Effects of Indigenous Spore-Forming Probiotic as Feed Supplement on Performance and Safety in Broilers

HOSSEINI N.G.
Department of Biology,
Science and Research Branch, Islamic Azad University, Tehran, Iran

MODARRESSI M.H.
Department of Biology,
Science and Research Branch, Islamic Azad University, Tehran, Iran

MOUSAVI S.N.
Departments of Animal Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran

EBRAHIMI M.T.
Department of Biology,
Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran

https://doi.org/10.12681/jhvms.22234

Copyright © 2020 N.G. HOSSEINI, M.H. MODARRESSI, S.N. MOUSAVI, M.T. EBRAHIMI

To cite this article:

Effects of Indigenous Spore-Forming Probiotic as Feed Supplement on Performance and Safety in Broilers

N.G. Hosseini¹, M.H. Modarressi², S.N. Mousavi³, M.T. Ebrahimi*³

¹ Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
² Departments of Animal Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
³ Department of Biology, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran

ABSTRACT. Probiotics colonize the intestine of animals and birds and provide useful effects on their performance and immune status. This study describes a high throughput screening and characterization of spore-forming bacteria from Iranian poultry farms with the aim to identify potential probiotic native Bacillus spp. and determine its effects on growth performance, hemato-biochemical parameters, immunity, intestinal microflora, morphology and MUC2 gene expression of broiler chickens. A total of 300 one-day-old female Ross 308 broilers (42.6 ± 0.6 g) were used in a 6-wk study. Broilers were randomly allotted to 1 of 3 dietary treatments consisting of 4 replicate cages with 25 broilers each: 1- Control (Corn-soy-based diet: C), 2- C + 200 g/ton of the GalliPro® (Bacillus subtilis DSM 17299, 4×10⁹ CFU/g, as positive control group: PC), 3- C + 200 g/ton of the native probiotic (B. tequilensis K03, 4×10⁹ CFU/g: NP) identified in this study. During the experiment parameters were measured weekly. The results revealed that birds of the NP and PC groups exhibited improved feed conversion ratio (FCR) and increased body weight (BW), carcass and breast meat yield compared with the birds of the C group (P<0.05). Also, lymphocytes level, antibody titers against Newcastle diseases virus (NDV) and infectious bronchitis virus (IBV) of vaccinated birds were increased, while serum triglycerides, total cholesterol levels and abdominal fat of birds fed NP and PC were decreased compared to birds of the C group (P<0.05). The villus height, the relative expression of MUC2 gene and Bacillus spp. populations were increased, while E. coli was significantly decreased in the ileum content of treated groups (P<0.05). These results indicate that the identified native B.tequilensis K03 strain can improve immunity and broiler performance by modifying intestinal microflora and morphology. Studied native probiotic Bacillus tequilensis K03 has useful effects on health status and it can be used as poultry feed supplement.

Keywords: Broiler, Probiotic, Bacillus, Performance, Mucin
INTRODUCTION

Antibiotics have been used in commercial poultry diet due to their growth-promoting and prophylactic effects for over 50 years (Coates et al., 1963). Antibiotic intake of food animals, as well as the resulted antibiotic residue in food, has been noticed as one leading cause of the rapid spread of antimicrobial resistance in human populations. Reducing antibiotics in animal agriculture is one key in struggle against the spread of antibiotic resistance (Ghadban, 2002; Kabir, 2009). Increasing information on healthy food has led to increasing interests on natural food products such as probiotics. Probiotics have been demonstrated to improve intestinal microbial balance, provide protection against gut pathogens and modulate immune system. (Khaksefidi and Ghoorchi, 2006; Mingmongkolchai and Panbangred, 2018). These products have been identified as a safe feed additive in animal industry (Nawab et al., 2019). Lactic acid bacteria (LAB), mainly from genus Lactobacillus, consist the most important microbial population in the intestine of broiler chickens that have been used as probiotics in poultry industry (Huang et al., 2004). Encapsulation technologies are used to keep probiotic cell viable all over storage, commercialization and use in food products, so that these cells are active during their passage through the gastrointestinal tract (Tellez et al., 2012). Bacillus spp. is a genus of Gram-positive, rod shaped, and spore-forming bacteria. The spores present in vegetative cells allow long-term storage, and survival at the harsh environmental and processing condition and low pH of the gastrointestinal tract (Cutting, 2011).

The Bacillus spp. have been known as probiotics for chickens feed because it secretes antimicrobials compounds and suppress the colonization of gut pathogens (Hong et al., 2008; Knap et al., 2011; Guyard-Nicodeme et al., 2016). This probiotic with improve immunity (Melegy et al., 2011) and changes in the intestine morphology of broilers (Sen et al., 2012) lead to promote growth (Melegy et al., 2011) and improves the quality of meat (Xu et al., 2006; Yang et al., 2016). Also, reported that Bacillus spp. decrease NH\textsubscript{3} emission from poultry manure (Jeong and Kim, 2014). Nonetheless, a few of them such as B. subtilis, B. cereus, and B. licheniformis are currently used in poultry industry, and the probiotic potential of other Bacillus spp. has been less studied (Cutting, 2011; Mingmongkolchai and Panbangred, 2018). The potential and efficacy of probiotics depend on the bacterial species and host origin, as well as on the application levels (Mountzouris et al., 2007; Amerah et al., 2013). Moreover, the antibiotic resistance of Bacillus spp. is another matter of concern. Therefore, exploring native or new probiotic strains is important to obtain very efficient probiotics for chicken feed. There is little information about the probiotic potential of Bacillus tequilensis, which biochemically is quite similar to B. subtilis, and can be differentiated by lysine decarboxylase, positive arginine hydrolases, ornithine decarboxylase and acid production from rhamnose (Gatson et al., 2006). It is reported that Bacillus tequilensis K03 have the highest attachment ability to intestinal epithelium cells and inhibits the growth of Salmonella Typhimurium (Ghorban Hosseini et al., 2019). Therefore, in the present study, we investigated the effects a selected native strain (B. tequilensis K03) on performance and carcass traits, hemato-biochemical parameters, immunity, and intestinal morphology, microflora and MUC2 gene expression of broiler chickens.

