

Journal of the Hellenic Veterinary Medical Society

Vol 71, No 2 (2020)

Correlation between ES β L Salmonella Serovars Isolated from Broilers and their Virulence Genes

M. RADY, N.A. EZZ-EL-DIN, K.F. MOHAMED, S. NASEF, A. SAMIR, W.K. ELFEIL

doi: [10.12681/jhvms.23645](https://doi.org/10.12681/jhvms.23645)

Copyright © 2020, M. RADY, N.A. EZZ-EL-DIN, K.F. MOHAMED, S. NASEF, A. SAMIR, W.K. ELFEIL

This work is licensed under a [Creative Commons Attribution-NonCommercial 4.0](https://creativecommons.org/licenses/by-nc/4.0/).

To cite this article:

RADY, M., EZZ-EL-DIN, N., MOHAMED, K., NASEF, S., SAMIR, A., & ELFEIL, W. (2020). Correlation between ES β L Salmonella Serovars Isolated from Broilers and their Virulence Genes. *Journal of the Hellenic Veterinary Medical Society*, 71(2), 2163–2170. <https://doi.org/10.12681/jhvms.23645>

Correlation between *ESβL* *Salmonella* Serovars Isolated from Broilers and their Virulence Genes

M. Rady^{1,2*}, N.A. Ezz-El-Din¹, K.F. Mohamed¹, S. Nasef², A. Samir¹, W.K. Elfeil³

¹Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt

²Molecular Biology Unit, Reference Laboratory for Veterinary Quality Control on Poultry Production (NLQP), Animal Health Research Institute, Giza, Egypt.

³Avian and Rabbit Medicine Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt

ABSTRACT: *Salmonella* is considered to be one of the major poultry bacterial pathogens. The poultry species are one of the main reservoirs for the human types, thus serving as public health hazards. The development of drug resistant genes and multidrug resistant types from *Salmonella* has increased recently. This current study was undertaken to estimate the correlation between extended spectrum beta-lactamase multidrug resistant (*ESβL*) *Salmonella* serovars isolated from broilers and their virulence genes. Two hundred and forty samples were collected from clinically diseased broilers chicks (showed disorders of the intestinal tract) and examined for the presence of *Salmonella* isolates according to ISO 6579: 2002 and ISO. 6579-3:2014 Fifty *Salmonella* isolates were isolated with an incidence of 20.8%. Isolates of *Salmonella* were serotyped as follows: 25 *S. Kentucky*, 9 *S. Infantis*, 6 *S. Enteritidis*, 4 *S. Heidelberg*, and one isolates per serovars *S. Labadie*, *S. Typhi*, *S. Agona*, *S. Pullorum*, *S. Newport* and *S. Virginia*. AST (antimicrobial susceptibility testing) showed that high percentage of isolates were resistant to all Ampicillin (90%), Nalidixic acid (88%), Sulfamethoxazole + Trimethoprim (82%) and Tetracycline (82%). Approximately 86% of the isolates demonstrated multiple resistance, of which 18.75% and 25% were resistant to three and four antimicrobial types, respectively. Phenotypic detection of *ESβLs* by using screening test (*Cefinase®*) and confirmatory test by using combined disk diffusion test revealed that 32% of isolates were positive for both tests with 20% similarity and 12% diversity between the two tests. Molecular characterization of some *ESβLs* genes (*bla_{TEM}*, *bla_{CTX}*, *bla_{OXA}*, *bla_{CMY}* and *bla_{SHV}*) and some virulence genes (*invA*, *avrA*, *sopB*, *bcfC*, *stn* (was done using PCR. The results showed that all the *ESβLs* positive serovars were positive for amplification of all tested virulence genes and noticed that all the isolates were negative for *bla_{CMY}* gene. The present study suggests that virulent *ESβL* *Salmonella* serovars could infect broilers and should be taken into consideration as an important bacterial pathogen affecting poultry.

Keywords: *Salmonella*, virulence, ESBL, Broilers, genes

Corresponding Author:

Mohamed Rady, Department of Microbiology, Faculty of Veterinary Medicine,
Cairo University, Giza, Egypt
E-mail address: dr.m.rady26@gmail.com

