Molecular characterization of Enterotoxigenic Escherichia coli isolates harboring genetic elements mediating multiple-drug resistance

KOHANSAL M. Department of Medical Genetics, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran. Department of Biology, Payame Noor University, Tehran, Iran.

NAJAFI A. Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran.

VIDAL R. Disciplinary Program of Microbiology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile

https://doi.org/10.12681/jhvms.24164

Copyright © 2020 M. KOHANSAL, A. NAJAFI, R. VIDAL

To cite this article:

Molecular characterization of Enterotoxigenic Escherichia coli isolates harboring genetic elements mediating multiple-drug resistance

M. Kohansal¹,²; A. Najafi³; R. Vidal⁴

¹Department of Medical Genetics, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
²Department of Biology, Payame Noor University, Tehran, Iran.
³Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran.
⁴Disciplinary Program of Microbiology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile

ABSTRACT: Intensive antibiotics’ use in the management of the disease in neonate calves, a major economic concern in bovine industry, is one of the contributors to high levels of antibiotic resistance of pathogenic bacteria. The objective of this study was to investigate the antibiotic resistance patterns and the frequency of integrons classes among Enterotoxigenic Escherichia coli (ETEC) strains isolated from neonatal calf diarrhea (NCD) in South of Iran. 412 recto-anal mucosal swabs from diarrheic calves were analyzed by biochemical fingerprinting and for virulence genes by polymerase chain reaction (PCR). The isolates were examined for their susceptibility to a panel of 8 antibacterial agents using the Kirby-Bauer disc diffusion method. Finally, the frequency of integron classes was detected in multi-drug resistant (MDR) strains by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). 194 out of 412 (47.09%) diarrheic fecal samples harbored E. coli and 35 (18%) of them were identified as ETEC. The drug susceptibility test showed that all isolates were resistant to erythromycin, penicillin and trimethoprim/sulfamethoxazole and more than 80% were resistant to ampicillin and chloramphenicol. All isolates were MDR. 17 out of 35 (48.57%) isolates were identified possessed class 1 integron. High prevalence of class 1 integron in ETEC isolates was mainly associated with multidrug resistance. Cefixime was the most effective antibiotic in vitro.

Keywords: ETEC, Integron, MDR.

Corresponding Author: M. Kohansal, Department of medical genetics, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran, Department of biology, Payame Noor University, Tehran, Iran. E-mail address: k_kohansal@yahoo.com

Date of initial submission: 09-09-2019
Date of revised submission: 30-01-2020
Date of acceptance: 26-03-2020
INTRODUCTION

Neonatal calf diarrhea (NCD) leads to high mortality and morbidity in young calves (de Verdier et al., 2012). It is a disease characterized by varying degrees of diarrhea and dehydration (Ahmed et al., 2009).

Escherichia coli strains normally colonizes the mammalian intestines, however there are some clones with potential to produce diarrheic infections in human or animals (Souto et al. 2017). Six pathotype of diarrheagenic E. coli, have been described, namely: enterotoxigenic E. coli (ETEC), enteropathogenic E. coli (EPEC), enterohemorrhagic (Shiga toxin-producing) E.coli (EHEC/STEC), enteroaggregative E. coli (EAEC), and enteroinvasive E. coli (EIEC) and diffusely adherent E.coli DAEC (Umpiérrez, et al., 2016).

Among these E. coli pathogroups, ETEC strains are the most common cause of NCD which is one of the most difficult diseases to treat responding to only a few antimicrobial drugs (Abraham et al., 2014). Its pathogenicity mechanism involves the attachment to the bovine intestinal microvilli via specific fimbrial adhesion factors conferring to ETEC the ability to attach receptors on the enterocytes and production of heat-stable enterotoxins (STa). The STa proteins are responsible for fluid hyper-secretion and diarrhea that are common causes of NCD (Oliver et al. 2016). Major virulence factors associated to calf ETEC isolates are the heat-stable enterotoxin (STa), as well as F5 (K99) and F41 fimbrial adhesins. The K99 fimbriae is plasmid-encoded, whereas F41 is chromosome-encoded. The plasmid harboring the K99 fimbrial gene also contains the gene for STa (Shams et al., 2012).

