Assessing the Impact of using biofloc system with different feeding rates on Nile Tilapia (Oreochromis niloticus) Performance

MAGOUZ F.I. Animal Production Department, Faculty of Agriculture, KafrEl-Sheikh University, Egypt

EL-HAMADY A.K. Fish Nutrition Department, National Institute of Oceanography and Fisheries (NIOF), Egypt

MOUSTAFA E.M. Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Kafr El-Sheikh University, Kafr El-Sheikh governorate, Egypt

MANSOUR A.I.A. Fish Nutrition Department, National Institute of Oceanography and Fisheries (NIOF), Egypt

https://doi.org/10.12681/jhvms.27535

To cite this article:

Assessing the Impact of using biofloc system with different feeding rates on Nile Tilapia (*Oreochromis niloticus*) Performance

F. I. Magouz\(^1\)\(^\circlearrowright\), A. K. El-Hamady\(^2\)\(^\circlearrowright\), E. M. Moustafa\(^3\)\(^\circlearrowright\), A. I. A. Mansour\(^2\)\(^\circlearrowright\)

\(^1\)Animal Production Department, Faculty of Agriculture, Kafr-El-Sheikh University, Egypt
\(^2\)Fish Nutrition Department, National Institute of Oceanography and Fisheries (NIOF), Egypt
\(^3\) Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Kafr El-Sheikh University, Kafr El-Sheikh governorate, Egypt

ABSTRACT: Biofloc technology is a technique of enhancing water quality in aquaculture through balancing carbon and nitrogen in the system. Randomly designed 3×1 factorial treatments for 90 days was conducted; to assess the effects of biofloc technology in indoor tanks for Nile tilapia (*Oreochromis niloticus*); on the growth performance, digestive enzyme activity, hematology, immune response, intestinal morphometry and chemical composition of Nile tilapia and flocs. In addition, to distinguish the best feeding; through utilizing different feeding rate 0.5%, 1% and 1.5% rate; with zero water change (biofloc technique; BFT) and their impact on aquatic animal rearing. Fish were reared in nine fiberglass indoor tanks (2 m\(^3\) each); three replicates / treatment (feeding rate) with 100 fish / tank. Diets were offered twice / day. Results showed that values of water parameters were optimal for tilapia culture and the recorded ammonia, nitrite and nitrate concentrations are created through nitrification process in the BFT system. BFT protein increased positively with increased feeding rate, while BFT lipid and carbohydrates negatively decreased. Growth performance and feed utilization efficiency were significantly improved by increased feeding rates however; the best food conversion rate was recorded in 0.5% feeding rate treatment. There was negative relationship between crude protein and fat contents in fish body; with the highest crude protein content in 1.0% feeding rate treatment. The overall improvement in hematological and serum biochemical parameters reflects the positive effect of biofloc system on the physical condition and immune response of tilapia. The total intestinal length and intestinal villi heights were significantly increased with decreased feeding rate; with highest length in 0.5% feeding rate treatment. In conclusion, using BFT in tilapia rearing with 0.5% feeding rate, had beneficial effects on maintaining good water quality, improving feed utilization and growth performance, increasing fish body protein content, physical and immune response promotion as well as increasing the absorptive capacity of the intestine. Subsequently, BFT offers not only economic benefits for fish farmers and safe product for consumers but also, for the sustainability of the fish environment.

Keywords: Biofloc, feeding rates, hematology, Nile tilapia, performance
INTRODUCTION

Aquaculture is a fundamental industry for supporting the world’s interest of seafood protein and will play a much increasingly significant role as the worldwide population continues to increase (Jackson, 2007). To adapt to the issue of lack in protein food supplies, which is mainly located in the developing countries, the current worldwide growth rate of the aquaculture business (8.9-9.1% per year since the 1970s) is highly required (Subasinghe, 2005; Gutierrez-Wing & Malone, 2006; Matos et al., 2006). Recently, tilapia has become the sparkling star of aquaculture with beginning of several farms to compensate the progressive consumption rate (Fitzsimmons, 2005; FAO, 2012). The Egyptian aquaculture sector is the largest producer of cultivated fish in Africa and the third largest worldwide producer of cultivated tilapia after China and Indonesia (FAO, 2016; Fitzsimmons, 2016).