Date of initial submission: 17-07-2020

Date of revised submission: 29-12-2019

Date of acceptance: 03-02-2020

INTRODUCTION

The poultry industry is exposed to several threats such as of viral origin like avian Influenza, Newcastle disease, infectious bronchitis, infectious bursal disease, avian adenovirus, or of bacterial origin like the *Salmonellae* species, *Escherichia coli*, *Clostridium* spp. (Ayoub *et al.* 2019, Diab *et al.* 2019, Elhady *et al.* 2018, Fawzy *et al.* 2020, Sedeik *et al.* 2018, Sultan *et al.* 2019a, Sultan *et al.* 2019b, Sultan *et al.* 2020). *Salmonella* is one of the most serious bacterial pathogens as it is associated with economic losses in poultry farms in addition to the zoonotic effects. There are more than 2700 serotypes from *Salmonella* species according to the White Kauffmann classification; *Salmonella* species are responsible for a variety of acute and chronic diseases in poultry (Grimont . and Weill 2007). Avian Salmonellosis may occurs as a result of infection with poultry-specific serovars, *Salmonella* Gallinarum and *Salmonella* Pullorum, causing systemic illness in birds as well as other *Salmonella* serotypes, including *Salmonella* Typhimurium and *Salmonella* Enteritidis and many others, which contribute to paratyphoid infections (Gast *et al.* 2003). *Salmonellae* are recognized by the specific host that belongs to pathogen recognition patterns (PRR) in birds and bony fish (Abouelmaatti *et al.* 2013, Elfeil *et al.* 2012, Elfeil *et al.* 2016). Since the 1990s, several reports highlighted that some *Salmonella* strains developed resistance to a range of antimicrobials agents and the range of developed resistance increased since then; whereas, this resistance developed due to improper use of antimicrobials agents in humans and animals' husbandry, either using subtherapeutic doses, use using antimicrobial agents as growth promoters and incomplete antimicrobial courses...etc (Eid *et al.* 2019, Enany *et al.* 2018, M. Algamma *et al.* 2016). Multi drug resistant (MDR) bacteria (bacteria resistant to more than four different types of Antimicrobial agents' families) increased dramatically during the last decade. They have a high impact in developing several disease conditions in humans and birds and are associated with elevated levels of morbidity and mortality caused by those pathogens in addition to high economic costs of therapy (cost of medication) and real risks of the spread of resistant strains which transmit acquired Multidrug resistant (MDR) genes to other bacteria among animals and humans (Chen *et al.* 2004, Eid *et al.* 2019, Elfeil *et al.* 2020, White *et al.* 2001). Thus, the MDR bacteria have a high impact on public health issues. The rapid development of resistance to extended-spectrum Cephalosporin in different serovars of *Salmonella* subspecies enterica has been observed

worldwide and is predominantly linked to plasmid-mediated production of β - lactamases-producing bacteria (*ES β L*) (Authority 2009, EFSA 2018, EFSA. 2008). The widespread of *ES β L*-producing organisms and related treatment failures may be associated with failure in detection of the complex resistant phenotypes and may reflect to uncontrolled spreading of such pathogens (Sinha *et al.* 2008). The rapid spread of *ES β L*-producing bacteria in different poultry farms provoke a serious risk to livestock and humans, especially with cross spreading of the of *ES β L*-producing bacterial strains from poultry farms to livestock farms and humans which vice versa spread the MDR pathogens that cause wide-spread population infections (Brinas *et al.* 2003, Winokur *et al.* 2000). Some bacterial virulence genes are associated with main pathogenic behavior of the bacteria (as ability of bacteria to make adhesion to specific host cells as mucosal cell, ability for invasion cells and/ or ability to triggering fluids secretions which leads to diarrhea symptoms). Those genes are associated with the pathogenesis of *Salmonella*, as it reflects on its ability to survive and replicate inside host cells. This virulence trait is associated with the ability to develop systemic infections and a large number of genes are required to enable *Salmonella* to cope with nutritional limitations, to avoid clearance by the host defense mechanisms and immune system or overcome damage effect by antimicrobial peptides and radicals on bacterial cell (Hegazy . and Hensel 2012).

MATERIALS AND METHODS

- All methods were carried out in accordance with Cairo University (Egypt) guidelines and regulations.
- All experimental protocols were approved by Cairo University (Egypt) Ethical committee.

Samples: Two-hander and forty samples were collected randomly from broilers clinically diseased chicks (showing disorders of the intestinal track.). These were 45 liver, 60 yolk sacs, 40 lung, 50 caecum and 45 spleen. The samples were then brought to the Microbiology department, faculty of Veterinary Medicine, Cairo University, in sterile wide-mouth screw capped bottles under cooling conditions and then analyzed for the presence of *Salmonella*.

Isolation of *Salmonella*: Under complete sterile condition broilers' internal organs were examined for the presence of *Salmonellae* according to the ISO 6579: 2002/ Amd. 1: 2007 (Standardization 2007). The isolates were serotyped according to ISO 6579-3: 2014 in the Central Laboratory for Quality Control on Poultry Production

(CLQP) in Dokki, Giza, Egypt (Standardization 2014).

The Antibiogram disk diffusion technique was adapted according to CLSI manual (NCCLS 2015).

β -lactamase detection using Nitrocefin disks (Cefinase®): According to the Manufacturer's instruction, The Cefinase disc is impregnated with the chromogenic cephalosporin, Nitrocefin. Those disks exhibit quick color change from yellow to red due to hydrolysis of the amide bond in the beta-lactam ring by a beta-lactamase enzyme. When a bacterium produces certain amount of beta-lactamase enzyme the disc colour changed from yellow to red colour in the area where the isolate is smeared.

