, MO, USA) were injected i.p. with 0.2 ml distal water (G4, control), with the obtained MIC of TiO_{2}NP suspended in 0.2 ml distal water (G5) or with high dosage (100 µg/g b.w.) of TiO_{2}NP suspended in 0.2 distal water (G6). Injections were repeated three successive times with ten days interval. By the due time, fish were euthanized by immersion in MS222 solution (250 mg/L; 25 to 30°C) that assumed to cause rapid unconsciousness, followed by decapitation and exsanguination (gill cut) according to Anonymous (2007).

By the end of the experimental period, the fish were counted to determine the survival rate percentage (SR %) according to the following formula:

\[
SR\% = \frac{\text{Number of fish at the end}}{\text{Number of Fish at the beginning of the Experiment}} \times 100
\]

Hematological and biochemical analyses

For hematological analyses, blood samples were collected in vacutainers containing heparin (30 IU/L of blood) as an anticoagulant. For the serum biochemical analysis, blood samples were collected into vacutainers without anticoagulant, and serum was separated by centrifugation at 1000 g for 10 min and stored in a freezer at -20°C until use.

Red blood cells (RBCs) and white blood cells (WBCs) were counted by a haemocytometer according to Stoskopf (1993). Blood haemoglobin (Hb) was assessed by cyanomethemoglobin method (Drubkin, 1964). Packed cell volume (PCV) was determined by centrifuging heparinized blood in a capillary tube at 10,000 RPM for five minutes. In addition, mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC) were calculated according to the formulas mentioned by Dacie and Lewis (1975) as follows:

\[
\text{MCHC (g/dl)} = \frac{\text{HB}}{\text{PCV}} \times 100,
\]

\[
\text{MCH (pg)} = \frac{\text{HB}}{\text{RBCs}} \times 10,
\]

\[
\text{MCV (µm}^3) = \frac{\text{PCV}}{\text{RBCs}} \times 10.
\]

Total protein (TP) was measured according to Weichselbaum (1946), albumin (Alb) was determined by colorimetric methods (Doumas et al., 1971), while globulin concentrations (Glo) were determined by subtracting the Alb concentration from the concentration of TP according to Coles (1974). Serum creatinine was assessed according to Henry (1974). Liver enzymes aspartate amino transaminase (AST) and alanine amino transaminase (ALT) were determined according to Reitman and Frankel (1957).

At the end of the experimental period, the liver and spleen were carefully removed and weighed. Somatic indices including hepatosomatic index (HSI) and spleenosomatic index (SSI) were calculated (Htunhan, 1978) as follows:

\[
\text{HSI} = \frac{\text{weight of the liver/fish body weight}}{\text{weight of the liver/fish body weight}}
\]

\[
\text{SSI} = \frac{\text{weight of the spleen/fish body weight}}{\text{weight of the spleen/fish body weight}}
\]
Liver tissues were examined for antioxidants activities. Glutathione peroxidase (GPx) activity was measured according to the method described by Mohandas et al. (1984). Briefly, the assay mixture was added to 0.2-0.3 mg protein of liver and 0.25 mmol/l hydrogen peroxide in a final volume of 1.0 ml NADPH. The activity of the enzyme was recorded at 340 nm at 25°C and was expressed as nmol of NADPH oxidized/min/mg protein by Enzyme-Linked Immunosorbent Assays (ELISA).

Standard ELISA protocol (Derango and Page 1996) was applied to measure the metallothionein content. Briefly, the primary antibody against metallothionein (Ab 36882) and the secondary antibody (Ab 6721) were purchased from Abcam, UK. An automatic micro titer plate ELISA reader (Wipro, India) was used to measure the absorbance at 650 nm. A second reading was recorded at 450 nm after addition of 2.0 M H2SO4 that stops the reaction. The high precision metallothionein value was achieved by plotting the ELISA values in the regression curve that obtained from a standard curve (Hornitzky and Searson 1986).

Infection trial

By the end of the experiment (after 30 days), 10 fish were randomly collected from each group and injected i.p. with 0.3 x10⁸ cfu/ml of *A. hydrophila* according to Schaperclaus et al. (1992). Pure saline solution (0.65%) was parallel injected in a similar fashion, in three fish, for negative control injection (Boijink et al., 2001). *O. niloticus* were kept in the same experimental condition and under observation. Mortality rate (MR) % were estimated following 14 days as follows:

$$\text{MR} \% = \frac{\text{No. of death in specific period}}{\text{Total population during that period}} \times 100$$

Statistical analysis

Statistical analysis was performed by using the analysis of variance (ANOVA). All statistics were run on the computer using the SPSS program (SPSS, 2004).

