

Journal of the Hellenic Veterinary Medical Society

Vol 71, No 2 (2020)

Investigation of antimicrobial resistance in pigeons (*Columba livia domestica*) using indicator bacteria

Ö ASLANTAŞ, N. GÖVCE

doi: [10.12681/jhvms.23632](https://doi.org/10.12681/jhvms.23632)

Copyright © 2020, Ö ASLANTAŞ, N. GÖVCE

This work is licensed under a [Creative Commons Attribution-NonCommercial 4.0](https://creativecommons.org/licenses/by-nc/4.0/).

To cite this article:

ASLANTAŞ, Ö, & GÖVCE, N. (2020). Investigation of antimicrobial resistance in pigeons (*Columba livia domestica*) using indicator bacteria. *Journal of the Hellenic Veterinary Medical Society*, 71(2), 2095–2106.
<https://doi.org/10.12681/jhvms.23632>

Investigation of antimicrobial resistance in pigeons (*Columba livia domestica*) using indicator bacteria

Ö. Aslantaş*, N. Gövce

Hatay Mustafa Kemal University, Faculty of Veterinary Medicine, Department of Microbiology, 31060, Hatay, Turkey

ABSTRACT: The aim of this study was to determine the prevalence of antibiotic resistance as well as presence of resistance-associated genes in *Escherichia coli* and *Enterococcus* spp. strains isolated from pigeons. One hundred and fifty cloacal swabs were collected from apparently healthy pigeons in Hatay, Turkey, between March 2014 and June 2014. Antimicrobial susceptibilities of the isolates were tested with disc diffusion method, and resistance genes were investigated by polymerase chain reaction (PCR). *E. coli* were isolated from 94.7% (142) of the examined cloacal swab samples. *E. coli* isolates revealed higher resistance rates to tetracycline (51.4%) and ampicillin (50%), followed by nalidixic acid (19.7%), streptomycin (12.7%), amoxycillin-clavulanic acid (15.5%), trimethoprim-sulfamethoxazole (10.6%), cephalothin (7.0%), ciprofloxacin (6.3%), kanamycin (4.9%), gentamicin (4.2%), tobramycin (4.2%), cefazidime (4.2%), cefotaxime (4.2%), chloramphenicol (2.8%), aztreonam (2.8%), and cefoxitin (0.7%), respectively. Twenty-eight (19.7%) *E. coli* isolates were susceptible to all tested antimicrobials. A total of 136 (90.7%) *Enterococcus* spp. were isolated and species distribution of the isolates was determined by species-specific PCR. The isolates were identified as 64 (47.1%) *E. hirae*, 17 (12.5%) *E. faecium*, 8 (5.9%) *E. faecalis*, 4 (2.9%) *E. columbea*, and 2 (1.5%) *E. durans*. The rest of the isolates (30.1%) were identified as *Enterococcus* spp. with the used primers. *Enterococcus* spp. were resistant to tetracycline (67.6%), erythromycin (23.5%), rifampicin (17.6%), chloramphenicol (6.6%) and ciprofloxacin (5.9%). By contrast, 38 (27.9%) *Enterococcus* spp. were sensitive to all tested antimicrobials. The data obtained in the study showed that pigeons were carriers of antimicrobial resistant *E. coli* and *Enterococcus* spp. in their intestinal microbiota, and may pose public health risk due to not only transmission of these resistant bacteria to humans but also contamination of the environment. The current status of antimicrobial resistance in different animal species should be continuously monitored and control measures should also be taken.

Keywords: Pigeon, antimicrobial resistance, *Escherichia coli*, *Enterococcus* spp.

Corresponding Author:

Ö. Aslantaş, Hatay Mustafa Kemal University, Faculty of Veterinary Medicine,
Department of Microbiology, 31060, Hatay, Turkey
E-mail address: ozkanaslantas@yahoo.com, aslantas@mku.edu.tr

Date of initial submission: 28-01-2019

Date of revised submission: 26-03-2020

Date of acceptance: 28-03-2020

INTRODUCTION

Bacterial resistance to antimicrobials are growing problem in both human and veterinary medicine worldwide. The main risk factor for the emergence of resistant bacteria is misuse and overuse of antibiotics (van den Bogaard and Stobberingh, 2000). Pigeons can not only play an important role for the dissemination of zoonotic agents such as chlamydiosis, cryptococcosis, aspergillosis and can also host antimicrobial resistant bacteria such as *Escherichia coli*, *Campylobacter* spp., *Salmonella* spp. and *Enterococcus* spp. (Vasconcelos et al., 2018; Perez-Sancho et al. 2020). Oral administration of various antibiotics for prophylactic and therapeutic purposes causes selective pressure on the microbiota and leads the selection of resistant bacteria (Mehdi et al. 2018). Tetracyclines and beta-lactam antibiotics are widely used for the treatment of poultry infections due to its low cost, efficacy, and lack of side effects (Filazi et al. 2017)

E. coli and *Enterococcus* spp. are commensal inhabitants of gastrointestinal flora of animals, and have been used as a indicator bacteria not only for faecal contamination of environment and but also of food, in particular, monitoring antimicrobial resistance in different animal species (Kojima et al., 2009; Persoons et al., 2010; Radimsky et al., 2010). In addition to being a potential reservoir for resistance genes, indicator bacteria are of particular importance because they can transfer resistance genes to other bacterial populations either with in the same or other any host. Indicator bacteria have also important role for giving an overview of the resistance load of the ecosystem in which they are in (Wray and Gnanou, 2000). Antimicrobial resistance in bacteria occurred by intrinsic or acquired mechanisms. Acquired resistance occurs due to different mechanisms in bacteria: (i) target mutation, (ii) acquisition of resistance genes located on mobile transmissible elements such as plasmids, transposons, and integrons via conjugation, transduction and transformation (Munita and Arias, 2016).

Recent studies have shown that both free-living pigeons and domesticated pigeons are potential reservoirs of resistant bacteria (Radimsky et al., 2010; Aşkar et al., 2011; Blanco-Peña et al., 2017). Due to the fact that pigeons are close proximity to humans and its impact on public health, it is important to investigate the antimicrobial resistance in pigeons using indicator bacteria. In Turkey, pigeon keeping and breeding on the roof of the houses are a common hobby. However, the data on carriage of antimicrobial

resistance in their gastrointestinal flora is very limited (Aşkar et al., 2011). Therefore, the objectives of this study were to investigate the occurrence of antimicrobial resistance in indicator bacteria in faeces of pigeons and the mechanisms mediating resistance.