Antimicrobial agents in food-producing animals have been used either for animal treatment or for animal growing and fattening (Harada and Asai, 2010). This practice leads to the inevitable selection of antimicrobial resistance among pathogenic and commensal bacteria in the intestinal tracts of these animals, which could serve as important reservoirs for colonization and infection in human and animal populations. Antibiotics have long been considered as the first line of defense to prevent pathogenic E. coli infections (Umpiérrez et al., 2016). The use of antimicrobials in the treatment of ETEC diarrhea is problematic, due to the rapid emergence and dissemination of antibiotic-resistant strains. Recent studies have shown that the level of antibiotic resistance among ETEC has steadily increased (Moredo et al. 2015). The rapid emergence of antibiotic resistance among bacteria is mainly due to horizontal transmission of antibiotic resistance genes via different types of mobile genetic elements, such as transposons, plasmids and integrons with which multi-drug resistance in Enterotoxigenic Escherichia coli is associated (Abraham et al., 2014). Integrons are capable of integrating or mobilizing single or multiple gene cassettes encoding antibiotic resistance determinants (El-Sokkary and Abdelmegeed., 2015).

An integron is mainly composed of an integrase enzyme (IntI) that is responsible for gene cassette integration, a recombination site (attI) which is the target of the enzyme, and a promoter that is located upstream of the integration site (Diaz-Mejia et al., 2008).

Based on the sequences of integrase genes (Yu et al., 2004), there are at least eight classes of integrons (Nield et al., 2001) which could be distinguished by their respective integrase (int) genes (White et al. 2001). Class 1 and 2 of integrons are the most frequently detected in many bacterial species that carry different arrangements of gene determinants related to antibiotic resistance (El-Sokkary and Abdelmegeed., 2015). Significant association of class 1 integrons, most commonly found in clinical isolates of Gram-negative bacteria, with MDR has been shown (Yu et al., 2004). The distribution of integron in multi-drug resistant Escherichia coli strains has been previously studied in many different countries among them Germany (Friedrich et al., 2010), India (Mathai et al. 2004), USA (Dickema et al., 2004), Spain (Oteo et al., 2005) and Sudan (Ibrahim et al., 2013).

However, no studies on the prevalence of integron classes in MDR isolates of ETEC in diarrheic calves have been published in Iran to date. Consequently, the goal of this study was to investigate the genotypic screening of virulence genes in ETEC from diarrheic calves and to assess the occurrence of multi-drug resistant, dissemination of different classes of integrons in MDR isolates.

MATERIALS AND METHODS

Sampling and clinical signs of the studied population

A total of 412 fresh fecal samples were collected with rectal swabs from 412 untreated diarrheic neonatal calves, within the age of up to 30 days old. The calves were characterized as suffering from NCD by sudden onset of profuse yellow/white diarrhea, leading to rapid and severe dehydration. The fecal swabs were collected within a period of one year, from...
Cultures sample+100 ml TSB Subculture on MacConkey agar and EMB agar Incubate at 37°C for 24h

Extract DNA

PCR screen for presence of virulence genes (F41, F5 and STa)

Negative Result Absence of ETEC

Positive Result

Antibiogram and phenotypic characterization of Multidrug-resistant ETEC strains

Negative Result Absence of Antibacterial resistance

Positive Result Potential Presence of MDR ETEC strains

PCR-RFLP screen for Determination of classes of integrons

Figure 1. Preparation, screening and confirmation steps carried out for evaluating the multi drug resistant ETEC strains in samples

October 2016 to October 2017 from 25 farms belonging to six geographic areas of Fars province, Iran. The methods used in this study are summarized in Figure 1.

Cultural and biochemical tests

A recto-anal mucosal swab sample from each diarrheic calf was collected and transferred to distinct tubes containing Tryptic Soy Broth (TSB) (Merk, Germany). The samples were transported within 6 hours to the main laboratory inside an ice box and subsequently incubated at 37°C for 18 hours. Then, the samples were subcultured on MacConkey agar and Eosin Methylene Blue (EMB) agar plates, at 37°C for 24–48 hours. The isolates were confirmed as *E. coli* using standard biochemical tests i.e. indole test (+ve) (Ehrlich’s reagent) (Merk, Germany), oxidase test (−ve) (TMPD reagent) (Merk, Germany), urease (−ve) (Phenol red indicator) (Merk, Germany), Simon’s citrate (−ve) (Bromothymol Blue, Reagent) and hydrogen sulfide (−ve) [(SO₄(NH₄) Fe indicator) (Merk, Germany) (Atlas, 2010). The biochemically confirmed *E. coli* colonies were subjected to DNA analysis.