RESULTS

Determination of TiO₂NP MIC

To determine MIC, a series of TiO₂NP dilutions ranging from 500 µg/ml to 10 µg/ml were mixed with adjusted *A. hydrophila* concentration while negative control contained only inoculated broth and the time and temperature of incubation being 48 h and 37°C, respectively. MIC was determined to be 20 µg/ml, which was the minimum concentration that visually inhibited the growth of the microorganism.

The SR % in different tested groups (Table 2) revealed that it was significantly decreased in fish subjected to high dosage of TiO₂NP (100 µg/g b.w.), especially through the injection route (50% in G6). Meanwhile, the SR % was boosted in groups exposed to TiO₂NP MIC regardless to the administration route (G2 and, G5).

<table>
<thead>
<tr>
<th>Items</th>
<th>Feed</th>
<th>Injection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G1</td>
<td>G2</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>20 µg/g</td>
</tr>
<tr>
<td>No</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>SR%</td>
<td>83.3±3.3</td>
<td>86.7±3.3</td>
</tr>
</tbody>
</table>

No=Number of fish, SR= Survival rate. Different letters in the same row are significantly different at P≤0.05.

Hematological and biochemical analyses

As shown in Table 3, *O. niloticus* received high dosage of TiO₂NP (100 µg/g b.w.) displayed severe decrease in blood indices irrespective to the administration route. RBCs and Hb were severely decreased in G3 and G6, which received high TiO₂NP dosage, presenting 1.67 and 1.57 X10⁶; 5.01 and 4.71 g/dl, respectively. In the same line WBCs were decreased to 65 and 61.2 X10⁶ in G3 and G6, respectively. While no significant differences were observed in MCV, MCH, and MCHC.
Table 3. Blood analyses of *O. niloticus* received TiO₂NP. Mean±SE

<table>
<thead>
<tr>
<th>Items</th>
<th>G1 Control</th>
<th>G2 20 µg/g</th>
<th>G3 100 µg/g</th>
<th>G4 Control</th>
<th>G5 20 µg/g</th>
<th>G6 100 µg/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBCs</td>
<td>2.4<sup>a</sup> ±0.25</td>
<td>2.35<sup>b</sup> ±0.2</td>
<td>1.67<sup>a</sup> ±0.1</td>
<td>2.16<sup>b</sup> ±0.3</td>
<td>2.3<sup>a</sup> ±0.24</td>
<td>1.57<sup>b</sup> ±0.15</td>
</tr>
<tr>
<td>X1<sup>0</sup></td>
<td>72<sup>a</sup> ±1.8</td>
<td>71<sup>a</sup> ±3.5</td>
<td>65<sup>b</sup> ±3.3</td>
<td>73.4<sup>a</sup> ±1.5</td>
<td>74.5<sup>b</sup> ±2.7</td>
<td>61.2<sup>ab</sup> ±2.1</td>
</tr>
<tr>
<td>WBCs</td>
<td>2.4<sup>a</sup> ±0.55</td>
<td>2.38<sup>a</sup> ±0.35</td>
<td>5.01<sup>b</sup> ±0.5</td>
<td>6.48<sup>a</sup> ±0.4</td>
<td>6.9<sup>a</sup> ±0.8</td>
<td>4.71<sup>b</sup> ±0.6</td>
</tr>
<tr>
<td>Hb</td>
<td>7.44<sup>a</sup> ±0.55</td>
<td>7.28<sup>a</sup> ±0.35</td>
<td>5.01<sup>b</sup> ±0.5</td>
<td>6.48<sup>a</sup> ±0.4</td>
<td>6.9<sup>a</sup> ±0.8</td>
<td>4.71<sup>b</sup> ±0.6</td>
</tr>
<tr>
<td>PCV</td>
<td>23.1<sup>a</sup> ±1.6</td>
<td>22.6<sup>a</sup> ±0.9</td>
<td>15.53<sup>b</sup> ±1.8</td>
<td>20.1<sup>a</sup> ±0.8</td>
<td>21.39<sup>a</sup> ±0.2</td>
<td>15.4<sup>b</sup> ±0.5</td>
</tr>
<tr>
<td>%</td>
<td>56.30±2.1</td>
<td>56.30±1.9</td>
<td>56.30±1.5</td>
<td>56.30±0.5</td>
<td>56.30±0.2</td>
<td>56.30±0.6</td>
</tr>
<tr>
<td>MCV</td>
<td>96.25<sup>a</sup> ±1.2</td>
<td>96.17<sup>a</sup> ±0.35</td>
<td>92.9<sup>a</sup> ±1.3</td>
<td>93<sup>a</sup> ±0.2</td>
<td>93<sup>a</sup> ±0.4</td>
<td>92.7<sup>a</sup> ±0.7</td>
</tr>
<tr>
<td>P<sub>g</sub></td>
<td>31<sup>a</sup> ±0.15</td>
<td>30.9<sup>a</sup> ±0.18</td>
<td>30<sup>a</sup> ±0.18</td>
<td>30<sup>a</sup> ±0.18</td>
<td>30<sup>a</sup> ±0.18</td>
<td>30<sup>a</sup> ±0.18</td>
</tr>
<tr>
<td>MCHC</td>
<td>32.2<sup>a</sup> ±0.21</td>
<td>32.13<sup>a</sup> ±0.2</td>
<td>32.26<sup>a</sup> ±0.3</td>
<td>32.26<sup>a</sup> ±0.3</td>
<td>32.26<sup>a</sup> ±0.3</td>
<td>32.26<sup>a</sup> ±0.3</td>
</tr>
</tbody>
</table>