Intensive aquaculture constitutes the intelligent key to keep up the tilapia production (FAO, 2012). Intensive aquaculture industry faces two noteworthy issues; (i) Water quality deterioration caused by pollution from waste products (Piedrahita, 2003) (ii) expanded cost burden of artificial feed. Feed is the greatest portion of working expense of aquaculture and to meet the additional biological oxygen demand (BOD) caused by elevated microbial respiration. Excessive suspended solid concentration in the rearing environment can also clog the gills of fish, resulting in growth and welfare depression (Luo et al., 2014). Moreover, the most obvious disadvantage is the need for high oxygenation and hence high energy cost in order to keep the fish as well as the microbiotas in optimal condition, any prolonged power failure in the scale of minutes is highly lethal to the biofloc system. Besides; a biofloc system is slow to develop as it may take more than 4 weeks for the nitrifying bacteria to establish (Thong & Yong, 2014). Hargreaves & John (2013) stated that increased energy requirement for mixing and aeration as well as reduced response time because water respiration rates are elevated.

The current experiment was conducted to assess the effects of biofloc technology in indoor tanks for Nile tilapia (Oreochromis niloticus); on the growth performance, digestive enzyme activity, hematology, immune response, intestinal morphometry and chemical composition of Nile tilapia and flocs. In addition, to distinguish the best feeding; through utilizing different feeding rate 0.5%, 1% and 1.5% rate; with zero water change (biofloc technique; BFT) and their impact on aquatic animal rearing.
MATERIALS AND METHODS

Ethical Approval
All handlings of fish were directed according to the guidelines for animal care and use for scientific purposes built up by the Ethics Committee of the Faculty of Agriculture, Kafrelsheikh University, Egypt (Approval Date: 18-03-2018).

Fish and experimental conditions
The experiment was performed using 900 mono-sex male Nile tilapia (O. niloticus) fish weighing an average of 53.45±1.49 g. They were obtained from National institute of Oceanography and fisheries (NIOF), El-Serw Research farm, Damietta Governorate, Egypt. All collected fish were accommodated in three fiberglass tanks for two weeks at the laboratory of El-Serw Research farm, Damietta Governorate. During the accommodation period, fish were fed a commercial diet (25% crude protein, Skretting Company; Egypt) at a rate of 3% of biomass, which provided twice/day of equal rations at 09:00 am and 3:00 pm to adapt the artificial diet and conditions of the trial.

After the accommodation period, randomly designed 3×1 factorial treatments were applied. The fish were randomly divided into 3 groups (treatments) of 300 fish / each group allotted into three replicates of 100 fish / each replicate. Fish were distributed into the experimental fiberglass tanks (2 m³ in size for each) contained 2000 L of water, (100 fish/ fiberglass tanks) and were equipped with effective aeration systems. Treatments are based on different feeding ratio of 0.5, 1.0, and 1.5% of fish body weight under zero water exchange; referring to T1, T2 and T3, respectively.

The experimental diets was admitted to fish twice daily at (09:00 am and 3:00 pm) for 90 days. Fish were weighed at fortnightly intervals along the experimental period and the feed amounts were adjusted by the change in live body weight. Aeration was continuously provided using an air blower (model 2BH7-520-0AH-8) made in Germany.

Assessment of water quality parameters
Water temperature and dissolved oxygen were recorded daily at one o’clock utilizing thermometer and dissolved oxygen meter (HI 9146-HANNA interment, USA). The pH values were recorded twice a week (Orion pH meter, Abilene, Texas, USA). Ammonia, nitrite, and nitrate were measured bi-weekly according to APHA (1998).

Biofloc precipitation
Subsequent to setting the fish in the tanks, providing the feed and calculating the amount of remaining ammonia, the molasses were added as a source of carbon to control the proportion among carbon and nitrogen. The amount of molasses required was determined according to De Schryver et al., 2008. Using the Imhoff cone, the volume of floc on the bottom of the cone was estimated after 15 minutes of sedimentation three times weekly (Avnimelech, 2009). Suspended material was precipitated twice when floc volume reached to 20 ml L⁻¹. Naylon net 55 µ mesh size, 25 cm diameter and 80 cm length was utilized for filtering the suspended material. Thin layers of collected biofloc were exposed directly to the sunlight to diminish the moisture.