β -lactamase detection using Combined Disc Diffusion Test (CDD): The test inoculums (compared to 0.5 McFarland turbidity) were spread by sterile cotton

swabs on Mueller-Hinton agar plates. The used discs were either Cefotaxime and Ceftazidime, separate and in combination with Clavulanic acid (cefotaxime 30 μ g, cefotaxime/clavulanic acid 30/10 μ g) and (Ceftazidime 30 μ g, Ceftazidime/Clavulanic acid 30/10 μ g). The plate was incubated at 35 \pm 2°C for 16-18 hours. The organisms were considered to be producing $ES\beta L$ when A \geq 5 mm increase in a zone diameter for either antimicrobial agent tested in combination with Clavulanic acid, versus the zone diameter of the agent when tested alone, equals $ES\beta L$. (NCCLS 2015).

Molecular Detection of $ES\beta L$'s *Salmonella* serovars and its virulence genes by PCR: This was carried out by using primers for detection of $ES\beta L$ s *Salmonella* serovars and some of its virulence genes as presented in tables (1/2).

Table 1. Primers Used for Molecular Detection of $ES\beta L$'s *Salmonella* Serovars and Its Virulence Genes by PCR

Primer	Sequence		Amplified product	Reference
<i>Stn</i>	F	TTG TGT CGC TAT CAC TGG CAA CC	617 bp	Murugkaret <i>et al.</i> , (2003).
	R	ATT CGT AAC CCG CTC TCG TCC		
<i>invA</i>	F	GTGAAATTATCGCCACGTTGGGCAA	284 bp	Oliveira <i>et al.</i> , (2003).
	R	TCATCGCACCGTCAAAGGAACC		
<i>sopB</i>	F	TCA GAA GRC GTC TAA CCA CTC	517 bp	Huehnet <i>et al.</i> , (2010).
	R	TAC CGT CCT CAT GCA CAC TC		
<i>avrA</i>	F	CCT GTA TTG TTG AGC GTC TGG	422 bp	
	R	AGA AGA GCT TCG TTG AAT GTC C		
<i>BcfC</i>	F	ACC AGA GAC ATT GCC TTC C	467 bp	
	R	TTC TGC TCG CCG CTA TTC G		
<i>bla_{TEM}</i>	F	ATCAGCAATAAACCAAGC	516 bp	Colom <i>et al.</i> , (2003).
	R	CCCCGAAGAACGTTTTC		
<i>bla_{SHV}</i>	F	AGGATTGACTGCCTTTTG	392 bp	
	R	ATTTGCTGATTCGCTCG		
<i>Bla_{OXA-1}</i>	F	ATATCTCTACTGTTGCATCTCC	619 bp	
	R	AAACCCTTCAAACCATCC		
<i>CMY-2</i>	F	TGG CCA GAA CTG ACA GGC AAA	462 bp	Pérez-Pérez and Hanson, (2002).
	R	TTT CTC CTG AAC GTG GCT GGC		
<i>Bla_{CTX}</i>	F	ATG TGC AGY ACC AGT AAR GTK ATG GC	593 bp	Archambault <i>et al.</i> , (2006).
	R	TGG GTR AAR TAR GTS ACC AGA AYC AGC GG		

Table 2. Thermal cycle condition Used for Molecular Detection of $ES\beta L$'s *Salmonella* Serovars

Gene	Primary denaturation	Secondary denaturation	Annealing	Extension	No. of cycles	Final extension
<i>Stn</i>	94°C\10 min.	94°C\45 sec.	59°C\45 sec.	72°C\45 sec.	35	72°C\10 min.
<i>invA</i>	94°C\5 min.	94°C\30 sec.	55°C\30 sec	72°C\30 sec	35	72°C\5 min.
<i>SopB</i>	94°C\10 min.	94°C\30 sec.	58°C\30 sec.	72°C\30 sec.	35	72°C\10 min.
<i>avrA</i>	94°C\10 min.	94°C\30 sec.	58°C\30 sec.	72°C\30 sec.	35	72°C\10 min.
<i>bcfC</i>	94°C\10 min.	94°C\30 sec.	53°C\30 sec.	72°C\30 sec.	35	72°C\10 min.
<i>bla_{TEM}</i>	94°C\10 min.	94°C\45 sec	54°C\45 sec	72°C\45 sec	35	72°C\10 min.
<i>bla_{SHV}</i>	94°C\10 min.	94°C\45 sec	54°C\45 sec	72°C\45 sec	35	72°C\10 min.
<i>bla_{OXA-1}</i>	94°C\10 min.	94°C\45 sec	54°C\45 sec	72°C\45 sec	35	72°C\10 min.
<i>CMY-2</i>	94°C\10 min.	94°C\45 sec	55°C\45 sec	72°C\45 sec	35	72°C\10 min.
<i>bla_{CTX}</i>	94°C\10 min.	94°C\45 sec	60°C\45 sec	72°C\45 sec	35	72°C\10 min.