MATERIALS AND METHODS

Bacterial isolation and characterization

Bacterial isolates were obtained from fecal samples (n=86) collected from poultry farms in Golestan province in the north-east of Iran. The samples were serially diluted and spread plated on nutrient agar (QueLab-393506) followed by incubation at 37°C for 48 h. Discrete bacterial colonies (n=34) were picked and characterized according to Wu et al., (2011). Then, probiotic characteristics (acid and antibiotic resistance, bile salt, the ability to attach to intestinal epithelial cells, and inhibit Salmonella enterica serovar Typhimurium invasion), as well as ability of producing amylase and phytase of Bacillus spp. isolates were analyzed (Latorre et al., 2016; Thirabunyanon and Thongvittaya, 2012). The 16S ribosomal typing was also performed for identification of the selected strain (Jeevana Lakshmi et al., 2013). All isolates were catalase-positive, oxidase-positive and non-hemolytic. The K03 strain was the superior bacterium, and had desirable probiotic characteristics, with production of 4.56 ± 1.1 U/ml phytase and 36.7 ± 1.3 U/ml α-amylase enzymes, and the highest adherence ability (1.9 log CFU/well) to intestinal epithelial cells. The strain had more inhibitory strength than the other isolates using exclusion assay to inhibit Salmonella enterica serovar Typhimurium attachment, up to 53% compared to control. The analysis of 16S rDNA gene sequences showed the highest similarity (% 99) of the K03 strain to Bacillus tequilensis KCTC 136221, in-
indicating the auto probiotic (indigenous bacteria) potential of the strain for use in chicken diet (Ghorban Hosseini et al., 2019).

Birds and experimental design

Three hundred one-day old healthy female broilers (Ross 308) with the initial weight of 42.6 ± 0.6 g were obtained from a local hatchery (Tehran, Iran), and randomly allocated to three dietary treatments (n=100) with four replicates (25 birds/pen) and raised for 42 days. The broiler chickens were fed a basal diet (Control; C) as well as basal diet + 200 g/ton of the GalliPro® commercial probiotic (B. subtilis DSM 17299, 4×10⁹ CFU/g) as positive control group (PC). The birds in the native probiotic (NP) group were fed with basal diet + 200 g/ton of the native probiotic (B. tequilensis K03, 4×10⁹ CFU/g) isolate. In broiler diets 8×10⁶ viable spores/g was evaluated. Feed ingredients and nutrient composition of basal diet are shown in the Table 1. The environmental temperature was maintained at 32°C during the first week and gradually decreased (2°C per week) to 22°C, and then maintained constant until the end of the experiment. All guidelines for the ethical use and care of animal were followed, and approved by the Islamic Azad University Ethics Committee for Animal Experimentation.

Table 1. Feed ingredients and nutrient composition of basal diet

<table>
<thead>
<tr>
<th>Ingredients (%)</th>
<th>Starter (1-10 d)</th>
<th>Grower (11-21 d)</th>
<th>Finisher (22-42 d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>54.91</td>
<td>56.80</td>
<td>60.54</td>
</tr>
<tr>
<td>Soybean meal (44% CP)</td>
<td>38.00</td>
<td>36.22</td>
<td>32.03</td>
</tr>
<tr>
<td>Soy oil</td>
<td>2.51</td>
<td>3.00</td>
<td>3.83</td>
</tr>
<tr>
<td>Limestone</td>
<td>1.10</td>
<td>1.01</td>
<td>0.94</td>
</tr>
<tr>
<td>Di-calcium phosphate</td>
<td>1.93</td>
<td>1.65</td>
<td>1.42</td>
</tr>
<tr>
<td>Vitamin and Mineral premix*</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>DL-methionine</td>
<td>0.30</td>
<td>0.26</td>
<td>0.24</td>
</tr>
<tr>
<td>L-lysine HCl</td>
<td>0.25</td>
<td>0.13</td>
<td>0.10</td>
</tr>
<tr>
<td>L-threonine</td>
<td>0.11</td>
<td>0.06</td>
<td>0.03</td>
</tr>
<tr>
<td>Common Salt</td>
<td>0.20</td>
<td>0.23</td>
<td>0.24</td>
</tr>
<tr>
<td>Sodium bicarbonate</td>
<td>0.19</td>
<td>0.14</td>
<td>0.13</td>
</tr>
<tr>
<td>Metabolizable energy (kcal / kg)</td>
<td>2950</td>
<td>3000</td>
<td>3100</td>
</tr>
<tr>
<td>Crude protein (%)</td>
<td>22.61</td>
<td>20.80</td>
<td>18.89</td>
</tr>
<tr>
<td>Digestible lysine (%)</td>
<td>1.26</td>
<td>1.11</td>
<td>0.99</td>
</tr>
<tr>
<td>Digestible methionine + cysteine (%)</td>
<td>0.93</td>
<td>0.84</td>
<td>0.77</td>
</tr>
<tr>
<td>Digestible threonine (%)</td>
<td>0.84</td>
<td>0.74</td>
<td>0.66</td>
</tr>
<tr>
<td>Calcium (%)</td>
<td>0.94</td>
<td>0.84</td>
<td>0.75</td>
</tr>
<tr>
<td>Available Phosphorus (%)</td>
<td>0.47</td>
<td>0.42</td>
<td>0.38</td>
</tr>
<tr>
<td>Sodium (%)</td>
<td>0.16</td>
<td>0.15</td>
<td>0.15</td>
</tr>
</tbody>
</table>