MATERIAL AND METHODS

Ethical statement

The study was approved by the Animal Ethical Committee of Hatay Mustafa Kemal University (2013-7/7).

Sampling

A total of 150 cloacal swab samples were collected from the houses belonging to people dealing with pigeon breeding as a hobby in three locations in Hatay, Turkey, between March 2014 and June 2014. For this purpose, five pigeon premises from each settlement were sampled, and the cloacal swab samples were taken from 10 pigeons from each premises.

Isolation of *E. coli* strains

Individual cloacal swab samples were taken by Stuart Transport Medium and transported to laboratory in cold chain. For *E. coli* isolation, cloacal swab samples were directly inoculated onto Eosin Methylene Blue (EMB) agar and incubated at 37 °C for 24 h. Following biochemical tests, the isolates were confirmed by polymerase chain reactions (PCR) using *E. coli* species specific primers E16S-F 5'-CCC CCT GGA CGA AGA CTG AC-3 ' and E16S-R 5'-ACC GCT GGC AAC AAA GGA TA-3' (Wang et al., 2002).

Antimicrobial susceptibility testing and detection of resistance genes of *E. coli* isolates

Antimicrobial susceptibilities of *E. coli* isolates to nineteen antimicrobials were determined by disk diffusion method in accordance with Clinical and Laboratory Standards Institute (CLSI, 2012) guidelines. The antimicrobial disks (Bioanalyse, Turkey) used were: ampicillin (AMP, 10 µg), amoxycillin-clavulanic acid (AMC, 20/10 µg), nalidixic acid (NA, 30 µg), ciprofloxacin (CIP, 5 µg), cefpodoxim (CPD, 10 µg), ceftriaxone (CRO, 30 µg), cefepime (FEB, 30 µg), cefoxitin (FOX, 30 µg), cefuroxime (CXM, 30 µg), cephalothin (KF, 30 µg), aztreonam (ATM, 30 µg), imipenem (IMP, 10 µg), chloramphenicol (C, 30 µg), gentamicin (CN, 10 µg), tobramycin (TOB, 10 µg), amikacin (AK, 10 µg), kanamycin (K, 30 µg), tetracycline (TE, 30 µg), and

sulphamethoxazole-trimethoprim (SXT, 1.25/23.75 µg). *E. coli* ATCC 25922 strain was used as control strain for antimicrobial susceptibility testing. The isolates showing resistance to three or more antimicrobials from different classes were defined as multidrug resistant (MDR). Penicillins and cephalosporins were considered as separate classes. The isolates showing resistance to 3rd generation cephalosporins were con-

firmed as extended spectrum beta-lactamase (ESBL) producer by double disk synergy (Jarlier et al., 1988) and disk combination method according to guidelines of CLSI (2012).

The isolates showing resistance to particular antibiotics were screened for the presence of antibiotic resistance genes in *E. coli* by PCR using the primers listed in Table 1.

Table 1. Primers used for detection of antibiotic resistance genes in *E. coli* isolates

Antibiotics	Gene	Sequence (5'-3')	Product Size (bp)	Reference
Tetracyclines	<i>tet</i> (A)	GCTACATCCTGCTTGCCTTC CATAGATGCCGTGAAGAGGG	210	
	<i>tet</i> (B)	TTGGTTAGGGCAAGTTTG GTAATGGGCCAATAACACCCG	659	
	<i>tet</i> (C)	CTTGAGAGCCTCAACCCAG ATGGTCGTATCTACCTGCC	418	
	<i>tet</i> (D)	AAACCATTACGGCATTCTGC GACCGGATACACCATCCATC	787	
	<i>tet</i> (E)	AAACCACATCCTCCATACGC AAATAGGCCACAACCGTCAG	278	Ng et al. (2001)
	<i>tet</i> (G)	GCTCGGTGGTATCTCTGCTC AGCAACAGAACATGGGAACAC	468	
Chloramphenicol	<i>cat</i> I	AGTTGCTCAATGTACCTATAACC TTGTAATTCTTAAAGCATTCTGCC	547	
	<i>cat</i> II	ACACTTGCCTTTATCGTC TGAAAGCCATCACATACTGC	543	
	<i>cat</i> III	TTCGCCGTGAGCATTG TCGGATGAGTATGGCAAC	286	Maynard et al. (2004)
Trimethoprim	<i>dhfr</i> I	AAGAATGGAGTTATCGGAAATG GGGTAAAAACTGGCCTAAAATTG	391	
	<i>dhfr</i> V	CTGCAAAAGCGAAAAACGG AGCAATAGTTAATGTTGAGCTAAAG	432	
	<i>dhfr</i> VII	GGTAATGGCCCTGATATCCC TGTAGATTGACCGCCACC	265	
	<i>dhfr</i> IX	TCTAACATGATTGTCGCTGT TTGTTTCAGTAATGGTCGGG	462	Maynard et al. (2004)
	<i>dhfr</i> XIII	CAGGTGAGCAGAACAGATT CCTCAAAGGTTGATGTACC	294	
	<i>aad</i> A	GTGGATGGCGGCCTGAAGCC AATGCCAGTCGGCAGCG	525	
Aminoglycosides	<i>strA/str</i> B	ATGGTGGACCCTAAAATCT CGTCTAGGATCGAGACAAAG	893	
	<i>aac</i> (3)IV	TGCTGGTCCACAGCTCCTTC CGG ATGCAGGAAGATCAA	653	
	<i>aad</i> B	GAGGAGTTGGACTATGGATT CTTCATCGGCATAGTAAAG	208	
	<i>aph</i> A1	ATGGGCTCGCGATAATGTC CTCACCGAGGCAGTTCCAT	600	Kozak et al. (2009)
	<i>aph</i> A2	GATTGAACAAGATGGATTGC CCATGATGGATACTTCTCG	347	