RESULTS

Results of *Salmonella* isolation from 240 samples of clinically diseased chicks revealed that 50 *Salmonellae* were isolated with an incidence of 20.8 % as shown in Table (3) with high recovery rate from liver 31% (14/240) followed with yolk sac 20% (12/240). Serotyping of the *Salmonella* isolates revealed that there were 25 *S. Kentucky* (10.4%), 9 *S. Infantis* (3.7%), 6 *S. Enteritidis* (2.5%), 4 *S. Heidelberg* (1.6%), and one isolate for the following serovars *S. Labadi*, *S. Typhi*, *S. Agona*, *S. Pullorum*, *S. Newport* and *S. Virginia* in percentage (0.4%) for each serovar. Results of antimicrobial susceptibility testing (AST) in table (4), showed that there were two pan susceptible *Salmonella* isolates (i.e. susceptible to all antimicrobial agents under test). There was one *Salmonella* isolate susceptible to one type of antimicrobial agents under test and three *Salmonella* isolates were susceptible to two types of antimicrobial agents under the test. A large percentage of isolates were resistant to all antimicrobials i.e. ampicillin (90%), Nalidixic acid (88%), Sulfamethoxazole-trimethoprim (82%) and tetracycline (82%). Out of 50 *Salmonella* serovars, 13 were *ESβL* when detected phenotypically by Cefinase with a rate of 26 % while when com-

bined with the disc diffusion test, again, 13 serovars were *ESβL* with a rate of 26 %. The comparison between the screening and confirmatory methods revealed that 10 isolates had similar response and 6 isolates responded differently. Genotypic detection of *ESβL*-producing *Salmonellae* by using PCR revealed that 16 isolates which were tested for the presence of 5 genes that are responsible for *ESβL* production, CTX (Cefotaxime), TEM (Beta-lactamase), SHV (sulphydryl variable active site), OXA (oxacillinase) and CMY (class C carbapenemase); as showed in Table (5-6) with a comparison between results of phenotypic and genotypic detection of *ESβL*-producing *Salmonellae*. The PCR amplification result in this study shows that a total of 10 isolates of phenotypic positive isolates were positive for *bla_{TEM}* gene type using universal primers, 5 isolates were positive for *bla_{CTX}* gene type, 2 isolates were positive for *bla_{OXA-1}* gene type and one isolate was positive for *bla_{SHV}* gene type but no amplification was found encoding the gene of *bla_{CMY-2}* noticed that all the *ESβLs* positive serovars were positive for amplification of all tested virulence genes and also noticed that all the isolates were negative for *bla_{CMY}* gene.

Table 3. Result of *Salmonella* Isolation from different broilers chicks' organs

Organ	No. of samples	No. of positive	percentage	Percentage to all
Liver	45	14	31%	5.8%
Yolk Sac	60	12	20%	5%
Lung	40	4	10%	1.6%
Caecum	50	12	24%	5%
Spleen	45	8	17.7%	3.3%

Table 4. Collective resistance pattern of *Salmonella* serovars to the antibiotics used

Antimicrobial agents	Resistance patterns					
	R	%	I	%	S	%
Sulphamethaxole-Trimethoprim (SXT)	41	82%	-	0	9	18%
Amikacin 30 µg	-	0%	2	4%	48	96%
Imepenem 10 µg	-	0%	3	6%	47	94%
Tetracycline 30 µg	41	82%	1	2%	8	16%
Ampicillin 10 µg	45	90%	1	2%	4	8%
Nalidixic acid 30 µg	44	88%	1	2%	5	10%
Chloramphenicol 30 µg	21	42%	2	4%	27	54%
Gentamicin 10 µg	1	2%	3	6%	46	92%
Ciprofloxacin 5 µg	29	58%	17	34%	4	8%
Aztreonam 30 µg	8	16%	3	6%	39	78%
Ampicillin +Sulbactam	12	24%	4	8%	34	68%
Cefepem	8	16%	2	4%	40	80%
Ceftriaxone 30 µg	7	14%	5	10%	38	76%
Cephalothin 30 µg	16	32%	12	24%	22	44%
Cefotaxime 30 µg	4	8%	-	0%	46	92%
Ceftazidem 30 µg	4	8%	-	0%	46	92%

Table 5. Comparison between Cefinase® and combined disk diffusion test as phenotypic methods for detection of ES β Ls.

	Cefinase®	CDD
Positive isolates	13	13
Negative isolates	37	37
Shared isolates	10	10
Different isolates	3	3
Cefinase® +ve / Genotypic -ve	(1/16) 6.25%	-----
Cefinase® -ve / Genotypic +ve	(3/15) 20%	-----
Cefinase® +ve / Genotypic +ve	(12/15) 80%	-----
CDD +ve / Genotypic -ve	-----	0
CDD -ve / Genotypic +ve	-----	(3/15) 20%
CDD +ve / Genotypic +ve	-----	(13/15) 86.6%

Table 6. Genotypic results of the 6 isolates different in ES β Ls pattern detected by phenotypic methods.