* The vitamin-mineral premix provided the following quantities per kg of diet: vitamin A, 9000 IU; vitamin D3, 2000 IU; vitamin E, 18 IU; vitamin K3, 2 mg; vitamin B1, 1.8 mg; vitamin B2, 6.6 mg; vitamin B3, 10 mg; vitamin B5, 30 mg; vitamin B6, 3 mg; vitamin B9, 1 mg; vitamin B12, 0.015 mg; biotin, 0.1 mg; choline chloride, 250 mg; antioxidant, 100 mg; Mn, 100 mg; Zn, 84.7 mg; Fe, 50 mg; Cu, 10 mg; I, 1 mg; Sc, 0.2 mg.

Growth performance

Growth performance parameters, including body weight gain (BWG) and feed intake (FI) were measured while feed conversion ratio (FCR) was calculated for starter (1-10 d), grower (11-21 d), finisher (22-42 d), and overall period (1-42 days).

Carcass yield and relative weight of organs

On day 42, four birds from each replicates were randomly selected, weighed and slaughtered for carcass analysis, and determination of relative weight of organs. The weight of carcass, breast, thigh, gizzard, liver, heart, spleen and abdominal fat for each slaughtered bird was calculated as a relative percentage of live body weight (Zaghari et al., 2016).

Hematological parameters

At the end of experiment, blood samples were collected from wing vein of four birds from each replicates, and divided into two aliquots. The first aliquot was transferred to a 2 ml heparinized tube containing EDTA to determine leukocytes, and other one in the same tube without anticoagulant and left to clot then serum was collected for humoral and biochemical analyses. Blood smears were prepared from each samples by Giemsa staining, and were examined un-
order a compound microscope for leukocyte differential count according to Beski and Al-Sardary (2015). Moreover, 100 cells from the slides were evaluated to determine the heterophil to lymphocyte ratio.

Serum biochemical analysis
The collected blood samples (4 birds per replicate) in the 2 ml tube without anticoagulant left to clot, then serum was collected by centrifuging (1500 g for 15 min at 4°C), and stored at -20°C.

The concentration of serum total protein (TP), triglyceride (TG), glucose, total cholesterol, high-density lipoprotein (HDL) cholesterol, and low-density lipoprotein (LDL) cholesterol were measured by commercial kits (Parsazmun Co. Iran) according to the manufacturer’s recommendations. Relative expression of MUC2 gene was quantified in duplicate for each cDNA sample on the Real-Time PCR detection system (Applied Biosystems) using Quanti Fast Syber Green PCR kit (QIAGEN, Cat. No. 204052), and specific primer pairs (BX930545; F: 5’-ATGCGATGTAAACACAGGACTC-3’; R: 5’-GTGGAGCACACAGCATTTG -3’) with cycling parameters of 95°C for 10 min for 1 cycle, 95°C for 15 s, 60°C for 20 s, and 72°C for 40 s for 40 cycles, as described previously by Forder et al. (2012). The melting curve of each amplicon was examined, and the expression of the MUC2 gene was corrected based on the endogenous control expression (GAPDH: NM_204305; F: 5’-TGTAGCTTCAATGGTGAAC-3′, R: 5’-GCTATATCCAAACTCATTGT-3′) and calculated as fold change according to the 2−ΔΔCt method (Livak and Schmittgen, 2001).

Statistical analysis
The data were analyzed using the statistical package SAS software (SAS Institute, 2007) by one-way analysis of variance (ANOVA) followed by Tukey’s pairwise multiple comparison test. Values of P<0.05 were considered statistically significant.

RESULTS

Growth performance
The results of growth performance of broilers fed with diets containing native strain (B. tequilensis K03) and commercial product (B. subtilis DSM 17299) of Bacillus spp. probiotic are presented in Table 2. The results showed that dietary supplementation of Bacillus spp. probiotics (both native strain and commercial product) significantly improved BW, FCR of birds compared to the control group (P<0.05) during the overall period, while there was no significant difference (P>0.05) for starter, grower, and finisher periods. Feed intake was not affected by treatments. No significant differences were found in growth performance parameters between birds fed native strain and commercial Bacillus spp. probiotic supplemented diets (P>0.05).
Table 2. Growth performance of broiler chickens fed *Bacillus* spp. probiotics at different periods of experiment