Sulphanamid	<i>sul1</i>	CGGCGTGGGCTACCTGAACG GCCGATCGCGTGAAGTTCCG	433	
	<i>sul2</i>	CGGCATCGTCAACATAACCT TGTGCGGATGAAGTCAGCTC	721	
	<i>sul3</i>	CAACCGAAGTGGCGTTGTGGA GCTGCACCAATTGCTGAACG	244	Kozak et al. (2009)
β -lactams	<i>bla</i> _{SHV}	ATGCGTTATTCGCTGTG TGCTTGTATTGGGCCAA	747	
	<i>bla</i> _{TEM}	TCGCCGCATAACTATTCTCAGAATGA ACGCTCACCGGCTCCAGATTAT	445	
	<i>bla</i> _{CTX}	ATGTGCAGYACCACTAARGTKATGGC TGGGTRAARTARGTSACCAGAAAYCAGCGG	593	Monstein et al. (2007)
	<i>bla</i> _{C^{MY}-2}	GACAGCCTTTCTCCACA TGGAACGAAAGGCTACGTA	1015	Zhao et al. (2001)
	<i>qnrA</i>	ATTCTCACGCCAGGATTG GATCGGCAAAGGTTAGGTCA	516	
	<i>qnrB</i>	GATCGTAAAGCCAGAAAGG ATGAGCAACGATGCCTGGTA	416	
	<i>qnrC</i>	GGGTTGTACATTATTGAATCG CACCTACCCATTATTTC	307	Kim et al., 2009
Quinolones	<i>qnrS</i>	GCAAGTTCATTGAACAGGGT TCTAAACCGTCGAGTCGGCG	428	
	<i>aac(6')</i> -Ib-cr	TTGCGATGCTATGAGTGGCTA CTCGAATGCCTGGCGTGT	482	Park et al., 2006

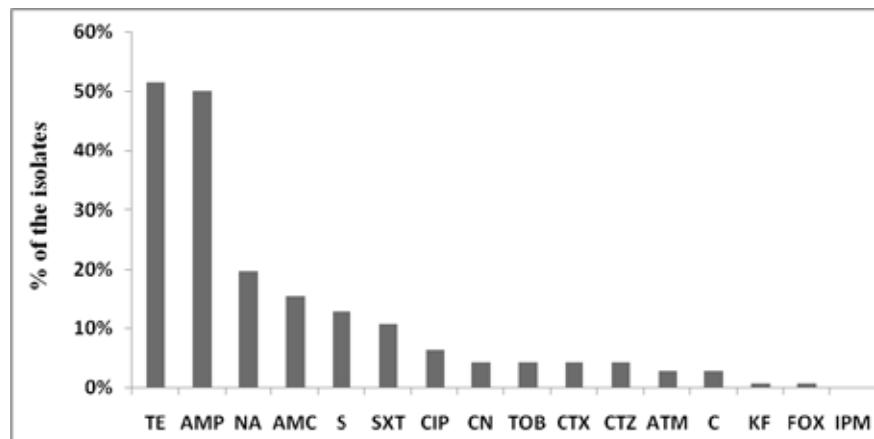
***Enterococcus* spp. isolation and species determination using PCR**

Cloacal swab were firstly inoculated into Enterococcosel Broth (BD, USA) and incubated at 37 °C for 24 h. In case of colour change, a loopful of culture was plated onto VRE agar. Plates were incubated at 37 °C for 24 h, and then one typical colony was selected and passaged to blood agar plates supplemented with 5% defibrinated sheep blood in order to obtain pure culture. The isolates were identified on the genus level by Gram staining, catalase tests. Determination of *Enterococcus* spp. on genus and species level were done by using primers and method described by Layton et al. (2010), except *E. columbae*, which was examined as previously described by da Silva et al. (2012).

Antimicrobial susceptibility testing and detection of resistance genes of *Enterococcus* spp.

Antimicrobial susceptibilities of the isolates to eight antimicrobials were determined by disk diffusion method in accordance with CLSI (2012) criteria, and the used disks were as follow: ampicillin (AMP, 10 μ g), vancomycin (VA, 30 μ g), erythromycin (E, 15 μ g), tetracycline (TE, 30 μ g), teicoplanin (TEC, 30 μ g), ciprofloxacin (CIP, 5 μ g), and chloramphenicol (C, 30 μ g). For the phenotypic determination of high level gentamicin resistance (HLGR), 120 μ g gentamicin containing disks were used. The isolates showing resistance to particular antibiotics were screened for the presence of antibiotic resistance genes in enterococci by PCR using the primers listed in Table 2.

Table 2. Primers used for detection of antibiotic resistance genes in enterococci


Antibiotic	Primer	Sequence (5'-3')	Product size (bp)	Reference
Macrolides	<i>erm</i> (A)	CCCGAAAAATACGCAAAATTCTAT CCCTGTTACCCATTATAAACGG	590	
	<i>erm</i> (B)	TGGTATTCCAATGCGTAATG CTGTGGTATGGCGGGTAAGT	745	
	<i>mef</i> (A/E)	CAATATGGCAGGGCAAG AAGCTGTTCCAATGCTACGG	317	
Tetracycline	<i>tet</i> (K)	GATCAATTGTAGCTTAGGTGAAGG TTTGTGATTTACCAAGGTACCTT	155	
	<i>tet</i> (M)	GTGGACAAAGGTACAACGAG CGGTAAAGTTCTCGTCACACAC	406	Malhotra-Kumar et al. (2005)
	<i>tet</i> (O)	AACTTAGGCATTCTGGCTCAC TCCCACTGTTCCATATCGTCA	515	
	<i>tet</i> (L)	TGGTGAATGATAGCCCATT CAGGAATGACAGCACGCTAA	229	
	<i>aac</i> (6)- <i>Ie</i>	CAGGAATTATCGAAAATGGTAGAAAAG	369	
	<i>aph</i> (2)- <i>Ia</i>	CACAATCGACTAAAGAGTACCAATC	348	
Aminoglycosides	<i>aac</i> (6)- <i>Ie</i> - <i>aph</i> (2)- <i>Ia</i>	CAGAGCCTGGGAAG ATG AAG	867	
	<i>aph</i> (2)- <i>Ia</i>	CCTCGTGTAAATTCTATGTTCTGGC	294	
	<i>aph</i> (2)- <i>Ib</i>	CTTGGACGCTGAGATATGAGCA C GTTTGTAGCAATTAGAAACACCCCTT	444	
	<i>aph</i> (2)- <i>Ic</i>	CCA CAATGATAATGACTCAGTCCCC	641	Vakulenko et al. (2003)
Chloramphenicol	<i>aph</i> (2)- <i>Id</i>	CCA CAGCTTCCGATAGCAAGAG	523	
	<i>aph</i> (3)- <i>IIIa</i>	GTG GTTTTACAGGAATGCCATC CCCTCTTCATACCAATCCATATAACC	732	
	<i>ant</i> (4)- <i>Ia</i>	GGCTAAAATGAGAATATCACCGG CTTAAAAAAATCATACAGCTCGCG	647	
Vancomycin	<i>catp</i> IP 501- 159-	CAAATGCTAAATCGGTAGAACCTTACGA GGATATGAAATTATCCCTC	815/827	Aerestrup et al. (2000)
	<i>vanA</i>	CAATCATCTACCCCTATGAAT GGGAAAACGACAATTGC	505	
	<i>vanB</i>	GTACAATGCGGCCGTTA ACGGAATGGGAAGCCGA	500	
	<i>vanC1/2</i>	TGCACCCGATTCTCGTT ATGGATTGGTAYTKGTAT	430	Depardieu et al. (2002)
	<i>vanD</i>	TAGCGGGAGTGMCYMGTA TGTGGGATGCGATATTCAA	941	
	<i>vanE</i>	TGCAGCCAAGTATCCGGTAA TGTGGTATCGGAGCTGCAG		
	<i>vanG</i>	ATAGTTAGCTGGTAAC CGGCATCCGCTGTTTGA		
		GAACGATAGACCAATGCCTT		