Isolate	Cefinase®	CDD	Genotypic resistance genes
S. Kentucky	Negative	Positive	<i>bla</i> _{CTX}
S. Kentucky	Negative	Positive	<i>bla</i> _{TEM}
S. Heidelberg	Negative	Positive	<i>bla</i> _{SHV} + <i>bla</i> _{OXA-1}
S. Infantis	Positive	Negative	<i>bla</i> _{TEM}
S. Infantis	Positive	Negative	<i>bla</i> _{TEM}
S. Agona	Positive	Negative	<i>bla</i> _{TEM}

DISCUSSION

Salmonellosis in poultry is a worldwide spread infection, both for poultry as a disease causative agents and as a vehicle for human infection (Mohammed *et al.* 1999). Data from current study showed; *Salmonella* different serotypes incidence rate 20.8 % with high recovery rate from liver 31% (14/40) followed with yolk sac 20% (12/40), the serotyping of recovered *Salmonella* isolates revealed that there were 25 *S. Kentucky* (10.4%), 9 *S. Infantis* (3.7%), 6 *S. Enteritidis* (2.5%), 4 *S. Heidelberg* (1.6%), and one isolates for the following serovars *S. Labadi*, *S. Typhi*, *S. Agona*, *S. Pullorum*, *S. Newport* and *S. Virginia* in percentage (0.4%) for each serovar. The emergence of antimicrobial agents' resistance is a matter of concern. People infected by antimicrobial resistant *Salmonella* spp., particularly Nalidixic acid-resistant *Salmonella* spp., are more likely to die, are more likely to be hospitalized, and are hospitalized for longer periods than patients with infections caused by susceptible to antimicrobials strains of *Salmonella* spp. (Helms *et al.* 2004, Helms *et al.* 2002, Lee *et al.* 1994). Antimicrobial susceptibility tests described in this study; show a high percentage of isolates that were resistant to ampicillin (90%), Nalidixic acid (88%), Sulfamethoxazole-trimethoprim (82%) and tetracycline (82%) and out of 50 *Salmonella* serovars, 13 were found to be ES β L when detected phenotypically by Cefinase with a rate of 26% while when use combined disc diffusion test 13 serovars were

ES β L with a rate of 26%. The comparison between the screening and confirmatory methods revealed that 10 isolates expressed similar results and 6 isolates expressed different results. All *Salmonella* isolates were positive by polymerase chain reaction assay for *invA* gene; which agreed with previous studies about the existence of the *invA* in *Salmonella* around the world. The detection of those genes in huge number of *Salmonella* isolates from different geographical location maybe associated with the ability of the isolates for cell invasion (Amini *et al.* 2010, Campioni *et al.* 2012, Crăciună *et al.* 2012). PCR is a useful and rapid tool for *Salmonella* spp detection in clinical samples., where *invA* and the *sopB* genes may be a target gene for the detection of this genus, as both genes associated with the virulence of *Salmonella* enteritis in birds (Hughes *et al.* 2008, Wood *et al.* 1998). The *avrA* gene prevalence showed 100% detection in all *salmonella* isolates similar to the detection rate found in previous report focused on *Salmonella Enteritidis* (Hopkins . and Threlfall 2004), while in other reports lower detection rate for this gene of *Salmonella Enteritidis* (Liu *et al.* 2012, Rahman *et al.* 2004, Streckel *et al.* 2004, Zou *et al.* 2010) was reported. The variation in detection rate maybe associated with the variation of recombination location of these genes (Hopkins . and Threlfall 2004). These findings are important, since variation in the repertoire of those genes, such as *avrA* and *sopE*, can be associated with the variation of these serovars ability to adapt to new

host cells and consequently provoke the emergence of novel virulent strains (Prager *et al.* 2000). The obtained data from this study showed a high percentage (100%) of *Salmonella* Enteritidis isolates that had the *avrA* gene; while, only 17.1% and 9.7% of *Salmonella* Hadar isolates possessed the *avrA* and *sopE* genes, respectively, which showed difference in the pattern of those genes among different *Salmonella* serovars. (Cesco *et al.* 2009). Some reports associated the high frequency of *avrA* gene in serovars that are considered as the most pathological agents of salmonellosis in poultry farms (Ben-Barak *et al.* 2006). The obtained data from the current study showed significant association between *invA*, *avrA*, *sopB*, *stn* and *bcfC* virulence genes and resistance to the commonly used antibiotics in Egypt (Table-4/5) as previously observed in Senegal and Gambia but with different virulence genes and antimicrobials resistant genes (Dione *et al.* 2011). These correlations could be explained based on the mechanisms involved in the pathogenicity of bacteria and the acquisition of resistance genes by *Salmonella* species. In the pathogenic bacterial isolates the vast majority of molecular pathogenicity determinant fragments located specific bacterial plas-

mid (virulence-associated plasmids) or chromosome (Groisman . and Ochman 1996, Hacker *et al.* 1997). The MDR genes may be located on bacterial chromosome either segmented inside chromosome or located as extra chromosomal genetic elements within the chromosome that originate from other genomes (Carattoli 2003). The simultaneous detection of both types of genes either different types of virulence gene or antimicrobial resistance genes has been frequently reported in different *salmonella* species (Carattoli 2003).