<table>
<thead>
<tr>
<th>Parameters</th>
<th>C</th>
<th>PC</th>
<th>NP</th>
<th>SEM</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – 10 days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BW (g)</td>
<td>238.3</td>
<td>243.7</td>
<td>244.8</td>
<td>2.0</td>
<td>0.4</td>
</tr>
<tr>
<td>FI (g)</td>
<td>266.2</td>
<td>235.2</td>
<td>233.8</td>
<td>11.3</td>
<td>0.4</td>
</tr>
<tr>
<td>FCR</td>
<td>1.1</td>
<td>0.9</td>
<td>0.9</td>
<td>0.05</td>
<td>0.3</td>
</tr>
<tr>
<td>11 – 21 days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BW (g)</td>
<td>601.4</td>
<td>625.9</td>
<td>627.5</td>
<td>7.5</td>
<td>0.3</td>
</tr>
<tr>
<td>FI (g)</td>
<td>852.1</td>
<td>835.2</td>
<td>834.4</td>
<td>16.3</td>
<td>0.9</td>
</tr>
<tr>
<td>FCR</td>
<td>1.4</td>
<td>1.33</td>
<td>1.3</td>
<td>0.02</td>
<td>0.2</td>
</tr>
<tr>
<td>22 – 42 days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BW (g)</td>
<td>1720.6</td>
<td>1763.7</td>
<td>1762.5</td>
<td>10.1</td>
<td>0.1</td>
</tr>
<tr>
<td>FI (g)</td>
<td>3676.9</td>
<td>3663.8</td>
<td>3662.1</td>
<td>19.0</td>
<td>0.9</td>
</tr>
<tr>
<td>FCR</td>
<td>2.1</td>
<td>2.0</td>
<td>2.0</td>
<td>0.01</td>
<td>0.06</td>
</tr>
<tr>
<td>1 – 42 days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BW (g)</td>
<td>2602.3</td>
<td>2675.4</td>
<td>2676.9</td>
<td>15.3</td>
<td>0.05</td>
</tr>
<tr>
<td>FI (g)</td>
<td>4795.3</td>
<td>4734.3</td>
<td>4730.4</td>
<td>42.8</td>
<td>0.8</td>
</tr>
<tr>
<td>FCR</td>
<td>1.8</td>
<td>1.7</td>
<td>1.7</td>
<td>0.01</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Different letters indicate significant differences between groups at *P*<0.05.

BW, Body weight; FI, Feed intake; FCR, Feed conversion ratio

C, Control; NP, Native Probiotic (200 g/ton, *B. tequilensis* K03, 4×10⁹ CFU/g); PC, Positive Control (200g/ton, *B. subtilis* DSM 17299, 4×10⁹ CFU/g); SEM, Standard error of means.

Carcass yield and relative weight of organs

The results of carcass yield and relative weight of organs of broiler chickens are shown in Table 3. The relative weight of carcass, breast, thigh, and spleen were significantly increased and abdominal fat was decreased (*P*≤0.05) in the birds fed with diets supplemented with *Bacillus* spp. probiotics (native strain and commercial product) as compared to the control during the overall experimental period. However, dietary *Bacillus* spp. probiotics had no significant effects on relative weight of liver, gizzard, and heart of the birds (*P*>0.05). No significant differences in carcass yield and relative weight of organs were observed between birds fed dietary native strain and commercial *Bacillus* spp. probiotics (*P*>0.05).

Table 3. Carcass yield and relative organ weight in broiler chickens fed *Bacillus* spp. probiotic diets at 42 d of age

<table>
<thead>
<tr>
<th>Parameters (%)</th>
<th>C</th>
<th>PC</th>
<th>NP</th>
<th>SEM</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carcass yield</td>
<td>66.2ᵇ</td>
<td>67.3ᵇ</td>
<td>67.4ᵇ</td>
<td>0.2</td>
<td>0.05</td>
</tr>
<tr>
<td>Breast</td>
<td>22.4ᵇ</td>
<td>23.3ᵇ</td>
<td>23.4ᵇ</td>
<td>0.1</td>
<td>0.05</td>
</tr>
<tr>
<td>Thigh</td>
<td>16.1ᵇ</td>
<td>16.8ᵇ</td>
<td>16.8ᵇ</td>
<td>0.1</td>
<td>0.04</td>
</tr>
<tr>
<td>Liver</td>
<td>1.6</td>
<td>1.6</td>
<td>1.8</td>
<td>0.03</td>
<td>0.11</td>
</tr>
<tr>
<td>Gizzard</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
<td>0.03</td>
<td>0.17</td>
</tr>
<tr>
<td>Spleen</td>
<td>0.1ᵇ</td>
<td>0.2ᵇ</td>
<td>0.2ᵇ</td>
<td>0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>Heart</td>
<td>0.8</td>
<td>0.9</td>
<td>0.8</td>
<td>0.07</td>
<td>0.96</td>
</tr>
<tr>
<td>Abdominal fat</td>
<td>1.6ᵇ</td>
<td>1.4ᵇ</td>
<td>1.3ᵇ</td>
<td>0.04</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Different letters indicate significant differences between groups at *P*<0.05.

C, Control; NP, Native Probiotic (200 g/ton, *B. tequilensis* K03, 4×10⁹ CFU/g); PC, Positive Control (200g/ton, *B. subtilis* DSM 17299, 4×10⁹ CFU/g); SEM, Standard error of means.

Hematological parameters (leukocytes)

The effects of dietary supplementation of native strain and commercial *Bacillus* spp. probiotics on leukocytes differential count of broiler chickens are shown in Table 4. Diets containing native strain and commercial *Bacillus* spp. probiotics (K03 and DSM 17299, respectively) significantly increased the percentage of lymphocytes compared to the control group (*P*<0.05), however, no significant differences were found between K03 and DSM 17299 groups (*P*>0.05). There was no significant differences in the percentage of heterophile, eosinophil, basophil, monocyte, as well as heterophile/lymphocytes ratio of birds fed diets containing native strain and commercial *Bacillus* spp. probiotics compared to the control group (*P*>0.05).
Table 4. Hematological parameters of broiler chickens fed *Bacillus* spp. probiotics based diets at 42 d of age.