Growth indices
Random fish samples representing the whole tank (around half of the tank) were totally weighed (50 fish/each replicate) using an electronic balance.

Final body weight (FBW), weight gain (WG), relative growth rate (RGR), specific growth rate (SGR, % day⁻¹), feed conversion ratio (FCR), and protein efficiency ratio (PER) were calculated using the following equations:

\[WG = \text{Final body weight (g)} - \text{Initial body weight (g)} \]
\[\text{RGR} = 100 \times \frac{\text{Final body weight (g)} - \text{Initial body weight (g)}}{\text{Initial body weight (g)}} \]
\[\text{Specific growth rate (SGR % / day)} = \text{SGR} = 100 \times \frac{\text{Ln FBW-Ln IBW}}{\text{T}} \]
\[\text{FCR = feed intake (g)} / \text{weight gain (g)} \]
\[\text{PER = weight gain (g)} / \text{protein intake (g)} \]

Chemical composition of fish and biofloc
Dry matter, crude protein, crude lipid and ash contents of the fish (five fish/each tank), the experimental diets and biofloc were all performed according to AOAC (1990). Fish samples were dried in an oven at 80 °C till steady weight than were grounded and stored at -20°C for subsequent analysis; while, precipitate flocs were solar dried. Ash determined by incineration at 550 °C for 4-6 h (Azim & Little, 2008). Crude protein was estimated by the micro-Kjeldahl method, %N× 6.25 (utilizing
Blood sampling and serum separation
At the end of the experiment, all fish were anesthetized using 150 mg/l MS222 (Argent Laboratories, Redmond, Washington). Blood samples were gathered from the caudal blood vessels (v. caudalis) from 12 randomly sampled fish from each group (4 fish/each replicate) using a sterile syringe (Urbinate & Carneiro, 2006). Each sample was divided into two portions; the first portion was transferred into a 2-mL sterile test tube with anticoagulant (10% ethylene diamine tetra acetate-EDTA) for haematological assay and the second portion was kept in a 2-mL plain Eppendorff tube for serum separation. Blood was left to clot at 4°C for 6 min. After that, tubes were centrifuged at 704 g/ 10 min using an Eppendorff centrifuge for serum separation. The serum was collected in Eppendorff tubes and stored at -40 °C until analyses.

Haematological analysis
Red blood cells (RBCs) and WBCs were counted immediately with a hemocytometer after dilution with Natt& Herrick’s solution (Houston, 1990). For hematocrit (Hct) determination capillary tubes were filled with blood and spun in a hematocrit centrifuge at 12,000 g for 5 min and hematocrit values were read as percentage (Karimi et al., 2013). For haemoglobin assay Drabkin’s solution was added to blood and then solution was centrifuged (3500 g for 6 min) to remove interferents, afterwards blood haemoglobin concentration was determined with a spectrophotometer (Model RA 1000, Technicon Corporation, USA) at 540 nm using the method of Blaxhall & Daisley (1973).

The mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC) were calculated (Houston 1990) according to the following formulas:

\[
\text{MCV (fl)} = 10 \times (\text{PCV per RBC})
\]
\[
\text{MCH (pg)} = 10 \times (\text{Hb per RBC})
\]
\[
\text{MCHV (\%)} = 100 \times (\text{Hb per PCV})
\]

Biochemical analysis
Serum total proteins (biodiagnostic, Egypt cat No TP20 20) was estimated colorimetrically at wave length 550 nm according to Dumas & Biggs (1972). Activities of aspartate aminotransferase (AST) (biodiagnostic, Egypt cat No AS 1061 (45)) and alanine aminotransferase (ALT)(biodiagnostic, Egypt cat No ALT 1031(45)) were determined colorimetrically at the wave length 540 nm, according to Reitman & Frankel (1957). Glucose level (mg/100 ml) was determined using glucose enzymatic PAP kits obtained from Bio-Merieux (France) (Trinder, 1969).Serum creatinine (biodiagnostic, Egypt cat No Cr 1251) was colorimetrically determined according to Heinegard & Tiderstrom (1973). Cholesterol (Cholesterol colorimetric assay kit CHOD-PAP method Elabscience, USA), triglyceride (T.G colorimetric assay kit GPO-PAP method Elabscience, USA) and uric acid (colorimetric assay kit uricase-POD, Spinreact, Spain at wave length 520) were determined colorimetrically according to the manufacturer’s instructions using the commercial kits purchased from the Laboratory Biodiagnostics Company (Cairo, Egypt).

