A study of biochemical changes in river buffaloes (Bubalus bubalis) naturally infected with Anaplasma marginale

SM Jalali, AA Nikvand, D Gharibi, M Razi Jalali, M Yazdkhasti, F Kaviani

doi: 10.12681/jhvms.27125

Copyright © 2023, Seyedeh Missagh Jalali, Ali Abbas Nikvand, Daryoosh Gharibi, Mohammad Razi Jalali, Moein Yazdkhasti, Farnoosh Kaviani

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0.

To cite this article:

A study of biochemical changes in river buffaloes (*Bubalus bubalis*) naturally infected with *Anaplasma marginale*

S.M. Jalali¹, A.A. Nikvand,¹ D. Gharibi,² M. Razi Jalali¹, M. Yazdkhasti¹, F. Kaviani¹,³

¹Department of clinical sciences, Faculty of veterinary medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
²Department of pathobiology, Faculty of veterinary medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
³Department of clinical sciences, Faculty of veterinary Science, Bu-Ali Sina University, Hamedan, Hamedan, Iran

ABSTRACT: *Anaplasma marginale* is an intracellular rickettsia, endemic in tropical and subtropical regions of the world. This study was performed to determine *A. marginale* infection, molecularly, and to investigate its effects on some serum biochemical parameters in river buffaloes referred to Ahvaz abattoir, Southwest Iran. A total of 103 apparently healthy river buffaloes were randomly sampled. Whole blood samples were subjected to PCR analysis and blood smears were examined microscopically for the presence of *Anaplasma* inclusions. Serum biochemical parameters including total protein, albumin, glucose, urea, iron, total bilirubin, total cholesterol, calcium, phosphorus and magnesium concentrations, aspartate aminotransferase (AST) and alkaline phosphatase (ALP) activities and also serum electrolytes comprising Na and K were assessed. The results revealed that 16 and 32 samples were infected with *A. marginale* in microscopic and PCR assessment, respectively. Serum biochemical analysis showed no significant difference between *A. marginale* infected and non-infected buffalo groups. It can be concluded that infection with *A. marginale* does not lead to much pathogenicity in river buffaloes, so that in infected animals, no abnormalities in biochemical parameters could be detected. However, according to the high infection prevalence, the possible role of this species in the epidemiology and transmission of anaplasmosis to other species remains significant. Further studies are needed to investigate the role of this species as a reservoir.

Keywords: *Anaplasma marginale*; Buffalo; Serum biochemistry; Ahvaz

Corresponding Author:
Seyyedeh Missagh Jalali, Department of clinical sciences, Faculty of veterinary medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
E-mail address: mi.jalali@scu.ac.ir

Date of initial submission: 24-05-2021
Date of acceptance: 03-02-2022
INTRODUCTION

Anaplasma marginale is an obligate intracellular parasite that infects erythrocytes of superior vertebrates, especially ruminants. It is the causative agent of bovine anaplasmosis, which has been reported in domestic and wild animals including buffalo, American bison, African antelope, and deer (Kocan et al., 2003). This rickettsia germ can be transmitted both mechanically (flies bite or feces contaminated with blood) and biologically (ticks) (Kocan et al., 2004; Rymaszewska and Grenda, 2008). The hallmark of clinical anaplasmosis is anemia due to phagocytosis of infected erythrocytes. The severity of clinical symptoms is related to the degree of anemia and includes discoloration of the skin and mucous membranes and increased heart rate and respiration (Constable et al., 2017, Kocan et al., 2003). In addition, infection with A. marginale was demonstrated to cause major changes in serum biochemical analytes in cattle (Coskun et al., 2012; Sharma et al., 2013).

Diagnosis of bovine anaplasmosis may be made based on geographic area, season and clinical signs, or necropsy findings in infected animals. Laboratory tests are needed to confirm the diagnosis, such as microscopic examination of stained blood smears, serological or molecular diagnostic methods (Kocan et al., 2003).

Anaplasmosis in domestic ruminants is highly prevalent in Iran due to the biodiversity of tick species and the variety of ecological and climatic conditions. The prevalence of Anaplasma infection in domestic ruminants is estimated to be 34%, with Khuzestan province (with 54% positive rate of infection) being the most prevalent area in Iran (Soosaraei et al., 2020; Jalali et al., 2013, 2016; Noaman et al., 2009; Razmi et al., 2006).