RESULTS

E. coli isolation and antimicrobial testing

One hundred and forty two (94.7%) *E. coli* were isolated from 150 cloacal swab samples. Various rates of resistance among *E. coli* isolates were observed to tetracycline (73, 51.4%), ampicillin (71, 50%), nalidixic acid (28, 19.7%), amoxycillin-clavulanic acid (22, 15.5%), streptomycin (18, 12.7%), trimethoprim-sulfamethoxazole (15, 10.6%), cephalothin (10,

7.0%), ciprofloxacin (9, 6.3%), kanamycin (7, 4.9%), gentamicin (6, 4.2%), tobramycin (6, 4.2%), ceftazidime (6, 4.2%), cefotaxime (6, 4.2%), chloramphenicol (4, 2.8%), aztreonam (4, 2.8%), and cefoxitin (1, 0.7%), respectively (Figure 1). Twentyeight (19.7%) isolates were found susceptible to all antimicrobials tested. Twentyseven (19%) isolates showed MDR phenotype. Among the isolates showing MDR phenotype, resistance to 6, 5, 4, and 3 isolates were observed in 2, 3, 8, and 14 isolates, respectively (Table 3).

Figure 1. Antibiotic susceptibilities of 142 *E. coli* isolates

Table 3. Antibiotic resistance phenotypes among the *E. coli* isolates

Phenotype	Number of the isolates
AM, AMC, KF, TE, CN, S, K, TOB, SXT	1
AM, KF, TE, K, TOB, SXT, CIP NA, C	1
AM, TE, K, TOB, SXT, CIP, NA, C	1
AM, TE, CN, S, K, TOB, SXT	1
AM, TE, CN, TOB, CIP, NA, C	1
AM, AMC, TE, CN, S, K, SXT	1
AM, AMC, TE, S, K, SXT	1
AM, AMC, KF, TE, NA	2
AM, TE, SXT, CIP, NA	2
CN, TOB, CIP, NA, C	1
AM, TE, S, SXT, NA	2
AM, TE, CN, K, SXT	1
AM, AMC, TE, S, K	1
AM, AMC, KF, TE	1
AM, SXT, CIP, NA	2
AM, KF, TE, NA	1
AM, TE, S, SXT	1
AM, AMC, TE	6
AM, AMC, KF	3
AM, TE, S	4
AM, KF, TE	1
TE, S, NA	3
AM, AMC	1
AM, CIP	1
TE, SXT	1
CIP, NA	1
AM, TE	20
TE, NA	8
AM, S	1
TE, S	1
AM	15
TE	18
NA	7
KF	1
S	1
Susceptible	28

Table 4. Antibiotic resistance and resistance mechanisms of *Enterococcus* spp.

Phenotype	Resistance Genes	Species (n)
C, CIP, E, RA, TE	<i>cat</i> , <i>tetM</i> , <i>tetL</i> , <i>ermB</i>	<i>E. faecium</i> (1)
CIP, E, RA, TE	<i>tetM</i> , <i>tetL</i> , <i>ermB</i>	<i>Enterococcus</i> spp. (1)
C, E, RA, TE	<i>cat</i> , <i>tetM</i> , <i>tetL</i> , <i>ermB</i>	<i>E. faecium</i> (1)
CIP, E, RA	<i>ermB</i>	<i>E. faecium</i> (1)
CIP, E, TE	<i>tetM</i> , <i>tetL</i> , <i>mefA/E</i>	<i>E. columbea</i> (1), <i>E. faecium</i> (2)
E, RA, TE	<i>tetM</i> , <i>ermB</i>	<i>Enterococcus</i> spp. (2)
E, RA, TE	<i>tetM</i> , <i>tetL</i> , <i>mefA/E</i>	<i>Enterococcus</i> spp. (1)
E, RA, TE	<i>tetM</i> , <i>tetL</i> , <i>ermB</i>	<i>E. hirae</i> (2)
C, E, TE	<i>tetM</i> , <i>tetL</i> , <i>ermB</i>	<i>Enterococcus</i> spp. (2), <i>E. hirae</i> (1)
C, E, TE	<i>tetM</i> , <i>tetL</i>	<i>E. hirae</i> (1)
RA, TE	<i>tetM</i> , <i>tetL</i>	<i>Enterococcus</i> spp. (5), <i>E. faecalis</i> (1), <i>E. faecium</i> (1), <i>E. hirae</i> (4)
RA, TE	<i>tetM</i>	<i>E. faecium</i> (1), <i>E. hirae</i> (1)
CIP, E	-	<i>E. columbea</i> (1)
C, TE	<i>tetM</i> , <i>tetL</i>	<i>Enterococcus</i> spp. (1)
C, TE	<i>tetM</i>	<i>E. hirae</i> (1)
E, TE	<i>tetM</i> , <i>tetL</i> , <i>ermB</i>	<i>Enterococcus</i> spp. (3)
E, TE	<i>tetM</i> , <i>ermB</i>	<i>Enterococcus</i> spp. (1)
E, TE	<i>tetL</i>	<i>Enterococcus</i> spp. (1), <i>E. faecium</i> (1), <i>E. hirae</i> (1)
E, TE	<i>tetM</i> , <i>tetL</i> , <i>ermB</i>	<i>Enterococcus</i> spp. (1), <i>E. faecium</i> (1), <i>E. hirae</i> (2)
E, TE	<i>tetM</i> , <i>tetL</i> , <i>mefA/E</i>	<i>Enterococcus</i> spp. (1), <i>E. faecium</i> (1), <i>E. hirae</i> (2)
TE	<i>tetM</i> , <i>tetL</i>	<i>E. hirae</i> (2)
TE	<i>tetM</i> , <i>tetL</i>	<i>Enterococcus</i> spp. (4), <i>E. columbea</i> (2), <i>E. faecium</i> (1), <i>E. hirae</i> (3)
TE	<i>tetM</i>	<i>Enterococcus</i> spp. (6), <i>E. hirae</i> (26)
TE	<i>tetL</i>	<i>E. hirae</i> (1)
TE	-	<i>E. hirae</i> (2)
RA	-	<i>E. faecalis</i> (2)
CIP	-	<i>E. faecium</i> (1)
C	-	<i>E. hirae</i> (1)
Sensitive	-	<i>Enterococcus</i> spp. (12), <i>E. durans</i> (2), <i>E. faecalis</i> (5), <i>E. faecium</i> (5), <i>E. hirae</i> (14)