Intestinal Morphometry
Five fish were randomly selected from each treatment. After deep anaesthesia using 40% ethyl alcohol, the belly was dissected and specimens from anterior (hepatic loop) of the intestine were sampled. The tissue samples were fixed in Bouin’s solution for 18-24 hours. After fixation, the samples were dehydrated by using ascending concentrations of ethyl alcohol (70% to absolute alcohol) then cleared in xylene and prepared for histological investigations. Sections of 4-5 μm thickness were stained with hematoxylin and eosin for morphometric analysis according to Bancroft & Gamble (2007). The length, width of intestinal villi and crypt depth in addition to goblet cells count was measured by using image analysis software (NIH, Bethesda, MD). A total of six random villi and villus-associated crypts from 5 intestinal cross-sections were selected from each and the average was calculated (±SE)

Statistical analysis
All data are presented as means± standard error (SE). Growth, hematology, blood chemistry and hormones data were analyzed using one-way ANOVA, followed by Duncan’s multiple range tests (Duncan, 1955) which was used to compare differences among individual means, with statistical software SAS ANOVA procedure (statistical analysis system, 2006). A probability of 0.05 was utilized to account for the statistical difference between the means. Before the...
analysis, percentage data were normalized by arcsine-transformation.

RESULTS

Water quality parameters
Water quality parameters; pH, temperature, dissolved oxygen, ammonia, nitrite and nitrate was estimated and summarized in table 1. The 1.5% feeding rate group showed the highest values in temperature, ammonia and nitrate values. However, the 1.0% feeding rate group showed the highest values in dissolved oxygen and nitrite values. On the other side, the 0.5% feeding rate group showed the highest values in pH value.

The chemical composition of biofloc
As demonstrated in table 2, the highest values of protein of biofloc were recorded in treatment with a feeding rate of 1.5%. Feeding rate 0.5% treatment has the highest carbohydrates and ash of biofloc content. In general, fat content of biofloc was low in different feeding rate groups except for 1.0% feeding rate.

Floc volume
The impact of different feeding rate treatments on floc volume was shown in fig. 1. Floc volume was increased with the increase of the feeding rate of tilapia. The highest floc volume was recorded in 1.5% feeding rate treatment while, the lowest floc volume was recorded in 0.5% feeding rate treatment.

Tilapia performance
As shown in table 3, under biofloc condition, fish fed at feeding rate 1.5% of fish body weight recorded the highest significant values of growth performance parameters (FW, TWG, ADG, RGR, and SGR) and FI. However, fish fed at feeding rate of 0.5% under biofloc condition showed the best significant food conversion rate values (P ≤ 0.05). However, no significant differences (P ≥ 0.05) were recorded to survival rate among different treatments.

Chemical composition of tilapia fish
Proximate chemical analysis of the whole fish body is well demonstrated in table 4. Highest significant (P < 0.05) dry matter, fat, and energy contents were recorded in fish group fed at 1.5% feeding rate under biofloc condition. Whereas, the highest significant (P < 0.05) crude protein content in the fish body were recorded in 1.0% feeding rate fish group.

Hematological parameters:
Results of haematological analysis are summarized in table 5. The highest feeding rate (1.5%) fish group reflected the highest RBCs and WBCs counts, Hb concentrations, MCH and HCT %; however, 1.0% feeding rate fish group reported the highest MCHC (%).
Blood serum biochemical parameters:

Blood serum biochemical parameters were summarized in table 6. The 1.5% feeding rate group showed the highest values in TCH, GLU and AST values; whereas, 1.0% feeding rate group showed the highest values in total protein, albumin and uric acid values. On the other side, 0.5% feeding rate group recorded the highest values in creatinine and ALT values.