Different letters in the same row are significantly different at P≤0.05.

For both groups subjected to 100 µg/g b.w. TiO₂NP (G3 and G6), a significant decrease in the values of TP (4.2 and 3.95) as well as Glo (1.8 and 1.52) was observed. Meanwhile, Alb revealed no significant difference among tested groups (Table 4). On the other hand, no significant differences were recorded in TP or Glo in fish exposed to the TiO₂NP MIC through either food or injection routes (G2 and G5).

Liver enzymes, AST and ALT, were significantly increased with the high TiO₂NP dosage in both G3 and G6, regardless to the administration route. Groups received a dosage that corresponds to the MIC were insignificantly different compared with control.

To evaluate the creatinine clearance, which reflects the glomerular filtration rate of fish kidneys, serum creatinine was measured. Values of serum creatinine had the same trend of liver enzymes since high dosage of TiO₂NP (G3 and G6) resulted in a remarkable elevation whatever the administration route was.

Table 4. Serum analyses of *O. niloticus* received TiO₂NP. Mean±SE

<table>
<thead>
<tr>
<th>Items</th>
<th>G1 Control</th>
<th>G2 20 µg/g</th>
<th>G3 100 µg/g</th>
<th>G4 Control</th>
<th>G5 20 µg/g</th>
<th>G6 100 µg/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP</td>
<td>5.1<sup>a</sup> ±0.1</td>
<td>5<sup>a</sup> ±0.25</td>
<td>4.2<sup>b</sup> ±0.12</td>
<td>5.2<sup>a</sup> ±0.3</td>
<td>4.9<sup>a</sup> ±0.2</td>
<td>3.95<sup>a</sup> ±0.38</td>
</tr>
<tr>
<td>g/dl</td>
<td>±0.1</td>
<td>±0.25</td>
<td>±0.12</td>
<td>±0.3</td>
<td>±0.2</td>
<td>±0.38</td>
</tr>
<tr>
<td>Alb</td>
<td>2.65<sup>a</sup> ±0.24</td>
<td>2.62<sup>a</sup> ±0.28</td>
<td>2.4<sup>b</sup> ±0.1</td>
<td>2.79<sup>a</sup> ±0.1</td>
<td>2.51<sup>a</sup> ±0.1</td>
<td>2.23<sup>a</sup> ±0.1</td>
</tr>
<tr>
<td>g/dl</td>
<td>±0.24</td>
<td>±0.28</td>
<td>±0.1</td>
<td>±0.25</td>
<td>±0.2</td>
<td>±0.3</td>
</tr>
<tr>
<td>Glo</td>
<td>2.45<sup>a</sup> ±0.15</td>
<td>2.38<sup>a</sup> ±0.18</td>
<td>1.8<sup>b</sup> ±0.2</td>
<td>2.41<sup>a</sup> ±0.2</td>
<td>2.39<sup>a</sup> ±0.1</td>
<td>1.52<sup>a</sup> ±0.1</td>
</tr>
<tr>
<td>g/dl</td>
<td>±0.15</td>
<td>±0.18</td>
<td>±0.2</td>
<td>±0.2</td>
<td>±0.1</td>
<td>±0.3</td>
</tr>
<tr>
<td>AST</td>
<td>23<sup>a</sup> ±2.3</td>
<td>29<sup>a</sup> ±2.4</td>
<td>75<sup>a</sup> ±3.2</td>
<td>25<sup>a</sup> ±1.3</td>
<td>36<sup>a</sup> ±3.9</td>
<td>112<sup>a</sup> ±5.8</td>
</tr>
<tr>
<td>U/L</td>
<td>±23</td>
<td>±2.4</td>
<td>±3.2</td>
<td>±1.3</td>
<td>±3.9</td>
<td>±5.8</td>
</tr>
<tr>
<td>ALT</td>
<td>18<sup>a</sup> ±1.85</td>
<td>20<sup>a</sup> ±2.7</td>
<td>85<sup>a</sup> ±5.2</td>
<td>17<sup>a</sup> ±2.5</td>
<td>28<sup>a</sup> ±9.3</td>
<td>142<sup>a</sup> ±6.3</td>
</tr>
<tr>
<td>mg/dl</td>
<td>0.2<sup>a</sup> ±0.02</td>
<td>0.71<sup>a</sup> ±0.05</td>
<td>0.8<sup>b</sup> ±0.06</td>
<td>0.18<sup>a</sup> ±0.01</td>
<td>0.81<sup>a</sup> ±0.1</td>
<td>1.3<sup>a</sup> ±0.02</td>
</tr>
</tbody>
</table>