Distribution of resistant genes among resistant *E. coli* isolates

Tetracycline resistance was only associated with *tetA* and *tetB* genes, which were found in 77 (95.1%) of 81 tetracycline resistant *E. coli* isolates. The distribution of resistance genes were as follows: 62 (80.5%) *tetA*, 14 (18.2%) *tetA* and *tetB*, and one (1.3%) *tetB*. All isolates were negative for *tetC*, *tetD*, *tetE* and *tetG*.

Among ampicillin resistant isolates, *bla_{TEM}* was found in 66 (91.7%) isolates. PMQR genes were detected in four ciprofloxacin resistant isolates, of which three isolates carried *aac(6')-Ib-cr*, and one carried *qnrA*. Among trimethoprim-sulfamethoxazole resistant isolates (n=15), the distribution was determined as follows: *sul1-sul2* in four isolates, *sul1-sul2-dhfr1* in two isolates, *sul1-dhfr1* in two isolates, *sul2-dhfr5* in two isolates, *sul1* in two isolates, *sul1* in two isolates, and *sul1-sul2-dhfr5* in one isolate. While all

ESBL producing *E. coli* isolates carried *bla_{CTX-M}*, *bla_{C_{MY-2}}* gene was only detected in one cefoxitin isolate.

Of 18 streptomycin resistant isolates, 15 (83.3%) carried *strA/B*. Three isolates didn't carry any of the genes examined. Out of four chloramphenicol resistant isolates, only 3 (75%) carried *catI*. Of kanamycin resistant eight isolates, *aphA1* was only detected in 6 (75%) isolates. The *aad* and *aac(3)IV* genes were not detected in any tobramycin and gentamicin resistant isolates.

Isolation, species determination and antimicrobial susceptibility of *Enterococcus* spp.

Enterococcus spp. were isolated 136 (90.7%) from pigeon's cloacal swabs. Based on species specific PCR, distribution of enterococci were as follow: 64 (47.1%) *E. hirae*, 17 (12.5%) *E. faecium*, 8 (5.9%) *E. faecalis*, 4 (2.9%) *E. columbea*, and 2 (1.5%) *E.*

durans. However, 41 (30.1%) isolates were only detected as *Enterococcus* spp. with current primers used.

Antibiotic resistance rates of 136 enterococci were 67.6% (92) to tetracycline, 23.5% (32) to erythromycin, 17.6% (24) to rifampicin, 6.6% (9) to chloramphenicol, and 5.9% (8) to ciprofloxacin. Thirty-eight (27.9%) isolates were sensitive to all tested antimicrobials. Resistance phenotypes and resistance-mediated genes in enterococcal isolates are shown in Table 4. MDR phenotype was observed in 16 (11.8%) isolates. Among the isolates showing MDR phenotype, resistance to 5, 4, and 3 antimicrobials was observed in one, two and thirteen isolates, respectively.

DISCUSSION

Pigeons not only freely lives in urban and rural areas, but also they were raised by people as a hobby. In addition, pigeons are in close contact with humans in different public locations, such as historical places, parks, and squares. These birds may pose possible risks to public health due to carriage of different zoonotic microorganisms (bacteria, fungi, viruses, and protozoa) and antimicrobial resistant bacteria (Vasconcelos et al., 2018; Perez-Sancho et al. 2020).

In this study, 80.3% of the *E. coli* isolates were resistant to one or more antimicrobials tested. In other conducted studies on the occurrence of antimicrobial resistant *E. coli* isolates in pigeons, low or lower rates of resistance in *E. coli* isolates have been reported by Radimersky et al. (2010) in Czech Republic (1.5%) and da Silva et al. (2009) in Brazil (37.9%), respectively.

Nineteen percent (n=27) of *E. coli* isolates showed MDR phenotype. MDR bacteria are an increasing an healthcare problem because the presence of pathogens with MDR phenotype, making treatment options very limited. The fact that co-existence of resistance genes on transmissible genetic elements such as plasmid and transposon, facilitate horizontal transfer of resistance genes to susceptible bacteria and lead to an expansion in MDR bacteria population. Therefore, continuous surveillance of antimicrobial resistance in different animal species and environments are important for taking timely necessary measures (Frye and Jackson, 2013)

Resistance to tetracycline (51.4%) and ampicillin (50%) were the most prevalent among the isolates in this study, which are consistent with the findings of Kimpe et al. (2002), who reported resistance rates

of 65% and 42%, respectively. However, in Poland, Stenzel et al. (2014) reported a higher resistance rate for amoxicillin (63%) and oxytetracycline (75%), respectively. The *tetA* was the most common resistance gene in comparison with other resistance genes in the study. High prevalence of *tetA* among the tetracycline resistant isolates also indicates that the main resistance mechanism is the active efflux system (Blake et al., 2003). There are few studies on prevalence of antimicrobial resistance genes in pigeons around the world. Blanco-Pena et al. (2017) found *sul1* and *cat1* as the most common gene by real time PCR from directly enema samples of pigeons from Public Parks in Costa Rica. In Iran, Ghanbarpour et al. (2020) reported phenotypically the prevalence of tetracycline resistance as very high (98%), but detected a lower prevalence of *tetA* (6.5%) and *tetB* (6.5%) genes.

Nearly all ampicillin resistant isolates carried *bla_{TEM}* gene (91.7%, 66/72), which was the second most common gene found in the study. In contrast, in Iran, *bla_{TEM}* was reported to be the most common gene (52.6%) by Ghanbarpour et al. (2020). Similarly, the TEM type beta-lactamase has also been reported as main resistance mechanism of ampicillin resistance in *E. coli* isolates from different origin of animals in previously conducted studies (Radhouani et al., 2012; Santos et al., 2013; Aslantaş, 2018).