<table>
<thead>
<tr>
<th>Parameters (%)</th>
<th>C</th>
<th>PC</th>
<th>NP</th>
<th>SEM</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heterophile</td>
<td>31.6</td>
<td>31.5</td>
<td>31.3</td>
<td>0.3</td>
<td>0.9</td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>51.8*</td>
<td>53.4*</td>
<td>53.9*</td>
<td>0.3</td>
<td>0.02</td>
</tr>
<tr>
<td>Monocyte</td>
<td>7.7</td>
<td>7.2</td>
<td>7.3</td>
<td>0.1</td>
<td>0.52</td>
</tr>
<tr>
<td>Eosinophil</td>
<td>2.6</td>
<td>2.7</td>
<td>2.7</td>
<td>0.05</td>
<td>0.74</td>
</tr>
<tr>
<td>Basophile</td>
<td>2.5</td>
<td>2.5</td>
<td>2.6</td>
<td>0.03</td>
<td>0.69</td>
</tr>
<tr>
<td>Heterophile/Lymphocytes</td>
<td>0.6</td>
<td>0.5</td>
<td>0.5</td>
<td>0.01</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Different letters indicate significant differences between groups at *P*<0.05.

C, Control; NP, Native Probiotic (200 g/ton, *B. tequilensis* K03, 4×10⁹ CFU/g); PC, Positive Control (200g/ton, *B. subtilis* DSM 17299, 4×10⁹ CFU/g); SEM, Standard error of means.

Serum biochemical parameters

The results of serum biochemical analysis of broilers fed with diets containing probiotic are shown in Table 5. The results revealed significant decrease in serum triglycerides and total cholesterol levels of birds fed dietary native strain and commercial *Bacillus* spp. probiotics (K03 and DSM 17299) compared to the control group (*P*<0.05), however, no significant differences were found between K03 and DSM 17299 dietary groups (*P*>0.05). No significant differences were also found in serum glucose, total protein, High density lipoprotein (HDL), and Low density lipoprotein (LDL) levels among treatments (*P*>0.05).

Table 5. Serum biochemical parameters in broiler chickens fed *Bacillus* spp. probiotics based diets at 42 d of age.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>C</th>
<th>PC</th>
<th>NP</th>
<th>SEM</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose (mg dl⁻¹)</td>
<td>261.0</td>
<td>235.9</td>
<td>246.9</td>
<td>12.6</td>
<td>0.75</td>
</tr>
<tr>
<td>Total protein (g dl⁻¹)</td>
<td>3.2</td>
<td>3.6</td>
<td>3.4</td>
<td>0.1</td>
<td>0.74</td>
</tr>
<tr>
<td>Triglycerides (mg dl⁻¹)</td>
<td>79.5*</td>
<td>66.9*</td>
<td>67.9*</td>
<td>2.2</td>
<td>0.02</td>
</tr>
<tr>
<td>Total Cholesterol (mg dl⁻¹)</td>
<td>163.2*</td>
<td>147.9*</td>
<td>149.3*</td>
<td>2.7</td>
<td>0.01</td>
</tr>
<tr>
<td>HDL (mg dl⁻¹)</td>
<td>65.3</td>
<td>59.8</td>
<td>62.4</td>
<td>1.7</td>
<td>0.49</td>
</tr>
<tr>
<td>LDL (mg dl⁻¹)</td>
<td>54.2</td>
<td>49.6</td>
<td>52.2</td>
<td>2.3</td>
<td>0.76</td>
</tr>
</tbody>
</table>

Different letters indicate significant differences between groups at *P*<0.05.

C, Control; NP, Native Probiotic (200 g/ton, *B. tequilensis* K03, 4×10⁹ CFU/g); PC, Positive Control (200g/ton, *B. subtilis* DSM 17299, 4×10⁹ CFU/g); SEM, Standard error of means.

Humoral immune parameters (Antibody titers)

The results of humoral immune responses of birds are shown in Table 6. Results revealed a significant increase (*P*<0.05) in antibody titers against Newcastle diseases virus (NDV) and infectious bronchitis virus (IBV) of vaccinated birds fed with diets containing native strain and commercial *Bacillus* spp. probiotics (K03 and DSM 17299) in comparison with the control group (*P*<0.05), however, no significant differences were seen between K03 and DSM 17299 dietary groups (*P*>0.05). Moreover, diets containing *Bacillus* spp. probiotics had no significant effects on antibody titer against Influenza.

Table 6. Effect of *Bacillus* spp. Probiotics on immune response (antibody body production) of broiler chickens at 28 d of age.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>C</th>
<th>PC</th>
<th>NP</th>
<th>SEM</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bronchitis</td>
<td>2676.2*</td>
<td>2772.7*</td>
<td>2784.5*</td>
<td>18.88</td>
<td>0.01</td>
</tr>
<tr>
<td>Newcastle</td>
<td>3.6*</td>
<td>4.6b</td>
<td>4.6b</td>
<td>0.19</td>
<td>0.03</td>
</tr>
<tr>
<td>Influenza</td>
<td>1.3</td>
<td>1.3</td>
<td>1.4</td>
<td>0.01</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Different letters indicate significant differences between groups at *P*<0.05.

C, Control; NP, Native Probiotic (200 g/ton, *B. tequilensis* K03, 4×10⁹ CFU/g); PC, Positive Control (200g/ton, *B. subtilis* DSM 17299, 4×10⁹ CFU/g); SEM, Standard error of means.