Different letters in the same row are significantly different at P≤0.05. Creat denotes serum creatinine.

Both of the examined somatic indices (Table 5); HSI and SSI of *O. niloticus* in groups received the TiO₂NP MIC, were insignificantly different from control regardless to the administration route. Meanwhile, G3 and G6 revealed a significant increase as they recorded 1.76 and 2.4%, respectively. In addition, SSI showed similar trend as that for HSI, with a significant increase in G3 and G6 by 0.42 and 0.86%, respectively.
Table 5. HSI and SSI of *O. niloticus* received TiO$_2$NP. Mean±SE

<table>
<thead>
<tr>
<th>Items</th>
<th>Feed</th>
<th>Injection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G1 Control</td>
<td>G2 20 µg/g</td>
</tr>
<tr>
<td>HSI %</td>
<td>1.6±0.02</td>
<td>1.62±0.03</td>
</tr>
<tr>
<td>SSI %</td>
<td>0.33±0.001</td>
<td>0.34±0.002</td>
</tr>
</tbody>
</table>

Different letters in the same row are significantly different at P≤0.05.

In hepatic tissues of *O. niloticus*, a significant elevation of antioxidants activities for GPx and MT was remarkable in response to the high dosage of TiO$_2$NP in spite of the administration route. Groups received TiO$_2$NP MIC (G2 and G5) were insignificantly different from control groups (G1 and G4) (Table 6).

Infection trial

Ten *O. niloticus* from each group were challenged against *A. hydrophila*, and MR% was calculated and presented in Table 7. High TiO$_2$NP dosage, regardless to the administration route, in both G3 and G6 resulted in a higher MR% that recorded 70 and 80%, respectively followed by the control in both G1 and G4 (50%). On the other hand, the lower MR% was observed in G2 and G5 revealing 20 and 30%, respectively for those fish that received the TiO$_2$NP MIC (20 µg/g b.w.).

Table 6. Antioxidants activities in hepatic tissue of *O. niloticus* received TiO$_2$NP. Mean±SE

<table>
<thead>
<tr>
<th>Items</th>
<th>Feed</th>
<th>Injection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G1 Control</td>
<td>G2 20 µg/g</td>
</tr>
<tr>
<td>GPx</td>
<td>190.8±6.5</td>
<td>190±4.8</td>
</tr>
<tr>
<td>MT</td>
<td>15.7±1.2</td>
<td>17.3±2.75</td>
</tr>
</tbody>
</table>

Different letters in the same row are significantly different at P≤0.05.