Sulfanamids and trimethoprim are folate pathway inhibitors, and main resistance mechanisms to these antimicrobials are due to mutations in target enzymes, encoded by *sul* and *dhfr* genes (Skold, 2001). Trimethoprim-sulfamethoxazole resistant isolates had a combination of *sul* and *dhfr* genes, except four isolates which carried only *sul1* and *sul2* genes. None of the isolates harbored *sul3*, *dhfr7*, *dhfr9* and *dhfr13*. Recently, Aslantaş (2018) reported not only high sulfanamid and trimethoprim resistance but also high frequency of these resistant genes among commensal *E. coli* isolates from broilers in Turkey. Widespread dissemination of the resistance genes in *E. coli* could be explained by localization of these genes on plasmids, integrons, or insertion elements (Frye and Jackson, 2013).

Aminoglycoside resistance in *E. coli* strains are mainly related with aminoglycoside modifying enzymes, which is encoded by genes located on plasmids (Frye and Jackson, 2013). Low rate of aminoglycoside resistance is not surprising, because these drugs are not widely used in veterinary field in Turkey. Similarly, Ghanbarpour et al. (2020) reported a

low prevalence of resistance (11%) for gentamicin. Occurrence of low resistance might be originated from contaminated feeds and their environments of the pigeons (Radimersky et al., 2010).

Low level of ciprofloxacin resistance was observed in this study. This is important due to the fact that fluoroquinolones are critically important antimicrobials used for the treatment of *E. coli* infections (WHO, 2012). The ciprofloxacin resistance rate is consistent with previous studies conducted by Radimersky et al. (2010) and Aşkar et al. (2002), who reported resistance rates of 2% and 0%, respectively.

Resistance to 3rd and 4th generation cephalosporins mediated by ESBL have clinical importance for both human and veterinary medicine (WHO, 2012). Prevalence of ESBL producing *E. coli* isolates was found to be low in this study. It should be cautiously approached to low rate of resistance. Because selective isolation methods are needed to determine the true prevalence of these bacteria in different animal species (Aslantaş, 2018).

Although 41 (30.1%) isolates were assigned as *Enterococcus* spp. with current primers used in this study. The most common species were identified as *E. hirae* (47.1%), followed by *E. faecium* (12.5%), and *E. faecalis* (5.9%), respectively. *E. columbea* (2.9%) and *E. durans* (1.5%) were detected only in small number of the isolates. In Belgium and Brazil, *E. columbea* was reported as the most frequent species by Baele et al. (2002) and da Silva et al. (2012), respectively. Radimersky et al. (2010) reported that *E. faecalis* and *E. faecium* were as the most frequent species among enterococci isolated from feral pigeons in Czech Republic. Aşkar et al. (2011) reported *E. avium* as most prevalent species among enterococci from domestic pigeons. In a recent study, *E. faecium* and *E. durans* were reported as dominant species in pigeons in Egypt by Osman et al. (2019). Species distribution of enterococci in pigeon in different geographies could be explained by dietary habits of pigeons, which leads colonization of pigeon with different enterococci (Beale et al., 2002).

Although enterococci can exhibit intrinsic resistance to different classes of antimicrobials at low or high levels, they can frequently acquire antimicrobial resistance to different class of antimicrobials such as high-level aminoglycoside resistance (HLAR), fluoroquinolones, glycopeptides, and beta-lactams (ampicillin), via mutations or acquisition of resistance

genes (Marothi et al., 2005). The prevalence of antimicrobial resistance in enterococci (72.1%, 98/136) was higher in comparison with previous studies in pigeons, and tetracycline resistance were the most prevalent type of resistance, and were mainly associated with *tetM*. Similar resistant rate (78%) and resistance determinant were also reported by Radimersky et al. (2010) in Czech Republic. Recently, Zigo et al. (2017) found both higher prevalence of antimicrobial resistant enterococci and high resistance rate to tetracycline (75.2%) in Slovakia. In this study, the high observed tetracycline resistance can be attributed to empirical use of this antibiotic for many years by pigeon owners.

The second most common resistance observed was to erythromycin (23.5%), mainly associated with *ermB* gene (79.2%). In contrast, Aşkar et al. (2011) and Zigo et al. (2017) reported higher resistance rate for erythromycin (52%) and 52.2%, respectively. However, a low resistance rate was reported by Radimersky et al. (2010) in Czech Republic, who found a resistance rate of 9% for erythromycin. Interestingly, Osman et al. (2019) found resistance rates ranging from 63.4% and 100% for antibiotics tested, except linezolid (17.1%), in enterococci in Egypt.

Low rate resistance to chloramphenicol (6.6%) among enterococci in this study is not surprising. Since the use of chloramphenicol was banned in food producing animals in Turkey (Regulation No: 2002/68 of 19 December 2002). Low rate resistance to this drug could be explained by the persistence of chloramphenicol resistant strains in the environment (Persoons et al., 2010) or co-existence of chloramphenicol resistance genes with other resistance genes on the same mobile genetic elements (Harada et al., 2006). However, in contrast with this study, da Silva et al. (2009) reported a higher resistance rate (21.7%) in Brazil.

Main resistance mechanism to fluoroquinolones in enterococci is characterized by mutations in the quinolone determining regions of *gyrA* and *parC* genes. The level of resistance to fluoroquinolones varies according to the intensity and duration of use of these antimicrobials. Indeed, in countries where the use of fluoroquinolones is prohibited in food-producing animals, no or low resistance rates can be accepted as an indication of this view (Cheng et al., 2012). Ciprofloxacin resistance rate (5.9%) observed in this study was consisted with previous studies conducted by da Silva et al. (2012) in Brazil and Radimersky et

al. (2010) in Czech Republic, who reported resistance rates of 8.4% and 5%, respectively. But, Aşkar et al. (2011) found higher resistance rate (37%) in Kırık-kale, Turkey. The low resistance rate observed in this study was due to low level empirical use of this drug by pigeon owners for the treatment or prevention of infectious diseases.

One of the striking results of the study was no resistance against high level gentamicin and vancomycin. Gentamicin is one of the antimicrobials having clinical importance. Because combination of this drug with beta-lactams have been widely used for the treatment of enterococcal infections. However, this combination is ineffective in the treatment of infections caused by enterococci with HLGR resistance (del Campo et al., 2000). Vancomycin is a last resort antibiotic to be used for the treatment of nosocomial infections caused by Gram positive bacteria. Similarly, no vancomycin resistance was reported by Silva et al. (2012) in Brazil, Blanco-Peña et al. (2017) in Costa Rica and Aşkar et al. (2011) in Turkey. However, Radimersky et al. (2010) in Czech Republic reported vancomycin resistance in three *E. faecalis* isolates (2%) carrying *vanA* gene. In a study conduct-

ed in Egypt, Osman et al. (2020) reported higher level (40/41, 97.6%) of VRE colonization and detected frequency of *vanA*, *vanB* and *vanC* genes as 17.1%, 24.4%, and 22%, respectively

CONCLUSIONS

In conclusion, various rates of resistance to different classes of antimicrobials in *E. coli* and *Enterococcus* spp. isolates from the faeces of pigeons were observed in this study. These findings are important not only due to spreading of resistant bacteria to environment and susceptible animals, but also transfer of resistance genes to pathogenic bacteria. Based on the results of this study, there is an urgent need to investigate the antimicrobial resistance in different animal species, and to promote prudent use of antimicrobials for the treatment and control of bacterial infections.