Ileum microflora

The effect of treatments on ileum microflora of broilers (42 d) is shown in Table 7. The results revealed that the native strain and the commercial *Bacillus* spp. probiotics (K03 and DSM 17299) significantly increased the *Bacillus* spp. Populations. *E. coli* was significantly decreased in the ileum content of birds fed with diets supplemented with probiotics as compared to control (*P*<0.05), however, no significant differences were found between the treated groups (*P*>0.05). Despite the slight increase in *Lactobacillus* spp. there were no significant differences between treated and control groups.
Table 7. Ileum bacterial counts [log (cfu/g)] of broiler chickens fed Bacillus spp. probiotic diets at 42 d of age

<table>
<thead>
<tr>
<th>Parameters</th>
<th>C</th>
<th>PC</th>
<th>NP</th>
<th>SEM</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactobacillus spp.</td>
<td>6.6</td>
<td>7.3</td>
<td>7.4</td>
<td>0.1</td>
<td>0.09</td>
</tr>
<tr>
<td>Bacillus spp.</td>
<td>5.6</td>
<td>6.1</td>
<td>6.3</td>
<td>0.1</td>
<td>0.03</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>7.0</td>
<td>6.2</td>
<td>6.1</td>
<td>0.1</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Different letters indicate significant differences between groups at \(P<0.05 \).

C, Control; NP, Native Probiotic (200 g/ton, B. tequilensis K03, \(4\times10^9 \) CFU/g); PC, Positive Control (200g/ton, B. subtilis DSM 17299, \(4\times10^9 \) CFU/g); SEM, Standard error of means.

Ileum morphology

The result of morphological analysis of ileum is shown in Table 8. No histopathological changes were observed in the intestine tissue of any birds of all feeding groups (Fig. 1). Morphological analysis of ileum revealed significant increases (\(P<0.05 \)) in the villus height in birds fed with dietary containing Bacillus spp. probiotics (Native strain and commercial product) as compared to the control group, however, no significant differences were found between native and commercial probiotic dietary groups (\(P>0.05 \)). There were no significant differences in the villus width, crypt depth, as well as villus height/crypt of ileum between experimental and control groups (\(P>0.05 \)).

Table 8. Ileum morphology of broiler chickens fed Bacillus spp. probiotic diets at 42 d of age

<table>
<thead>
<tr>
<th>Parameters (µm)</th>
<th>C</th>
<th>PC</th>
<th>NP</th>
<th>SEM</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Villus height</td>
<td>769.0 a</td>
<td>859.3 b</td>
<td>889.7 b</td>
<td>17.8</td>
<td>0.01</td>
</tr>
<tr>
<td>Villus width</td>
<td>153.6</td>
<td>154.2</td>
<td>165.2</td>
<td>4.7</td>
<td>0.53</td>
</tr>
<tr>
<td>Villus height/crypt</td>
<td>6.0</td>
<td>6.7</td>
<td>7.0</td>
<td>0.2</td>
<td>0.17</td>
</tr>
<tr>
<td>Crypt depth</td>
<td>133.1</td>
<td>134.5</td>
<td>132.6</td>
<td>3.9</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Different letters indicate significant differences between groups at \(P<0.05 \).

C, Control; NP, Native Probiotic (200 g/ton, B. tequilensis K03, \(4\times10^9 \) CFU/g); PC, Positive Control (200g/ton, B. subtilis DSM 17299, \(4\times10^9 \) CFU/g); SEM, Standard error of means.

Intestinal MUC2 gene expression

The effects of probiotic treated diets on expression of the intestinal MUC2 gene are shown in the Fig. 2. The expression of intestinal MUC2 gene was quantified by qPCR assay, and expressed relative to expression of the GAPDH gene. The relative expression of MUC2 gene was significantly increased in the dietary native strain and commercial probiotics (K03 and DSM 17299, respectively) compared to the control group (\(P<0.05 \)). No significant differences were found in MUC2 gene expression between birds fed with K03 and DSM 17299 probiotic supplemented diets (\(P>0.05 \)).

Fig. 1. Histological section (H&E) showing ileum morphology (Villus height, Crypt depth, and Villus width) of broiler chickens fed Bacillus spp. probiotics based diets at 42 d of age. C, Control; NP, Native Probiotic (200 g/ton, B. tequilensis K03, \(4\times10^9 \) CFU/g); PC, Positive Control (200g/ton, B. subtilis DSM 17299, \(4\times10^9 \) CFU/g); SEM, Standard error of means.

Fig. 2. The relative expression of muc2 gene in the intestine tissue of broiler chickens fed Bacillus spp. probiotics diets at 42 d of age. C, Control; NP, Native Probiotic (200 g/ton, B. tequilensis K03, \(4\times10^9 \) CFU/g); PC, Positive Control (200g/ton, B. subtilis DSM 17299, \(4\times10^9 \) CFU/g); Data were normalized based on endogenous GAPDH gene and presented as mean fold increase relative to the control (2\(^{-\Delta\Delta\text{ct}}\) method). Different letters indicate significant differences between groups at \(P<0.05 \).
DISCUSSION