CONCLUSION

The data obtained from this study, suggests that broilers play a potential role as a reservoir of multi drug resistant *Salmonella* serovars with special reference to *ESβL* serovars; which contain many virulence genes that magnify the disease condition and imply failure of control.

CONFLICT OF INTEREST

All authors declare no conflict of interest

REFERENCES

Abouelmaatti, R. R.; Algammal, A. M.; Li, X.; Ma, J.; Abdelnaby, E. A. and Elfeil, W. M. K. (2013):Cloning and analysis of Nile tilapia Toll-like receptors type-3 mRNA Central European Journal of Immunology. 3: 277-282.

Amini, K.; Salehi, T. Z.; Nikbakht, G.; Ranjbar, R.; Amini, J. and Ashraf-ganjooei, S. B. (2010):Molecular detection of invA and spv virulence genes in *Salmonella enteritidis* isolated from human and animals in Iran African Journal of Microbiology Research. 4: 2202-2210.

Authority, E. F. S. (2009):Analysis of the baseline survey on the prevalence of methicillin-resistant *Staphylococcus aureus* (MRSA) in holdings with breeding pigs, in the EU, 2008. Part A: MRSA prevalence estimates; on request from the European Commission EFSA J. 7: 1376.

Ayoub, M. A.; Elfeil, W. K.; El Boraey, D.; Hammam, H. and Nossair, M. A. (2019):Evaluation of Some Vaccination Programs in Protection of Experimentally Challenged Broiler Chicken against Newcastle Disease Virus American Journal of Animal and Veterinary Sciences. 14: 197-206.

Ben-Barak, Z.; Streckel, W.; Yaron, S.; Cohen, S.; Prager, R. and Tschäpe, H. (2006):The expression of the virulence-associated effector protein gene *avrA* is dependent on a *Salmonella enterica*-specific regulatory function International journal of medical microbiology. 296: 25-38.

Brinas, L.; Moreno, M. A.; Zarazaga, M.; Porrero, C.; Sáenz, Y.; García, M.; Dominguez, L. and Torres, C. (2003):Detection of CMY-2, CTX-M-14, and SHV-12 β -lactamases in *Escherichia coli* fecal-sample isolates from healthy chickens Antimicrobial agents and chemotherapy. 47: 2056-2058.

Campioni, F.; Bergamini, A. M. M. and Falcão, J. P. (2012):Genetic diversity, virulence genes and antimicrobial resistance of *Salmonella Enteritidis* isolated from food and humans over a 24-year period in Brazil Food microbiology. 32: 254-264.

Carattoli, A. (2003):Plasmid-mediated antimicrobial resistance in *Salmonella enterica* Current issues in molecular biology. 5: 113-122.

Cesco, M. D. O.; Zimmermann, F.; Giotto, D.; Guayba, J.; Borsoi, A.; Rocha, S.; Moraes, H. and Nascimento, V. (2009):Survey of virulence genes in *Salmonella Hadar* in materials coming from chickens Veterinaria em foco. 6: 159-164.

Chen, S.; Zhao, S.; White, D. G.; Schroeder, C. M.; Lu, R.; Yang, H.; McDermott, P. F.; Ayers, S. and Meng, J. (2004):Characterization of multiple-antimicrobial-resistant salmonella serovars isolated from retail meats Appl Environ Microbiol. 70: 1-7.

Crăciună, C.; Keul, A.-L.; Flonta, M. and Cristea, M. (2012):DNA-based diagnostic tests for *Salmonella* strains targeting *hilA*, *agfA*, *spvC* and *sef* genes Journal of environmental management. 95: S15-S18.

Diab, M. S.; Abd El Hafez, M. S.; Ashry, M. A. and Elfeil, W. K. (2019):Occurrence of Avian Influenza H5N1 among Chicken, Duck Farms and Human in Egypt American Journal of Animal and Veterinary Sciences. 14: 26-32.

Dione, M. M.; Ikumapayi, U.; Saha, D.; Mohammed, N. I.; Adegbola, R. A.; Geerts, S.; Ieven, M. and Antonio, M. (2011):Antimicrobial resistance and virulence genes of non-typhoidal** *Salmonella*** isolates in The Gambia and Senegal Journal of infection in developing countries. 5: 765-775.

Efsa. (2018):The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2016, European Food Safety Authority and European Centre for Disease Prevention Control. p. e05182.

Efsa., E. (2008):Report of the task force on zoonoses data collection on the analysis of the baseline survey on the prevalence of *Salmonella* in slaughter pigs, in the EU, 2006-2007, part A: *Salmonella* prevalence estimates The EFSA Journal. 135: 1-111.

Eid, H. M.; Algammal, A. M.; Elfeil, W. K.; Youssef, F. M.; Harb, S. M. and Abd-Allah, E. M. (2019):Prevalence, molecular typing, and antimicrobial resistance of bacterial pathogens isolated from ducks Veterinary World. 12: 677-683.