ACKNOWLEDGEMENTS

This study was supported by Hatay Mustafa Kemal University Scientific Research Projects (Project no: 10865).

CONFLICT OF INTEREST STATEMENT

The authors declare no conflict of interest

REFERENCES

Aarestrup FM, Agrees Y, Gerner-Smith P, Madsen M, Jensen LB (2000) Comparison of antimicrobial resistance phenotypes and resistance genes in *Enterococcus faecalis* and *Enterococcus faecium* from humans in the community, broilers and pigs in Denmark. *Diagn Microbiol Infect Dis* 37:127–137.

Aslantaş Ö (2018) Antimicrobial Resistance among Commensal *Escherichia coli* from Broilers in Turkey. *Isr J Vet Med* 73:19–25.

Aşkar S, Sakarya F, Yıldırım M (2011) The Potential Risk in Epizootiology of Bacterial Zoonozis: Pigeon (*Columba livia domestica*) Feces. *Kafkas Univ Vet Fak Derg* 17(Suppl A): S13–S16.

Baele M, Devriese LA, Butaye P, Haesebrouck F (2002) Composition of enterococcal and streptococcal flora from pigeon intestines. *J Appl Microbiol* 92:348–351.

Blake DP, Humphry RW, Scott KP, Hillman K, Fenlon DR, Low JC (2003) Influence of tetracycline exposure on tetracycline resistance and the carriage of tetracycline resistance genes within commensal *Escherichia coli* populations. *J Appl Microbiol* 94:1087–1097.

Blanco-Peña K, Esperón F, Torres-Mejía AM, de la Torre A, de la Cruz E, Jiménez-Soto M (2017) Antimicrobial Resistance Genes in Pigeons from Public Parks in Costa Rica. *Zoonoses Public Health* 64:e23–e30.

Cheng AC, Turnidge J, Collignon P, Looke D, Barton M, Gottlieb T (2012) Control of fluoroquinolone resistance through successful regulation, Australia. *Emerg Infect Dis* 18:1453–1460.

Clinical and Laboratory Standards Institute (CLSI, 2012) Performance standards for antimicrobial susceptibility testing; eighteenth informational supplement. CLSI Document M100-S22.

da Silva VL, Caçador NC, da Silva Cdos S, Fontes CO, Garcia GD, Nicoli JR, Diniz CG (2012) Occurrence of multidrug-resistant and toxic-metal tolerant enterococci in fresh feces from urban pigeons in Brazil. *Microbes Environ* 27:179–85.

da Silva VL, Nicoli JR, Nascimento TC, Diniz CG (2009) Diarrheagenic *Escherichia coli* strains recovered from urban pigeons (*Columba livia*) in Brazil and their antimicrobial susceptibility patterns. *Curr Microbiol* 9:302–308.

del Campo R, Tenorio C, Rubio C, Castillo J, Torres C, Gómez-Lus R. (2000) Aminoglycoside-modifying enzymes in high-level streptomycin and gentamicin resistant *Enterococcus* spp. in Spain. *Int J Antimicrob Agents* 15:221–226.

Depardieu F, Perichon B, Courvalin P (2004) Detection of the *van* alphabet and identification of enterococci and staphylococci at the species level by multiplex PCR. *J Clin Microbiol* 42: 5857–5860.

Filazi A, Yurdakök Dikmen B, Kuzukiran Ö (2017) The usage of antimicrobial agents in poultry. *Turkiye Klinikleri J Vet Sci Pharmacol Toxicol-Special Topics* 3:181–187.

Frye JG, Jackson CR (2013) Genetic mechanisms of antimicrobial resistance identified in *Salmonella enterica*, *Escherichia coli*, and *Enterococcus* spp. isolated from U.S. food animals. *Front Microbiol* 4:135.

Ghanbarpour R, Aflatoonian MR, Askari A, Abiri Z, Naderi Z, Bagheri M, Jajarmi M, Shobeiri S, Molaei R, Askari N (2020) Domestic and game pigeons as reservoirs for *Escherichia coli* harboring antimicrobial resistance genes. *J Glob Antimicrob Resist*

Harada K, Asai T, Kojima A, Ishihara K, Takahashi T (2006) Role of coresistance in the development of resistance to chloramphenicol in *Escherichia coli* isolated from sick cattle and pigs. *Am J Vet Res* 67:230–235.

Jacoby GA, Hooper DC (2009) Prevalence of plasmid-mediated quinolone resistance determinants over a 9-year period. *Antimicrob Agents Chemother* 53:639–645.

Jarlier V, Nicolas MH, Fournier G, Philippon A (1988) Extended broad-spectrum β -lactamases conferring transferable resistance to newer β -lactam agents in Enterobacteriaceae: Hospital prevalence and susceptibility patterns. *Rev Infect Dis* 10:867–878.

Kim HB, Park CH, Kim CJ, Kim EC, Jacoby GA, Hooper DC (2009) Prevalence of plasmid-mediated quinolone resistance determinants over a 9-year period. *Antimicrob Agents Chemother* 53:639–645.

Kimpe A, Decostere A, Martel A, Haesebrouck F, Devriese LA (2002) Prevalence of antimicrobial resistance among pigeon isolates of *Streptococcus gallolyticus*, *Escherichia coli* and *Salmonella enterica* serotype Typhimurium. *Avian Pathol* 31:393–397.

Kojima A, Asai T, Ishihara K, Morioka A, Akimoto K, Sugimoto Y, Sato T, Tamura Y, Takahashi T (2009) National monitoring for antimicrobial resistance among indicator bacteria isolated from food-producing animals in Japan. *J Vet Med Sci* 71:1301–1308.

Kozak GK, Boerlin P, Janecko N, Reid-Smith RJ, Jardine C (2009) Antimicrobial resistance in *Escherichia coli* isolates from swine and wild small mammals in the proximity of swine farms and in natural environments in Ontario, Canada. *Appl Environ Microbiol* 75:559–566.