Bacterial DNA preparation for PCR

1ml of overnight mTSB culture from *E. coli* strains was employed to obtain template DNA for PCR. Bacterial cultures were pelleted at 3,000 rpm for 5 min (Hermle Z230 MA centrifuge) and then the SinaPure™ DNA was used, as previously described by the provider (Sinaclon kit, Iran-Cat No.: EX6011). Extraction was performed according to the manufacturer’s instructions. Briefly, bacterial pellet were lysed using lysis buffer then a precipitation solution was added for 5 seconds, centrifuged, the supernatant recovered and precipitation solution was added. The sample mixture was then passed through a spin column, followed by two washes with wash buffer. The DNA was eluted in a volume of 200 μl of elution buffer, which was passed through the same column twice.

PRESENCE OF THE VIRULENCE GENES

Isolates were analyzed for 3 different genes encoding the virulence factors of *E. coli K99* (F41, F5 and STa) by Multiplex PCR. Sizes of PCR products are shown in Table I. PCR was carried out in a 25-μl
reaction volume containing 10×PCR buffer (2.5 μl), MgCl2 (1.25 μl), dNTP (0.5 μl), primers (1 μl), DNA template (1 μl), Taq DNA polymerase (0.25 μl) with distilled water to reach 25 μl. The PCR protocol was as follows: 1 cycle of 94°C for 5 min, 30 cycles of 94°C for 30 sec, 57°C for 30 sec, and 72°C for 30 sec, and 1 cycle of 72°C for 7 min. DNA extracts from *E. coli* HB101 and RCCT 86 strains were used as negative and positive controls, respectively.

Antimicrobial susceptibility and multi drug resistance

Kirby–Bauer disk diffusion method was used to characterize the antibiotic sensitivity phenotypes of ETEC strains with standards and interpretive criteria of Clinical and Laboratory Standards Institute (CLSI) (Wayne 2012a). The following antibiotics (all obtained from Difco Laboratories, MI, U.S.A.) were used: ampicillin (AMP: 10 μg), tetracycline (TET: 30 μg), erythromycin (ERY: 25 μg), enrofloxacin (ENR: 10 μg), trimethoprim/sulfamethoxazole (SXT: 30 μg), chloramphenicol (CHL: 30 μg), penicillin (PCN: 10 μg), ceftoxime (CFM: 5μg). The inhibition zones were measured to the nearest millimeter and according to CLSI guidelines, where available (Wayne 2012b), the bacterial isolates were classified as: intermediate (I), resistant (R) or susceptible (S). Due to the small number of isolates with intermediate susceptibility, they were considered susceptible, for practical purposes. As multi-drug resistance phenotype was defined the simultaneous resistance to three or more categories of antibiotic agents (Magiorakos et al., 2012). *E. coli*, ATCC 25922 (beta-lactamase negative, sensitive to all these drugs), recommended by the Clinical and Laboratory Standards Institute (CLSI) was used for a quality control. Quality control result was within specified range as published in M100-S22 (Wayne 2012b).

Presence of integrons

To detect integron in confirmed ETEC isolates, a PCR protocol was performed. The base sequences and sizes of the amplified products for the specific oligonucleotide primers are shown in Table 1. The PCR reaction mixture included 1 μL of each primer, 0.25 μL Taq polymerase, 1.25 μL MgCl2, 1 μL dNTPs, 10×PCR buffer (2.5 μl), 1 μL of template DNA and nuclease free water to complete the reaction volume (25 μl). PCR amplification was performed in thermo-cycler (Eppendorf Mastercycler, Germany) under the following conditions: 1 cycle of 94°C for 5 min, 30 cycles of 94°C for 30 sec, 54°C for 30 sec, and 72°C for 30 sec, and 1 cycle of 72°C for 7 min. DNA extracts from *E. coli* 96K062 and ATCC 25922 strains were used as positive and negative controls, respectively.