Few studies on A. marginale contamination in river buffaloes are available. In a PCR study in South Africa, the rate of buffalo infection with A. marginale was reported to be 17.37% (Sisson et al., 2017). Additionally, in another study by Saetiew et al., (2015) the rate of A. marginale infection in buffaloes was 8% in Thailand. The results of a study in Brazil also showed that buffaloes can carry this parasite which raises concerns regarding the role of this species as reservoirs of A. marginale for cattle living in the same area (Silva et al., 2014a). Obregón et al., 2018 also reported genetic similarities between A. marginale strains from cohabiting cattle and water buffalo, proposing the possible cross-species transmission.

River buffalo (Bubalus bubalis) is an economically and culturally important livestock in Iran. River buffalo plays a critical role in social and cultural contributions and possess the highest potential for producing milk and meat due to its promising gene pool. There are three main buffalo breeds in Iran: Azeri, Khuzestani and Mezandrani, with 119,000, 81,000 and 4000 individuals, respectively. The Khuzestani is reared in the west and southwest (mainly in Khuzestan province) of the country and raised outdoors throughout (Borghese, 2005). Iranian buffalo is mostly kept for its milk production (Borghese 2005). In comparison with cattle, buffalo milk is richer in protein, fat, lactose and energy. Water buffalo provide about 293,000 tons (2.8% of Iran’s total milk production) and 24,700 tons (2.5%) of meat (Mokhiber et al., 2018). Average milk production of buffaloes in a 202-day lactation is 17 Kg in Khuzestan (Sanjabi et al, 2011). Their unique adaptability to unstable conditions in terms of temperature and moisture, their resistance to diseases and parasites as well as their long productive life, and ability to consume low-quality forage made buffaloes as a remarkable species (Qanemi 1998; Ghavi Hossein-Zadeh 2016).

The effects of Anaplasma infection on hematological parameters in river buffaloes in Ahvaz have already been published (Nikvand et al., 2020). However, the various aspects of pathogenicity and the effects of this microorganism on other vital organs have not been identified in this animal. Hence, the present study was performed with the aim of molecularly investigating A. marginale infection by PCR and its effects on some serum biochemical parameters in river buffaloes referred to Ahvaz abattoir.

MATERIALS AND METHODS

Sampling
Sampling was performed from September to October 2017 from Ahvaz abattoir. A total of 103 apparently healthy river buffaloes, 36 female and 67 male which aged between one to 10 years, were randomly sampled. Blood samples were taken from jugular vein and collected into EDTA containing tubes for microscopic examination of blood smears and molecular analysis and also plain tubes for serum separation. Whole blood and serum samples were preserved in -20º C until further assessment.

Microscopic examination of blood smears
Blood smears were examined microscopically...
after staining with Giemsa for the presence of *Anaplasma* inclusion bodies. More than 30 microscopic fields of blood films were examined under a ×100 objective lens. Approximately 20,000 erythrocytes were carefully searched per slide (Jalali et al., 2016).

Molecular assessment

DNA extraction

DNA extraction from whole blood samples was performed using Rahazist Padtan, Iran, based on the manufacturer’s instructions. DNA samples were preserved at -20º C until further molecular assessment.

PCR analysis

A nested-PCR method was used to detect *A. marginale* in blood samples. Two pairs of oligonucleotide primers, based on the groEL gene sequence of *A. marginale* were employed (Ybanez et al., 2013). The sequences of primers are presented in table 1.

The PCR was performed in two rounds. First round PCR was conducted in a total reaction volume of 15 μl containing 7.5 μl mastermix (Ampliqon Taq DNA Polymerase 2x Master Mix RED containing Tris-HCl pH 8.5, (NH4)2SO4, 3 mM MgCl2, 0.2% Tween 20, 0.4 mM of each dNTP, Ampliqon Taq DNA polymerase and Inert red dye and stabilizer), 0.2 μM of F1 and R1 primers and 2 μl(5 ng) of extracted DNA suspension as the template. Second round PCR was performed in a total reaction volume of 25 μl containing 12.5 μl mastermix, 0.3 μM of F2 and R21 primers and 1 μl of first round PCR product as the template.