Table 3: Growth performance and feed efficiency of Nile tilapia under biofloc technique at different feeding rates throughout the experimental period

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Feeding levels (% of biomass)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>Final weight (FW, g/fish)</td>
<td>130.2±3.19<sup>b</sup></td>
</tr>
<tr>
<td>Weight gain (TWG, g/fish)</td>
<td>80.33±1.20<sup>a</sup></td>
</tr>
<tr>
<td>Average daily gain (ADG, g/fish/day)</td>
<td>0.84±0.04<sup>b</sup></td>
</tr>
<tr>
<td>Relative growth rate (RGR, %)</td>
<td>138.1±5.83<sup>c</sup></td>
</tr>
<tr>
<td>Specific growth rate (SGR, %/day)</td>
<td>0.96±0.03<sup>b</sup></td>
</tr>
<tr>
<td>Condition factor</td>
<td>2.68±0.09<sup>a</sup></td>
</tr>
<tr>
<td>Intestine length</td>
<td>157.5±4.33<sup>b</sup></td>
</tr>
<tr>
<td>Villi length</td>
<td>342.2±10.92<sup>a</sup></td>
</tr>
<tr>
<td>Villi width</td>
<td>54.88±4.18<sup>a</sup></td>
</tr>
<tr>
<td>Crypt depth</td>
<td>17.13±1.46<sup>a</sup></td>
</tr>
<tr>
<td>Goblet cells /mm<sup>2</sup></td>
<td>35.80±0.57<sup>a</sup></td>
</tr>
<tr>
<td>Intestine length:bodylength</td>
<td>7.74±0.43<sup>a</sup></td>
</tr>
<tr>
<td>HIS</td>
<td>2.32±0.17<sup>a</sup></td>
</tr>
<tr>
<td>Feed intake (g/fish)</td>
<td>36.28±0.45<sup>d</sup></td>
</tr>
<tr>
<td>Feed conversion ratio</td>
<td>0.48±0.05<sup>d</sup></td>
</tr>
<tr>
<td>Feed efficiency (%)</td>
<td>207.9±5.14<sup>a</sup></td>
</tr>
<tr>
<td>Survival (%)</td>
<td>97.67±0.33</td>
</tr>
</tbody>
</table>

Data shown are Means (±SD) in each row; different superscript letters indicate significant difference (P ≤0.05).

Table 4: Chemical composition of Nile tilapia under biofloc technique at different feeding rates throughout the experimental period

<table>
<thead>
<tr>
<th>Feeding rate %</th>
<th>Chemical composition of whole-body fish (% dry matter basis)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DM<sup>b</sup></td>
</tr>
<tr>
<td>0.5</td>
<td>27.72±0.28<sup>b</sup></td>
</tr>
<tr>
<td>1.0</td>
<td>28.90±0.17<sup>b</sup></td>
</tr>
<tr>
<td>1.5</td>
<td>31.30±0.21<sup>a</sup></td>
</tr>
</tbody>
</table>

Data shown are Means (±SD) in each column; different superscript letters indicate significant difference (P ≤0.05).

Table 5: Hematological parameters of Nile tilapia under biofloc technique at different feeding rates throughout the experimental period

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Feeding rates %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>RBCs (×10<sup>6</sup> mm<sup>-3</sup>)</td>
<td>1.57±0.18<sup>a</sup></td>
</tr>
<tr>
<td>Hb (g/dL)</td>
<td>5.55±0.26<sup>a</sup></td>
</tr>
<tr>
<td>Hct (%)</td>
<td>22.93±1.41<sup>a</sup></td>
</tr>
<tr>
<td>MCV (µ<sup>3</sup>)</td>
<td>146.7±5.46<sup>a</sup></td>
</tr>
<tr>
<td>MCH (pg)</td>
<td>38.33±1.73<sup>a</sup></td>
</tr>
<tr>
<td>MCHC (%)</td>
<td>25.50±0.29<sup>a</sup></td>
</tr>
<tr>
<td>WBCs (×10<sup>3</sup> mm<sup>-3</sup>)</td>
<td>24.30±1.15<sup>a</sup></td>
</tr>
</tbody>
</table>

Data shown are Means (±SD) in each row; different superscript letters indicate significant difference (P ≤0.05).