Restriction Fragments Length Polymorphism (RFLP)

Determination of classes of integrons was done by RFLP analysis of integrase PCR products. The restriction reaction was performed using Rsal (Thermo Fisher) restriction enzyme (White et al., 2001). Based on manufacturer’s recommendations, the PCR product (7 μl) was digested by the addition of 19 μl of double-distilled water, 3 μl of 10X buffer, and 1 μl of restriction enzyme, and incubated at 37°C for 1 hour. The digested PCR products were fractionated by gel electrophoresis (3 % agarose gel). Table 2 shows the size and number of generated fragments..

Table 1. Primers and PCR conditions used in this study.

<table>
<thead>
<tr>
<th>Primers</th>
<th>Oligonucleotide sequence(5’-3’)</th>
<th>Product size (bp)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>F5(K99)</td>
<td>TATTATCATTAGGTGTGAGGTATCCTTTTAGCAGCAGTATTTTC</td>
<td>314</td>
<td>(Shams et al, 2012)</td>
</tr>
<tr>
<td>F41</td>
<td>GACATCGCGCACTGTCGCCAGTCGAGCT</td>
<td>380</td>
<td>(Shams et al, 2012)</td>
</tr>
<tr>
<td>STa</td>
<td>GCCAATGTGGCAATTTTTATTTCTGTA</td>
<td>190</td>
<td>(Shams et al, 2012)</td>
</tr>
<tr>
<td>Intg</td>
<td>TGCCGGTGGTAAATGTCATGTTAAAACTACACACACAGCCTAGT</td>
<td>491</td>
<td>(White et al, T1)</td>
</tr>
</tbody>
</table>

R=A or G, Y = C or T, B=C or G or T, K=G or T *

Table 2. RFLP classification of integrase PCR products.

<table>
<thead>
<tr>
<th>product PCR</th>
<th>Enzyme</th>
<th>No. of fragments</th>
<th>Fragment size(s) (bp)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int1</td>
<td>Rsal</td>
<td>1</td>
<td>491</td>
<td>(White et al, 2001)</td>
</tr>
<tr>
<td>Int2</td>
<td>Rsal</td>
<td>2</td>
<td>300,191</td>
<td>(White et al, 2001)</td>
</tr>
<tr>
<td>Int3</td>
<td>Rsal</td>
<td>2</td>
<td>119,327</td>
<td>(White et al, 2001)</td>
</tr>
</tbody>
</table>
Data analysis
The frequencies of resistance to particular antimicrobials in integron-positive and -negative isolates were compared with Fisher’s exact test. The level for statistical significance was <0.05.

Statistical calculations were made with GraphPad Prism5 for Windows Edition (GraphPad Software, SanDiego, CA, USA).

RESULTS
ETEC isolates
194 out of 412 isolates collected fecal samples from diarrheic calves (47%) were identified as E. coli. Multiplex PCR identified two fibrial genes (F5 and F41) previously associated with colonization of the bovine intestinal epithelium and a Sta toxin gene which lead to fluid secretion. 35 out of 194 E. coli isolates examined by PCR (18%) were tested positive for f5, f41 and sta (E. coli K99 strains) (Table 3).

Table 3. Overview of the integron-positive ETEC strains.

<table>
<thead>
<tr>
<th>Resistance phenotypes</th>
<th>MDR</th>
<th>Integron class</th>
<th>Virulence gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHL-ERY-PCN-SXT-TET</td>
<td>+</td>
<td>1</td>
<td>F5, F41, Sta</td>
</tr>
<tr>
<td>CHL-ERY-PCN-SXT-TET</td>
<td>+</td>
<td>1</td>
<td>F5, F41, Sta</td>
</tr>
<tr>
<td>AMP-CHL-ERY-PCN-SXT-TET</td>
<td>+</td>
<td>1</td>
<td>F5, F41, Sta</td>
</tr>
<tr>
<td>AMP-CHL-ERY-SXT-TET</td>
<td>+</td>
<td>1</td>
<td>F5, F41, Sta</td>
</tr>
<tr>
<td>AMP-CHL-CFM-ERY-SXT-PCN-TET</td>
<td>+</td>
<td>1</td>
<td>F5, F41, Sta</td>
</tr>
<tr>
<td>ERY-PCN-SXT-TET</td>
<td>+</td>
<td>1</td>
<td>F5, F41, Sta</td>
</tr>
<tr>
<td>AMP-CHL-ERY-PCN-SXT-TET</td>
<td>+</td>
<td>1</td>
<td>F5, F41, Sta</td>
</tr>
<tr>
<td>AMP-CHL-CFM-ERY-PCN-SXT-TET</td>
<td>+</td>
<td>1</td>
<td>F5, F41, Sta</td>
</tr>
<tr>
<td>AMP-CHL-SXT-TET</td>
<td>+</td>
<td>1</td>
<td>F5, F41, Sta</td>
</tr>
<tr>
<td>AMP-CHL-ERY-PCN-SXT-TET</td>
<td>+</td>
<td>1</td>
<td>F5, F41, Sta</td>
</tr>
<tr>
<td>AMP-CHL-ERY-PCN-SXT-TET</td>
<td>+</td>
<td>1</td>
<td>F5, F41, Sta</td>
</tr>
</tbody>
</table>