The present study showed that consumption of diets supplemented with NP and PC significantly improved FCR and increased BW. The beneficial effects of dietary Bacillus spp. probiotic supplementation on FCR and increased BW of broilers are well documented in many studies (Opalinski et al., 2007; Melegy et al., 2011; Yang et al., 2016; Reis et al., 2017). Spore-forming Bacillus spp. have been noticed as probiotic candidates due to their beneficial effects on animal health and growth, as well as their survivability under the harsh environment of the gastrointestinal tract, and stability during processing and long-term storage (Eshlaghabee et al., 2017). Probiotics can modulate intestinal microflora, change intestinal morphology or secretion of enzymes and produce antimicrobial compounds. They can regulate immune system, increase the digestibility and the absorption of dietary nutrients and consequently improve the broiler performance (Ghadban, 2002; Eshlaghabee et al., 2017). However, since the host origin microbes are quite familiar with the environment of gastrointestinal tract, the native and species-specific probiotic are highly preferred (Kabir, 2009). Similar studies showed that the improvement of broiler performance can be caused by beneficial changes of intestinal morphology and microflora (Ghadban, 2002; Eshlaghabee et al., 2017). In this investigation increased BW and decreased FCR could be attributed to the growth of beneficial bacteria in the digestive tract, digestive enzymes production by these bacteria and improved digestion and absorption processes. The lack of impact in the initial period may be explained by the fact that probiotic bacteria are required to longer time for localization in the digestive tract. Our results showed that supplementation with the B. tequilensis K03 strain and commercial B. subtilis DSM 17299 have no effect on feed intake of chickens. Several studies (Opalinski et al., 2007; Melegy et al., 2011) have shown that feed intake of chickens was not affected by supplementation of Bacillus spp., suggesting that these strains cannot affect their appetite (Ferket and Gernat, 2006).

In our present study, increase in spleen relative weight, carcass, thigh and breast meat yield and decrease in abdominal fat of broiler chicks have been found when compared with the control group. These results are in agreement with those of Hatab et al. (2016), who reported that dietary supplementation with Bacillus spp. probiotics (B. tequilensis K03 strain and B. subtilis DSM 17299) rose carcass and relative organ weights due to increase of cell growth and turnover, while other researchers reported that (Afsharmanesh et al., 2014; Park et al., 2014; Reis et al., 2017; Shokryazdan et al., 2017), using the same or different probiotic species did not affect the relative organ weights of broilers. The reason for these contradictions may be due to differences in conditions of chickens, methods of administration, viability and concentrations of used bacteria, as well as the strain sources (Shokryazdan et al., 2017). Therefore, it seems probably that increase in carcass, thigh and breast meat yield of broiler in our present study can due to useful effect of probiotics in the growth of intestinal microflora. In the report of Santoso et al. (2001) decrease synthesis and storage of fat in adipose tissue lead to decrease the percentage of abdominal fat.

Our results showed a significant increase in lymphocytes level, antibody titers against NDV and IBV of vaccinated birds. Lymphocytes play a crucial role in innate immune response, especially during stressful conditions, and participate in inflammation responses and phagocytosis. The increase in lymphocytes level indicates stimulation of the immune properties by Bacillus spp. probiotics that lead to increase in relative lymphoid organ weights (such as spleen). This assumption is supported by report of Neveling et al. (2017), who reported higher lymphocytes level in birds after dietary supplementation with probiotics.

It is strongly possible that probiotic microorganisms as an external organism stimulate the immune system, increase production the number of white blood cells and other immune compounds, the percentage of lymphocytes increased. Moreover, the ability of probiotics to promote humoral immunity in chickens vaccinated against Newcastle disease and infectious bronchitis reported by Rowghani et al. (2007), and in present study confirmed the immunostimulatory effects of the selected strain and the commercial Bacillus spp. probiotics. Probiotics control the balance of pro-inflammatory and anti-inflammatory cytokines. Cytokins have an important role in immune responses. IFN-γ is a subset of the cytokine T-helper 1 that lead to killing organisms and protecting against all types of intracellular infections. Moreover interleukin-4 also can stimulate the differentiation of B cells and increase the production of antibodies to B cells (Belardelli, 1995). Therefore, the probable reason of increase in NDV and IBV of vaccinated birds is the stimulation of the immune system by probiotic native Bacillus spp. and probiotic Galpiro.
Our results showed a significant decrease in triglyceride and total cholesterol concentration in the serum of broilers fed with *B. tequilensis* K03 strain and *B. subtilis* DSM 17299 compared with the control group. Probiotics increase deconjugation of biliary acids excretion and since cholesterol is a substrate for the synthesis of bile acids, cholesterol molecules are used to produce bile acids (De Smet *et al*., 1998). Therefore they decrease the lipids level of blood.

In our present study, *Bacillus* spp. populations increased in the intestine of broilers fed the *B. tequilensis* K03 strain and *B. subtilis* DSM 17299. Several studies have demonstrated that dietary supplementation with *Bacillus* spp. modulate the microflora of broilers (Knap *et al*., 2011; Sen *et al*., 2012; Guyard-Nicodeme *et al*., 2016). Probiotics which increase the number of lactic acid bacteria in the gastrointestinal reduce its pH. Therefore, an unsuitable environment for the growth of harmful bacteria such as *E.*coli and *Salmonella* spp. is provided (Deniz *et al*., 2011). Therefore, it seems probably that probiotic native *Bacillus* spp. and probiotic Galpipro by pH reduction, increase beneficial bacteria and decrease *E. coli* population.

Our results indicated that the *B. tequilensis* K03 strain and *B. subtilis* DSM 17299 significantly increased villus height in ileum of the chickens. The effect of dietary *Bacillus* spp. probiotics on intestinal morphology of broilers has been well documented. Sen *et al.* (2012) reported the increased villus height and villus height to crypt depth ratio in chicken fed *Bacillus* spp. dietary. Deng *et al.* (2012) also found that dietary *Bacillus licheniformis* increased villus height in the ileum under heat stress conditions. It is showed that the digestive function of the intestine is related to villi structure and mucosal architecture, which influence absorptive capacity (Sen *et al*., 2012; Neveling *et al*., 2017). Moreover, probiotics by short-chain organic acids formation stimulate the proliferation of epithelial cells and lead to increased villus height (Ichikawa *et al*., 1999).