Elfeil, W. K.; Abouelmaatti, R. R.; Sun, C. J.; Han, W. Y.; Li, X. K.; Ma, J. S.; Lei, L. C.; Liu, S. S.; Yang, Y. J.; Wang, Y.; Mandour, M.; Fawzy, M. and Shalaby, M. N. (2012):Identification, Cloning, Expression of a Novel Functional *Anas platyrhynchos* mRNA TLR4 Journal of Animal and Veterinary Advances. 11: 1727-1733.

Elfeil, W. K.; Ezzat, M. E.; Fathi, A.; Alkilany, M.-a. A. and Abouelmaatti, R. R. (2020):Prevalence and Genotypic Analysis and Antibiotic Resistance of *Salmonella* Species Isolated from Imported and Freshly Slaughtered Chicken American Journal of Animal and Veterinary Sciences. 15: 134-144.

Elfeil, W. M.; Algammal, A. M.; Abouelmaatti, R. R.; Gerdouh, A. and Abdeldaim, M. (2016):Molecular characterization and analysis of TLR-1 in rabbit tissues Cent Eur J Immunol. 41: 236-242.

Elhady, M. A.; Ali, A.; Kilany, W. H.; Elfeil, W. K.; Ibrahim, H.; Nabil, A.; Samir, A. and El Sayed, M. (2018):Field Efficacy of an Attenuated Infectious Bronchitis Variant 2 Virus Vaccine in Commercial Broiler Chickens Vet Sci. 5.

Enany, M. E.; Algammal, A. M.; Shagar, G. I.; Hanora, A. M.; Elfeil, W. K. and Elshaffy, N. M. (2018):Molecular typing and evaluation of Sidr honey inhibitory effect on virulence genes of MRSA strains isolated from catfish in Egypt Pak J Pharm Sci. 31: 1865-1870.

Fawzy, M.; Ali, R.; Elfeil, W.; Saleh, A.; Mady, W. and Eltarabilli, M. (2020):Efficacy of inactivated velogenic Newcastle disease virus genotype VII vaccine in broiler chickens Veterinary Research Forum. -.

Gast, R. K.; Guard-Petter, J. and Holt, P. S. (2003):Effect of prior serial in vivo passage on the frequency of *Salmonella enteritidis* contamination in eggs from experimentally infected laying hens Avian diseases. 47: 633-639.

Grimont, P. and Weill, F.-X. (2007):Antigenic Formulae of the *Salmonella* serovars, (9th ed.) Paris: WHO Collaborating Centre for Reference and Research on *Salmonella* Institute Pasteur. 1-166.

Groisman, E. A. and Ochman, H. (1996):Pathogenicity islands: bacterial evolution in quantum leaps Cell. 87: 791-794.

Hacker, J.; Blum-Oehler, G.; Mühlöder, I. and Tschäpe, H. (1997):Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution Molecular microbiology. 23: 1089-1097.

Hegazy, W. a. H. and Hensel, M. (2012):*Salmonella enterica* as a vaccine carrier Future microbiology. 7: 111-127.

Helms, M.; Simonsen, J. and Mølbak, K. (2004):Quinolone resistance is associated with increased risk of invasive illness or death during infection with *Salmonella* serotype Typhimurium Journal of Infectious Diseases. 190: 1652-1654.

Helms, M.; Vastrup, P.; Gerner-Smidt, P. and Mølbak, K. (2002):Excess mortality associated with antimicrobial drug-resistant *Salmonella* Typhimurium Emerging infectious diseases. 8: 490.

Hopkins, K. L. and Threlfall, E. J. (2004):Frequency and polymorphism of *sopE* in isolates of *Salmonella enterica* belonging to the ten most prevalent serotypes in England and Wales Journal of medical microbiology. 53: 539-543.

Hughes, L. A.; Shopland, S.; Wigley, P.; Bradon, H.; Leatherbarrow, A. H.; Williams, N. J.; Bennett, M.; De Pinna, E.; Lawson, B. and Cunningham, A. A. (2008):Characterisation of *Salmonella enterica* serotype Typhimurium isolates from wild birds in northern England from 2005–2006 BMC Veterinary Research. 4: 4.

Lee, L. A.; Puhr, N. D.; Maloney, E. K.; Bean, N. H. and Tauxe, R. V. (1994):Increase in antimicrobial-resistant *Salmonella* infections in the United States, 1989–1990 Journal of Infectious Diseases. 170: 128-134.

Liu, Y.; Yang, Y.; Liao, X.; Li, L.; Lei, C.; Li, L.; Sun, J. and Liu, B. (2012):Antimicrobial resistance, resistance genes and virulence genes in *Salmonella* isolates from chicken J. Anim. Vet. Adv. 11: 4423-4427.

M. Algammal, A.; I. Eid, H.; A. Nasef, S.; Elfeil, W. K. and H. Mansour, G. (2016):Genetic Variation among Avian Pathogenic E. coli Strains Isolated from Broiler Chickens Asian Journal of Animal and Veterinary Advances. 11: 350-356.

Mohammed, L.; Samaha, H.; Draz, A. and Haggag, Y. (1999):*Salmonellae*

among birds and human beings Alex. J. Vet. Sc. 15: 147-154.