AMP= ampicillin, TET = tetracycline, ERY= erythromycin, ENR = enrofloxacin, SXT = trimethoprim/sulfamethoxazole, CHL = chloramphenicol, PCN = penicillin, CFM = cefixime.

Table 4. Association between integrons and antibiotics resistance in 35 multidrug-resistant isolates

Results are shown as the percentage resistant (% R), with the number of isolates (n) in parentheses

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Resistance integron PCR-RFLP positive</th>
<th>Resistance integron PCR-RFLP negative</th>
<th>Total Resistance</th>
<th>Association with integron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin</td>
<td>13 (37.1)</td>
<td>18 (51.4)</td>
<td>31 (88.5)</td>
<td>0.312</td>
</tr>
<tr>
<td>Cefixim</td>
<td>2 (5.7)</td>
<td>2 (5.7)</td>
<td>4 (11.4)</td>
<td>1.000</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>13 (37.1)</td>
<td>16 (45.7)</td>
<td>29 (82.8)</td>
<td>0.401</td>
</tr>
<tr>
<td>Trimethoprim/sulfamethoxazole</td>
<td>17 (48.5)</td>
<td>18 (51.5)</td>
<td>35 (100)</td>
<td>1.000</td>
</tr>
<tr>
<td>Enrofloxacin</td>
<td>16 (45.7)</td>
<td>9 (25.7)</td>
<td>25 (71.4)</td>
<td>0.003*</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>17 (48.5)</td>
<td>18 (51.5)</td>
<td>35 (100)</td>
<td>1.000</td>
</tr>
<tr>
<td>Penicillin</td>
<td>17 (48.5)</td>
<td>18 (51.5)</td>
<td>35 (100)</td>
<td>1.000</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>16 (45.7)</td>
<td>10 (28.5)</td>
<td>26 (74.2)</td>
<td>0.017*</td>
</tr>
</tbody>
</table>

*, Correlation is significant at the 0.05 level.
Antibiotic resistance profiles

Table 4 shows the antimicrobial resistance profile among the 35 isolates of ETEC analyzed by the Kirby–Bauer disk diffusion method. Among the drugs under the study, all ETEC isolates were resistant to erythromycin, trimethoprim/sulfamethoxazole and penicillin. Susceptibility testing of ETEC revealed that 31 of 35 isolates (88.5%) were resistant to ampicillin, 29 (82.8%) to chloramphenicol, 26 (74.2%) to tetracycline, 25 (71.4%) were resistant to enrofloxacin and 4 (11.4%) to cefixime.

PCR-RFLP analysis

17 out of 35 isolates (48.75%) were integrase positive (Table 4) and RFLP analysis revealed that 100% of them contained class 1 integron (Figure 2).