The mucus secreted by goblet cells in the villi of the intestine is the main glycoprotein component of the mucus layer that has role in modulation of intestinal microflora and health (Forder *et al*., 2007). In this study, intestinal MUC2 gene expression under influence of two types of *Bacillus* spp. probiotic was significantly increased, suggesting that the probiotics may bind to specific receptor sites on the enterocyte and stimulate MUC2 gene expression (Mattar *et al*., 2002).

CONCLUSION

From this study, it can be concluded that the identified native *B. tequilensis* K03 strain can improve immunity, hemato-biochemical parameters, as well as broiler performance, which can be explained by the modified intestinal microflora, intestinal morphology changes and increase of MUC2 gene expression. Since the effects of selected strain (*B. tequilensis* K03) were similar with the GalliPro® commercial probiotic (*Bacillus subtilis* DSM 17299) it can be used as probiotic potential for broilers feed.

ACKNOWLEDGMENTS

This research did not receive any specific funding.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

Elshaghabee FMF, Rokana N, Guhlane RD, Sharma C, Pawar H (2017) *Bacillus* as potential probiotics: status, concerns, and future perspec-
Hong HA, Huang JM, Khaneja R, Hiep LV, Urdaci MC, Cutting SM
Hatab MH, Elsayed MA, Ibrahim NS (2016) Effect of some biological
Gatson JW, Benz BF, Chandrasekaran C, Satomi M, Venkateswaran-
Ferket PR, Gernat AG (2006) Factors that affect feed intake of meat birds:
Ghorban Hosseini N, Modarressi MH, Mousavi SN, Tajabadi Ebrahimi
1850 N.G. HOSSEINI, M.H. MODARRESSI, S.N. MOUSA VI, M.T. EBRAHIMI
Jensen MM, Raun M, Lay A (2011)
saccharides. Anim Feed Sci Tech 89:175-188.
growth of broiler chicks on diets supplemented with non-starch poly
Sakata T (1999) Probiotic bacteria stimulate gut epithelial cell prolif
Hatab MH, Elsayed MA, Ibrahim NS (2016) Effect of some biological
and an acidophilic fungus on the production performance
Bacillus
species based on enzyme production,
AD, Menconi A, Bielke LR, Hargis BM. Tellez G (2016) Evalua
antimicrobial activity, and biofilm synthesis as direct-fed microbial
Neveling DP, Van Emmenes L, Ahire JJ, Pieterse E, Smith C, Dicks LMT
M (2019) Evaluation of novel probiotic Bacillus strains based on
enzyme production and protective activity against salmonellosis. J
Guyard-Nicodème M, Keita A, Quene S, Amelot M, Pozevera T, Le
Efficacy of feed additives against Campylobacter in live broilers
during the entire rearing period. Poul Sci 95:298-305.
Hatab MH, Elsayed MA, Ibrahim NS (2016) Effect of some biological
supplementation on productive performance, physiological and im-
Iji T, Ero T, Tivey DR (2001) Intestinal development and body growth of broiler chicks on diets supplemented with non-starch poly-
saccharides. Anim Feed Sci Tech 89:175-188.
Jeong JS, Kim IH (2014) Effect of Bacillus subtilis C-3102 spores as a probiotic feed supplement on growth performance, nosoxia gas emis-
Sci 10:2531-3546.
and selection of Bacillus species based on enzyme production, antimicrobial activity, and biofilm synthesis as direct-fed microbial candidates for poultry. Front Vet Sci 3:95.
Melegy T, Khalef NF, El-Bana R, Abdellatif H (2011) Effect of dietary supplementation of Bacillus subtilis Ph6 (Cloutet) \(^{17}\) on production performance, immune, gut health and carcass traits in broilers. AM SCI 7:891-
898.
Mingmongkolchai S, Panbangred W (2018) Bacillus probiotics: an alter-
native to antibiotics for livestock production. J Appl Microbiol Bio-
chem 124:1334-1346.
Lactobacillus, Bifidobacterium, Enterococcus, and Pedococcus strains in promoting broiler performance and modulating cecal micro-

gut health of domestic animals; an alternative to antibiotic growth

17299) as growth promoter in broiler diets. Braz J Poult Sci 9:99-
103.

Park JH, Kim IH (2014) Supplemental effect of probiotic Bacillus subtilis RZA on productivity, organ weight, intestinal Salmonea microflora,
and breast meat quality of growing broiler chicks. Poul Sci 93:2054-
2059.

Reis MP, Fassani EJ, Júnior AG, Rodrigues PB, Bertietchi AG, Barrett N, Persia ME, Schmidt CJ (2017) Effect of Bacillus subtilis (DSM
Ronghani E, Arab M, Akbarian A (2007) Effects of a probiotic and oth-
er feed additives on performance and immune response of broiler
product from Bacillus subtilis on feed conversion efficiency, lipid accumulation and ammonia production in broiler chicks. Asian-Aus-
intestinal health and serum lipids of broiler chickens. PLoS one
12:e0175959.

Int 45:628-633.
probiotic strain of Bacillus subtilis against Salmonella enteritidis in-
riched Bacillus subtilis KT260179 supplementation on chicken
growth performance, plasma lipids parameters, tissue chromium lev-
el, cecal bacterial composition and breast meat quality. Lipids Health
Dias 15:188.

lus subtilis spore (GalliPro7) nutrients equivalency value on broiler