DISCUSSION

Nile tilapia, *O. niloticus*, is a widespread teleost fish in tropical regions where it has a significant economic value in fishery and aquaculture industries. This study highlighted the antimicrobial properties of TiO$_2$NP and possible impacts on *O. niloticus* health. *A. hydrophila* bacteria is a common pathogen for fish. It is a Gram-negative motile rod and one of the highest isolated bacterial pathogens of freshwater fish in fish farms that occurred in warm climatic countries (Angka, 1990 and Esteve et al., 1993).

Nanoparticles have a better and different quality compared to other forms of the same element. A small amount of them can have a great deal of antibacterial effect (Karimipour and Tanomand, 2016). The inhibitory effect of the nanoparticles may occur from their interference in the biological mechanisms of the bacteria as they penetrate the cell wall of the bacteria and change its properties. This increases the penetrability of cell membrane and interrupt the control of material intake and output from the cytoplasm. In the present study, the TiO$_2$NP MIC for *A. hydrophila* was determined to be 20 µg/ml. High SR % of *O. niloticus* was recorded with the determined MIC regardless to the administration route.

Concerning blood indices, high dosage of TiO$_2$NP (100 µg/g b.w.) displayed drastic impacts in both fed and injected fish although injected group (G6) revealed higher response. Meanwhile, no significant difference was observed in the tested blood indices.
between the control groups and those received the TiO$_2$NPs MIC. A number of studies have suggested that TiO$_2$NPs could pose toxicity to several aquatic organisms including microbes, algae, invertebrates and fish (Chen et al., 2012). In a species of ark clam known as the blood clam Tegillarca granosa, Shi et al. (2017) treated the clam with 10 and 100 mg/l TiO$_2$NP for 30 days. The authors reported that RBCs were significantly decreased from 79.76% to 70.98% in comparison to the negative control. In the same line, Barma et al. (2013) and Balbi, et al. (2014) observed a reduction in different blood indices and phagocytic activity of the saltwater mussels Mytilus galloprovincialis in vivo acute toxicity (96 h) of TiO$_2$NP (size 15-60 nm) with a dosages 1-100 mg/l. The findings of the present study could be explained by the fact that high dosages of TiO$_2$NP perform a physical stress, which damaged blood cells. In agreement, Reeves et al. (2008) stated that the physical stress of TiO$_2$NP disrupted membranes of blood cell that was induced by the adhesion of TiO$_2$NP.

The examined liver enzymes of O. niloticus AST and ALT of fish exposed to high TiO$_2$NP were significantly increased by several times relative to control fish, while those subjected to the TiO$_2$NP MIC slightly increased. Along with the present results, Wang et al. (2007), Chen et al. (2009), Duan et al. (2009) and Liu et al. (2009) stated that the activity of a number of enzymes, including AST and ALT, were increased in mice treated with TiO$_2$NP. This was attributed to the increase in cellular membranes damages leading to liver enzymes leaking out. On the other hand, serum creatinine in fish exposed to the selected high TiO$_2$NP dosage was significantly increased by 4 to 7.2 times in G3 and G6, respectively with regard to the control. Meanwhile, fish groups subjected to TiO$_2$NP MIC also revealed a significant increase by 3.5 and 4.4 times in G2 and G5, respectively. In agreement, Banaee et al. (2016) found a significant increase ($P<0.05$) in creatinine levels 1.17 to 1.08 of Cyprinus carpio subjected to TiO$_2$NP compared to control group 0.14 to 0.17, respectively.

HSI is a widely known bioindicator of contaminant exposure (Sadekarpawar and Parikh, 2013). Because the liver is so important in detoxification, exposure to contaminants can lead to an increase in liver size from hypertrophy (an increase in size), hyperplasia (an increase in number) of hepatocytes (Sole et al., 2010), or both. On the other hand, fish spleen acts primarily as a blood filter, and plays important roles in regard to red blood cells and the immune system. Fish with larger spleens, may simply have a greater filtering capacity and thus increased immune function (Hadidi et al., 2008). O. niloticus which injected with a high dosage of TiO$_2$NP (G6) revealed high HSI as well as SSI, which may indicate the suffering of fish from hepatomegaly as well as splenomegaly, respectively. This could be attributed to TiO$_2$NP generation of free radicals, which in turn initiate an inflammatory response that leads to hepatocytes swelling together with dilatation of the central vein, increased permeability hepatocytes membrane and the endothelial lining of blood vessels (Johar et al., 2004 and Alarifi et al., 2013).