DISCUSSION

In pathogen detection systems, E. coli pathotypes, remarkably EHEC and ETEC isolates, had been identified by phenotypic methods for many years, including O- and H- serotyping and bacteriophage typing. These traditional techniques are generally time consuming and not always accurate. Therefore, they have been replaced by molecular-based techniques that have made it possible to more accurately assign the isolates to each pathotype based on their virulence-associated genes (Prapasawat et al. 2017). Accordingly, the K99, F41 fimbriae, and STa toxin genes associated genes (Prapasawat et al. 2017). According to these studies, high incidence of multi-drug resistant strains was detected among the ETEC isolates from diarrheic calves. Multidrug resistance (MDR) level among ETEC strains isolated from diarrheic calves varies in different countries. In previous studies conducted in Spain, 15% (Orden et al. 2002) and in another study from Australia, 87% of the isolates had MDR (Barigye et al., 2010). In addition, MDR was 10.4% in Egypt (Ahmed et al. 2009). Moreover, in our study MDR ETEC isolates were highly resistant to penicillin (100%) and high-level of resistance to penicillin among ETEC strains isolated from diarrheic calves has also been documented in Australia and Iran (Barigye et al., 2010; Shahrani et al., 2014).

In the present study, most of ETEC isolates were resistant to tetracycline (71.1%). High resistance of ETEC strains to this antibiotic has been reported in previous studies in Thailand (Prapasawat., 2017), Canada (Maynard et al., 2003, Boerlin et al., 2005), Iran (Shahrani et al., 2014), where resistance to TET was 96%, 93%, 96%, and 100% respectively. A high percentage (88.5%) of ETEC isolates exhibited resistance to ampicillin nearly similar to the survey of Rusheeba et al., (86%) in India (Rusheeba et al., 2015), yet higher than other study in Sweden (31%) (de Verdier et al., 2012) whilst lower than that reported in Thailand (100%) by Prapasawat (2017).

These various levels of resistance to different classes of antibiotics among ETEC suggest a direct relationship between the percentages of resistance in different parts of the world and the prevalence of antibiotic consumption in each country (Kargar et al., 2014). Class 1 integrons are found embedded in transposons and conjugative plasmids, allowing their rapid dissemination via lateral gene transfer. As a con-
sequence, class 1 integrons have spread to nearly all species of Gram-negative pathogens.

Some reports indicate that the presence of class 1 integrons among intestinal bacteria such as E. coli is associated with MDR (Shahran et al., 2014). Class 1 integrons that seems to be the most frequent of these genetic elements among commensals and pathogens isolated from livestock as well as among isolates cultured from clinical cases (Kohansal and Asad., 2018).

Previous studies have illustrated the wide distribution of class 1 integrons in E. coli isolated from animals; 63% of isolates from chickens (Bass et al. 1999), 82% also from chickens (Keyes et al. 2000), 64% of swine diarrhea isolates (Kang et al. 2005), and 59% from calf diarrhea isolates (Du et al. 2005). In this study, the frequency of integrons was estimated as 48.75%. Only integron class 1 was detected. Other researches revealed the prevalence of class 1 integron in ETEC isolates as: 10.4% in Egypt (Ahmed et al., 2009), 60% in Canada (Maynard et al., 2003), 33% in Thailand (Prapasawat et al., 2017) and 68.6% in Australia (Abraham et al., 2014). These reports together with our findings emphasize the worldwide distribution of class 1 integrons among intestinal bacteria in food-producing animals. In these isolates class 1 integrons were associated with a variety of resistance gene cassettes, which encode resistance to different antibiotics.

We also detected a significant relationship between class 1 integrons and resistance to tetracycline and enrofloxacin (Table 4). Resistance to these antibiotics are probably attributable to embedded resistance gene cassettes within the integrons. Previous studies demonstrated that the presence of integrons is closely related to gene cassettes encoding resistance to quinolones and β-lactam antibiotics (Prapasawat et al., 2017; Kargar et al., 2014).

CONCLUSION
Antibiotic resistance is common in pathogenic E. coli isolated from calves of Fars province experiencing problems with neonatal diarrhea. Our data demonstrate the presence of multiple drug resistance and class 1 integrons that can be easily dispersed among other bacteria, resulting in the rapid spread of antibiotic resistance genes. Clonal spread could not be the only reason for class 1 integron prevalence in different sources and the bigger player in this prevalence is probably the horizontal transfer with conjugative plasmids. Cefixime can serve as the drug of choice for treatment of multi resistant ETEC in calves with NCD. Therefore, it is advised to stop routine antimicrobial treatment, and test for antibiotic susceptibility as well as the sequential analysis of class 1 integrons in ETEC of fecal samples.

CONFLICTS OF INTEREST
The authors declare having no conflict of interests with this study.

REFERENCES