The amplification was performed in an automated gradient thermocycler (Eppendorf, Germany). The thermal profile of PCR is described in table 2.

Biochemical analysis

Serum biochemical parameters including total protein, albumin, glucose, urea, iron, total bilirubin, total cholesterol, calcium, phosphorus and magnesium concentrations, aspartate aminotransferase (AST) and alkaline phosphatase (ALP) activities were assessed using a biochemistry autoanalyser (BT-1500, Biotechnica, Italy) and Parsazmunk kits (Iran). The serum concentration of electrolytes including Na and K were also measured by flame photometry (Sherwood Scientific, England). The accuracy of the biochemical results for river buffalo samples with the applied kits and the analyzers was approved by checking the results against the reference intervals (Kaneko et al., 2008).

Statistical analysis

Independent samples T-test was used to compare and determine statistical differences in laboratory-obtained values between two groups. All values were expressed as mean and standard error (SE), and p<0.05 was considered as statistically significant.

RESULTS

Microscopic results

The results of microscopic evaluation of 103 blood samples showed that 16 samples (15.53%) were infected with *Anaplasma*-like bodies.

Table 1. Primer sequences specific for groEL gene for detection of *A. marginale* in the studied buffaloes.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Nucleotide Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM265F1</td>
<td>5’-GACTACCACATGCTCCATACTGACTG-3’</td>
</tr>
<tr>
<td>AMA424F2</td>
<td>5’-GCTCTGAAGATGAGTTGCAGGTTG-3’</td>
</tr>
<tr>
<td>AM1574R1</td>
<td>5’-GCACGTCCACAACACTGATTCAAG-3’</td>
</tr>
<tr>
<td>AM1289R2</td>
<td>5’-CCCTTGTGCGCCCTCAGAGTGCA-3’</td>
</tr>
</tbody>
</table>

Table 2. PCR program used for the amplification of a groEL gene fragment of *A. marginale*.

<table>
<thead>
<tr>
<th>Step</th>
<th>Temperature</th>
<th>Time</th>
<th>Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial denaturation</td>
<td>95</td>
<td>9 min</td>
<td>1</td>
</tr>
<tr>
<td>Denaturation</td>
<td>95</td>
<td>30 sec</td>
<td></td>
</tr>
<tr>
<td>Anealing</td>
<td>75</td>
<td>30 sec</td>
<td>5</td>
</tr>
<tr>
<td>Extension</td>
<td>72</td>
<td>90 sec</td>
<td></td>
</tr>
<tr>
<td>Denaturation</td>
<td>95</td>
<td>30 sec</td>
<td></td>
</tr>
<tr>
<td>Anealing</td>
<td>65</td>
<td>30 sec</td>
<td>30</td>
</tr>
<tr>
<td>Extension</td>
<td>72</td>
<td>30 sec</td>
<td></td>
</tr>
<tr>
<td>Final extension</td>
<td>72</td>
<td>5 min</td>
<td>1</td>
</tr>
</tbody>
</table>
PCR results
In PCR test on 103 buffalo blood samples using specific primers of A. marginale groEL gene, 32 samples (31.1%) were positive, of which 9 samples in microscopic test were found to have anaplasmic-like bodies.

Statistical analysis
Infection rates were assessed based on age and sex. There was no significant relationship between age and infection (P> 0.05) and also no significant relationship between sex and infection was obtained based on chi-square test (P> 0.05) (Table 3).

In addition, despite some variations, serum biochemical analysis showed no significant difference between A. marginale infected and non-infected buffalo groups (p>0.05) (Table 4).

There was also no significant difference in the mean of various minerals or electrolytes assessed in two groups of buffaloes with and without A. marginale infection (p>0.05) (Table 5).