In the present study, significant differences were only demonstrated in TP and Glo levels in fish exposed to the high examined TiO$_2$NP level. Banaee et al. (2016) observed a decrease in total protein as well as globulin levels in C. carpio exposed to 125 µg/l of TiO$_2$NPs for 21 days that was attributed to reduced protein and globulin synthesis in hepatocytes. The authors claimed that the decrease in protein levels might be related to malnutrition, increased energy cost of homeostasis, tissue repair and the detoxification mechanism under stress conditions. Meanwhile, Griffitt et al. (2009) explained such decrease by the effect of TiO$_2$NPs exposure on the expression of genes involved in protein synthesis.

The increase activity of both AST and ALT besides the observed high HSI indicated that the fish hepatic tissue was adversely affected with the high TiO$_2$NP dosage. Therefore, antioxidants activity of GPx and MT were assessed to confirm this observation. Antioxidants activity were in the same line of the above mentioned results of liver enzymes and somatic indices since GPx and MT increased with the high TiO$_2$NP dosages while there was an insignificant difference between groups received MIC and control. A number of studies have painted a picture, which is in line with the currently predominant paradigm that nanomaterial toxicity is associated with the induction of oxidative stress (Lammel & Sturve, 2018). These authors have suggested that TiO$_2$NPs induce the formation of ROS leading to damage of biological macromolecules including lipids, proteins and DNA, and consequently to loss of vital cellular functions and cell death. Firat and Bozat (2018) reported that acute exposure of TiO2NPs caused decreases in activities of a number of enzymes including Gpx (37%), while its exposure for 14 days increased the activity of the...
enzyme (32%). This was attributed to the fact that TiO₂NPs can potentially cause oxidative stress, which may lead to disturbance in the antioxidant enzymes systems by either stimulating or inhibiting their activities. Xiong et al. (2011) also observed that ROS in zebrafish exposed to 50 mg/l TiO₂NP, was elevated by 139.7% to 178.1% relative to the control group due to their protein carbonyl content. Similar changes were observed in zebrafish (Bar-Ilan et al., 2013) and rainbow trout (Boyle et al., 2013). In contrast, Federici et al. (2007) observed that rainbow trout subjected to high level of TiO₂NP (0.1-1 mg/l) for 14 days naturally still had the ability to scavenge the ROS. This conflict between the results of the present study and other studies could be explained by differences in animal’s species as well as dosage, administration route, and duration of exposure to TiO₂NP.

O. niloticus challenged with A. hydrophila and either fed or injected with TiO₂NP MIC represented low MR%; 20 and 30% in fed and injected fish, respectively. Whereas fish treated with high TiO₂NP dosage showed a high MR% both in fed and injected groups revealing 70 and 80%, respectively. These results were anticipated due to the immunosuppression and compromised health status of the fish that occur, possibly because of high ROS activity, which was reflected by increased AST, ALT, creatinine, HSI, and SSI along with low WBCs, TP, and Glo; the decrease in globulin level may reduce the resistance of fish to pathogens (Griffitt et al., 2009). Jovanovic et al. (2015) stated that Nano-TiO₂ is immunotoxic to fish and reduces the bactericidal function of fish neutrophils. The authors demonstrated that Pimephales promelas exposed to nano-TiO₂ (2 and 10 mg/g b.w.) and challenged with A. hydrophila or Edwardsiella ictaluri revealed a decrease in neutrophil phagocytosis rate, which resulted in increased fish mortality.

CONCLUSIONS
TiO₂NP had potential antibacterial properties and its MIC was determined to be 20 μg/g b.w. for A. hydrophila infection. This concentration proved no adverse impact on the health status of O. niloticus. The more appropriate route of administration was via fish feed. Meanwhile, irrespective to the route of administration, high dosage of TiO₂NP had immunosuppression as well as ROS generation effect therefore, not recommended to be used in fish treatment.

ACKNOWLEDGEMENT
The authors would like to thank the Agriculture Research Center, Animal Health Research Institute for financial support of this work.

CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.
REFERENCES

Lammel T, Sturve J (2018) Assessment of titanium dioxide nanoparticle toxicity in the rainbow trout (Oncorhynchus mykiss) liver and gill cell lines RTL-W1 and RTgill-W1 under particular consideration of nanoparticle stability and interference with fluorometric assays. Nano impact 11, 1-19.

Reeves JF, Davies SJ, Dodd NJ, Jha AN (2008) Hydroxyl radicals (·OH) are associated with titanium dioxide (TiO$_2$) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutation research 640, 113-122.