Layton BA, Walters SP, Lam LH, Boehm AB (2010) Enterococcus species distribution among human and animal hosts using multiplex PCR. *J Appl Microbiol* 109:539–547.

Malhotra-Kumar S, Lammens C, Piessens J, Goossens H (2005) Multiplex PCR for simultaneous detection of macrolide and tetracycline resistance determinants in streptococci. *Antimicrob Agents Chemother* 49:4798–4800.

Marothi YA, Agnihotri H, Dubey D (2005) Enterococcal resistance—an overview. *Indian J Med Microbiol* 23:214–219.

Maynard C, Bekal S, Sanschagrin F, Levesque RC, Brousseau R, Masson L, Larivière S, Harel J (2004) Heterogeneity among virulence and antimicrobial resistance gene profiles of extraintestinal *Escherichia coli* isolates of animal and human origin. *J Clin Microbiol* 42:5444–5452.

Mehdi Y, Létourneau-Montminy MP, Gaucher ML, Chorfi Y, Suresh G, Rouissi T, Brar SK, Côté C, Ramirez AA, Godbout S (2018) Use of antibiotics in broiler production: Global impacts and alternatives. *Anim Nutr* 4:170–178.

Monstein HJ, Ostholt-Balkhed A, Nilsson MV, Nilsson M, Dornbusch K, Nilsson LE (2007) Multiplex PCR amplification assay for the detection of *bla_{SHV}*, *bla_{TEM}* and *bla_{CTX-M}* genes in Enterobacteriaceae. *APMIS* 115:1400–1408.

Munita JM, Arias CA (2016) Mechanisms of Antibiotic Resistance. *Review. Microbiol Spectr* 4(2).

Ng LK, Martin I, Alfa M, Mulvey M (2001) Multiplex PCR for the detection of tetracycline resistant genes. *Mol Cell Probes* 15:209–215.

Osman KM, Badr J, Orabi A, Elbehiry A, Saad A, Ibrahim MDS, Hanafy MH (2019) Poultry as a vector for emerging multidrug resistant *Enterococcus* spp.: First report of vancomycin (*van*) and the chloramphenicol-florfenicol (*cat-fex-cfr*) resistance genes from pigeon and duck faeces. *Microb Pathog* 128:195–205.

Park CH, Robicsek A, Jacoby GA, Sahm D, Hooper DC (2006) Prevalence in the United States of *aac(6')-Ib-cr* encoding a ciprofloxacin modifying enzyme. *Antimicrob Agents Chemother* 50: 3953–3955.

Perez-Sancho M, García-Seco T, Porrero C, García N, Gomez-Barrero S, Cámará JM, Domínguez L, Álvarez J (2020) A ten-year-surveillance program of zoonotic pathogens in feral pigeons in the City of Madrid (2005–2014): The importance of a systematic pest control. *Res Vet Sci* 128:293–298.

Persoons D, Dewulf J, Smet A, Herman L, Heyndrickx M, Martel A, Castry B, Butaye P, Haesebrouck F (2010) Prevalence and persistence of antimicrobial resistance in broiler indicator bacteria. *Microb Drug Resist* 16:67–74.

Radhouani H, Poeta P, Gonçalves A, Pacheco R, Sargo R, Igrelas G (2012) Wild birds as biological indicators of environmental pollution: antimicrobial resistance patterns of *Escherichia coli* and enterococci isolated from common buzzards (*Buteo buteo*). *J Med Microbiol* 61:837–843.

Radimersky T, Frolkova P, Janoszowska D, Dolejska M, Svec P, Rouba-lova E, Cikova P, Cizek A, Literak I (2010) Antibiotic resistance in faecal bacteria (*Escherichia coli*, *Enterococcus* spp.) in feral pigeons. *J Appl Microbiol* 109:1687–1695.

Santos T, Silva N, Igrelas G, Rodrigues P, Micael J, Rodrigues T, Resendes R, Gonçalves A, Marinho C, Gonçalves D, Cunha R, Poeta P (2013) Dissemination of antibiotic resistant *Enterococcus* spp. and *Escherichia coli* from wild birds of Azores Archipelago. *Anaerobe*

24:25-31.

Skold O (2001) Resistance to trimethoprim and sulfonamides. *Vet Res* 32:261–273.

van den Bogaard AE, Stobberingh EE (2000) Epidemiology of resistance to antibiotics. Links between animals and humans. *Int J Antimicrob Agents* 14:327-35.

Stenzel T, Bancerz-Kisiel A, Tykałowski B, Smialek M, Pestka D, Konicki A (2014) Antimicrobial resistance in bacteria isolated from pigeons in Poland. *Pol J Vet Sci* 17:169-71.

Vakulenko SB, Donabedian SM, Voskresenskiy AM, Zervos MJ, Lerner SA, Chow JW (2003) Multiplex PCR for detection of aminoglycoside resistance genes in enterococci. *Antimicrob Agents Chemother* 47:1423-1436.

Vasconcelos RH, de Castro Teixeira RS, da Silva ING, de Souza Lopes E, Maciel WC (2018) Feral pigeons (*Columba livia*) as potential reservoirs of *Salmonella* sp. and *Escherichia coli*. *Arq Inst Biol* 85:1-6.

Wang G, Clark CG., Rodgers FG (2002) Detection in *Escherichia coli* of the genes encoding the major virulence factors, the genes defining the O157:H7 serotype, and components of the type 2 Shiga toxin family by multiplex PCR. *J Clin Microbiol* 40:3613-3619.

World Health Organisation (WHO) (2012) Critically important antimicrobials for human medicine. 3rd revision 2011, 31. http://apps.who.int/iris/bitstream/10665/77376/1/9789241504485_eng.pdf [accessed 22 January 2019].

Wray C, Gnanou JC (2000) Antibiotic resistance monitoring in bacteria of animal origin: analysis of national monitoring programs. *Int J Antimicrob Agents* 14:291-294.

Zhao S, White DG, Mc Dermott PF, Friedman S, EnglishL, Ayers S, Meng J, Maurer J, Holland R, Walker RD (2001) Identification and expression of cephamycinase *bla*_{C^{MY}} genes in *Escherichia coli* and *Salmonella* isolates from food animals and ground meat. *Antimicrob. Agents Chemother* 45:3647-3650.

Zigo F, Takac L, Zigova M, Takacova J, Vasi M (2017) Occurrence of antibiotic-resistant bacterial strains isolated in carrier pigeons during the race season. *J Chem Pharm Res* 10:10-13.