DISCUSSION
A. marginale as an intracellular rickettsia is endemic almost all over the world, especially in tropical and subtropical regions (Kocan et al., 2010). Although clinical anaplasmosis due to A. marginale often occurs in cattle, other ruminants, including river buffalo, can also be infected (Kuttler, 1984). According to the results of this study, the rate of infection in river buffaloes was 15.53% and 31.1% (16 and 32 out of 103 samples) in microscopic examination and PCR assessment, respectively. There were 9 microscopically positive samples which were negative in PCR analysis. These samples might have contained other similarly shaped inclusions or artifacts that were mistakenly presumed as Anaplasma like inclusions. It must be considered that while light microscopy of stained thin blood smears may facilitate detection of A. marginale organisms in the erythrocytes, this technique may be unreliable in carrier or persistently infected animals (Kocan et al., 2010). Moreover, it is difficult to differentiate the organism from other similar structures like Howell-Jolly bodies, or stain-

Table 3. Number (percentage of frequency) of river buffaloes by age and sex infected (PCR+) and non-infected (PCR-) with A. marginale.

<table>
<thead>
<tr>
<th>Age</th>
<th>PCR+</th>
<th>PCR-</th>
<th>PCR+</th>
<th>PCR-</th>
<th>PCR+</th>
<th>PCR-</th>
<th>PCR+</th>
<th>PCR-</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td><2.5 year</td>
<td>8 (57.1%)</td>
<td>6</td>
<td>8 (36.4%)</td>
<td>14</td>
<td>16 (44.4%)</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>2.5 year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>8 (57.1%)</td>
<td>6</td>
<td>8 (36.4%)</td>
<td>14</td>
<td>16 (44.4%)</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>3 (20%)</td>
<td>12</td>
<td>13 (25%)</td>
<td>39</td>
<td>16 (23.9%)</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11 (37.9%)</td>
<td>18</td>
<td>21 (39.6%)</td>
<td>53</td>
<td>32 (31.1%)</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Serum constituents of river buffaloes as mean ± SE in two groups based on A. marginale infection detected by PCR test.

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Unit</th>
<th>Anaplasma positive (n=32)</th>
<th>Anaplasma negative (n=71)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT</td>
<td>U/l</td>
<td>26.02 ± 5.69</td>
<td>29.58 ± 4.38</td>
<td>0.63</td>
</tr>
<tr>
<td>ALP</td>
<td>U/l</td>
<td>284.67 ± 23.31</td>
<td>264.03 ± 13.62</td>
<td>0.41</td>
</tr>
<tr>
<td>Total bilirubin</td>
<td>mg/dl</td>
<td>0.36 ± 0.02</td>
<td>0.38 ± 0.01</td>
<td>0.13</td>
</tr>
<tr>
<td>Total cholesterol</td>
<td>mg/dl</td>
<td>48.67 ± 4.45</td>
<td>55.37 ± 2.91</td>
<td>0.20</td>
</tr>
<tr>
<td>Glucose</td>
<td>mg/dl</td>
<td>51.75 ± 3.93</td>
<td>55.11 ± 2.89</td>
<td>0.51</td>
</tr>
<tr>
<td>Total protein</td>
<td>g/dl</td>
<td>6.76 ± 0.17</td>
<td>6.78 ± 0.08</td>
<td>0.92</td>
</tr>
<tr>
<td>Albumin</td>
<td>g/dl</td>
<td>3.35 ± 0.06</td>
<td>3.45 ± 0.04</td>
<td>0.21</td>
</tr>
<tr>
<td>Urea</td>
<td>mg/dl</td>
<td>34.29 ± 1.93</td>
<td>32.20 ± 1.25</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Table 5. Serum minerals and electrolytes of river buffaloes as mean ± SE in two groups based on A. marginale infection detected by PCR test.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Anaplasma positive (n=32)</th>
<th>Anaplasma negative (n=71)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
<td>mg/dl</td>
<td>8.90 ± 0.10</td>
<td>9.03 ± 0.08</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>mg/dl</td>
<td>6.44 ± 0.21</td>
<td>6.46 ± 0.18</td>
</tr>
<tr>
<td>Magnesium</td>
<td>mg/dl</td>
<td>3.04 ± 0.20</td>
<td>2.86 ± 0.15</td>
</tr>
<tr>
<td>Iron</td>
<td>µg/dl</td>
<td>129.12 ± 21.86</td>
<td>114.16 ± 7.66</td>
</tr>
<tr>
<td>Sodium</td>
<td>mEq/l</td>
<td>140.73 ± 3.74</td>
<td>138.32 ± 2.82</td>
</tr>
<tr>
<td>Potassium</td>
<td>mEq/l</td>
<td>4.93 ± 0.30</td>
<td>4.77 ± 0.19</td>
</tr>
</tbody>
</table>
ing artifacts, especially in animals with low level of rickettsiaemia (Shompole et al., 1989; Ndung’u et al., 1995). Hence, nucleic acid-based assays are currently the most reliable technique for demonstration of this tick-borne rickettsia (Kocan et al., 2010). Accordingly, the statistical comparisons in this study were performed based on PCR results.