Nccls. (2015):performance standards for Antimicrobial Susceptibility Testing;fifteenth Informational Supplement According to CLSI. CLSI document M100-s15., Clinical Laboratory standard Institue,Wayne.

Prager, R.; Mirold, S.; Tietze, E.; Strutz, U.; Knüppel, B.; Rabsch, W.; Hardt, W.-D. and Tschaep, H. (2000):Prevalence and polymorphism of genes encoding translocated effector proteins among clinical isolates of *Salmonella enterica* International journal of medical microbiology. 290: 605-617.

Rahman, H.; Streckel, W.; Prager, R. and Tschaep, H. (2004):Presence of sopE gene & its phenotypic expression among different serovars of *Salmonella* isolated from man & animals Indian Journal of Medical Research. 120: 35.

Sedeik, M. E.; Awad, A. M.; Rashed, H. and Elfeil, W. K. (2018):Variations in Pathogenicity and Molecular Characterization of Infectious Bursal Disease Virus (IBDV) In Egypt American Journal of Animal and Veterinary Sciences. 13: 76-86.

Sinha, P.; Sharma, R.; Rishi, S.; Sharma, R.; Sood, S. and Pathak, D. (2008):Prevalence of extended spectrum beta lactamase and AmpC beta lactamase producers among *Escherichia coli* isolates in a tertiary care hospital in Jaipur Indian Journal of Pathology and Microbiology. 51: 367.

Standardization, I. O. F. (2007):Microbiology of food and animal feeding stuffs—Horizontal method for the detection of *Salmonella* spp.—Amendment 1: Annex D: Detection of *Salmonella* spp. in animal faeces and in environmental samples from the primary production stage. ISO 6579: 2002/Amd. 1: 2007, International Organization for Standardization Geneva, Switzerland.

Standardization, I. O. F. (2014):ISO/TR 6579-3: 2014. Microbiology of the food chain. Horizontal method for the detection, enumeration and serotyping of *Salmonella*. Part 3: guidelines for serotyping of *Salmonella* spp, International Organization for Standardization Geneva, Switzerland.

Streckel, W.; Wolff, A. C.; Prager, R.; Tietze, E. and Tschaep, H. (2004):Expression profiles of effector proteins SopB, SopD1, SopE1, and AvrA differ with systemic, enteric, and epidemic strains of *Salmonella enterica* Molecular nutrition & food research. 48: 496-503.

Sultan, H. A.; Ali, A.; El Feil, W. K.; Bazid, A. H. I.; Zain El-Abideen, M. A. and Kilany, W. H. (2019a):Protective Efficacy of Different Live Attenuated Infectious Bronchitis Virus Vaccination Regimes Against Challenge With IBV Variant-2 Circulating in the Middle East Frontiers in Veterinary Science. 6: 341.

Sultan, H. A.; Arafa, A.-E.; Talaat, S.; Gaballa, A. A.; Kilany, W. H.; Elfeil, W. K.; Shehata, A. A. and Amarin, N. (2019b):Efficacy of Clade 2.3.2 H5-Recombinant Baculovirus Vaccine in Protecting Muscovy and Pekin Ducks from Clade 2.3.4.4 H5N8 Highly Pathogenic Avian Influenza Infection Avian Diseases. 63: 219-229, 11.

Sultan, H. A.; Talaat, S.; Elfeil, W. K.; Selim, K.; Kutkat, M. A.; Amer, S. A. and Choi, K.-S. (2020):Protective efficacy of the Newcastle disease virus genotype VII-matched vaccine in commercial layers Poultry Science. 99: 1275-1286.

White, D. G.; Zhao, S.; Sudler, R.; Ayers, S.; Friedman, S.; Chen, S.; McDermott, P. F.; McDermott, S.; Wagner, D. D. and Meng, J. (2001):The isolation of antibiotic-resistant *Salmonella* from retail ground meats New England journal of medicine. 345: 1147-1154.

Winokur, P.; Brueggemann, A.; Desalvo, D.; Hoffmann, L.; Apley, M.; Uhlenhopp, E.; Pfaller, M. and Doern, G. (2000):Animal and human multidrug-resistant, cephalosporin-resistant *Salmonella* isolates expressing a plasmid-mediated CMY-2 AmpC β -lactamase Antimicrobial agents and chemotherapy. 44: 2777-2783.

Wood, M. W.; Jones, M. A.; Watson, P. R.; Hedges, S.; Wallis, T. S. and Galyov, E. E. (1998):Identification of a pathogenicity island required for *Salmonella enteropathogenicity* Molecular microbiology. 29: 883-891.

Zou, W.; Al-Khalidi, S. F.; Branham, W. S.; Han, T.; Fuscoe, J. C.; Han, J.; Foley, S. L.; Xu, J.; Fang, H. and Cerniglia, C. E. (2010):Microarray analysis of virulence gene profiles in *Salmonella* serovars from food/food animal environment The Journal of Infection in Developing Countries. 5: 94-105.