It seems that while *A. marginale* infection in river buffaloes has a relatively high prevalence in Ahvaz region located in southwestern Iran, this infection is not associated with significant changes in serum biochemical parameters. In a previous study the authors also did not record any significant change in hematochemical parameters. In a previous study the authors not associated with significant changes in serum biochemical parameters comprising elevation in creatinine and bilirubin concentrations, some liver enzyme activities and some acute phase proteins and decline in serum total protein and albumin concentration (Allen et al., 1981; Coskun et al., 2012; Sharma et al., 2013; Jassem and agar, 2015; Ganguly et al., 2018).

Several studies in cattle have shown that natural or experimental infection with *A. marginale* is associated with significant changes in serum biochemical parameters comprising elevation in creatinine and bilirubin concentrations, some liver enzyme activities and some acute phase proteins and decline in serum total protein and albumin concentration (Allen et al., 1981; Coskun et al., 2012; Sharma et al., 2013; Jassem and agar, 2015; Ganguly et al., 2018).

In contrast, limited studies have been performed on the pathogenesis of *A. marginale* in river buffalo and to the best of our knowledge no data was documented on serum biochemical status in the infected animals of this species. Most studies have only examined the prevalence of this infection by molecular or serological methods (Silva et al., 2014a; 2014b; Mamun et al., 2010; Sarangi et al., 2020; Amira et al., 2020; Lima et al., 2019). Although clinical signs have been reported in some experimental studies (Sharma, 1987; Reddy et al., 1988) and natural infections (Srivastava and Ahluwalia, 1974; Vatsya et al., 2013) in buffaloes, however, in other investigations that have been done in this area, similar results to the present study have been reported in which *A. marginale* only caused subclinical infection with low parasitemia in river buffaloes (Singh and Gill, 1977; Guatam et al., 1970; Obregón et al., 2018). In addition, in an experimental study, buffalo infestation with *A. marginale* was associated with no clinical and blood abnormalities and also lower frequency of infection in blood PCR tests compared to cattle (Lima et al., 2019). Hence the researchers suggested that buffaloes may be an alternative to raising cattle in areas with high frequency of clinical anaplasmosis (Lima et al., 2019). Other studies similarly reported lower values of natural infection in buffaloes (Silva et al. 2014a, 2014b) in comparison to the detected in cattle (Bacanelli et al. 2014).

The cause of this natural resistance of river buffalo species to *Anaplasma* pathogenesis has not been identified. There are some possible reasons for this, including: Different strains of *Anaplasma* infecting cattle and buffaloes with varying degrees of pathogenicity (Obregón et al., 2018); Elimination or reduction of the number of blood rickettsiae as well as other hemoparasites by the buffalo innate immunity (Benitez et al., 2018). However, more studies are needed to accurately identify the causes and mechanisms involved in this buffalo resistance to this rickettsia.

Despite the findings of this study and other previous studies on the non-pathogenicity of *A. marginale* in buffalo, the role of this species in the epidemiology and transmission of anaplasmosis to other species remains significant (Obregón et al., 2018).

CONCLUSION

It can be concluded that infection with *A. marginale* does not lead to much pathogenicity in river buffaloes, so that in infected animals, no abnormalities in biochemical parameters could be detected. However, according to the high infection prevalence, the possible role of this species in the epidemiology and transmission of anaplasmosis to other species remains significant. Further studies are needed to investigate the role of this species as a reservoir.

ACKNOWLEDGMENT

The authors would like to thank the research vice chancellor of Shahid Chamran University of Ahvaz for financial support of the research project.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

S285–S300.