RBCs: Red blood cells
Hb: Hemoglobin
PCT: Hematocrit
MCV: Mean corpuscular volume
MCH: Mean corpuscular hemoglobin
MCHC: Mean corpuscular hemoglobin concentration
WBCs: White blood cells
Table 6: Serum biochemical parameters of Nile tilapia under biofloc technique at different feeding rates throughout the experimental period

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Feeding rates %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>TCH</td>
<td>38.50±0.29c</td>
</tr>
<tr>
<td>TG / Mg/dl</td>
<td>257.5±19.34</td>
</tr>
<tr>
<td>Total protein, g/dl</td>
<td>2.60±0.12ab</td>
</tr>
<tr>
<td>Albumin, g/l</td>
<td>0.80±0.06</td>
</tr>
<tr>
<td>GLU/ Mg/dl</td>
<td>70.00±4.04d</td>
</tr>
<tr>
<td>Creatinine, mg/dl</td>
<td>0.33±0.07b</td>
</tr>
<tr>
<td>ALT, u/l</td>
<td>16.00±1.53</td>
</tr>
<tr>
<td>AST, u/l</td>
<td>125.0±2.89</td>
</tr>
<tr>
<td>Uric acid, mg/dl</td>
<td>1.87±0.26b</td>
</tr>
</tbody>
</table>

Data shown are Means (±SD) in each row; different superscript letters indicate significant difference (P ≤0.05).

- **TCH**: Total cholesterol
- **TG**: Triglyceride
- **GLU**: Glucose
- **AST**: Aspartate aminotransferase
- **ALT**: Aspartate aminotransferase

Morphometric analysis

The morphometric analysis of anterior part of intestine revealed significant increase in the intestinal villi length and width besides increase in goblet cells count in 0.5% group compared with the other groups. On contrast to the previous findings, the crypt depth of 0.5% group was significantly decreased compared with 1% group (table 1).

The results of the morphological analysis are summarized in Figure 2 and table 3. The total length of the intestine was significantly increased with decreased feeding rate level; the highest intestinal length was reported in 0.5% feeding rate fish group and the lowest intestinal length was in 1.5% feeding rate fish group. In addition, the height of the intestinal villi in the anterior part of the intestine was significantly increased with decreased feeding rate. The treatment of 1.5% feeding rate showed the least intestinal villi length. However, the treatment of 1% feeding rate showed moderate increase in the villi length. On the other side, there was marked increase in the intestinal villi length in the treatment of 0.5% feeding rate.

DISCUSSION

Biofloc is clustered aggregations of microbial communities like phytoplankton, bacteria, and particulate organic matter. Biofloc Technology (BFT) is a new potentially revolutionary technology that is particularly productive for tilapia culture (Prajith, 2011). Under favorable economies, tilapia production using biofloc technology represents an attractive investment proposition. BFT is an environmentally-friendly technique in aquaculture that controls both water quality and pathogens besides, providing microbial protein feed for the aquatic farm; so, reducing feed costs and feed conversion ratio (De Schryver et al., 2008 and Abdelhamid, 2009a & b, 2019a, b & c and Kourie, 2018a). BFT leads to ammonia removal from water. The bio-flocs technology has received considerable attention because it results in low cost, high production yields, feed protein recycling, water quality, and bacterial infection control (Avnimelech, 2006; Crab...
et al., 2007; Little et al., 2008).

Average measured values of water parameters in the current experiment were within the optimal range suitable for tilapia culture (Boyd & Tucker, 1998; El-Sayed, 2006; & Delong et al., 2009). Moreover, differences in ammonia, nitrite and nitrate concentrations seem to be typical features of biofloc systems (Azim & Little, 2008 & Luo et al., 2014). Nitrite and nitrate are created through nitrification in the BFT system; nitrate may experience inadequate denitrification to deliver nitrite and dissimilatory nitrate reduction to ammonia may occur (Azim et al., 2008; & Wu et al., 2012). Nitrite accumulation might be due to free ammonia inhibition during nitrification and denitrification (Shi et al., 2011).

It was suggested that 25-30% crude protein in diets is appropriate for tilapia growth (Chou & Shiau, 1996, Jauncey, 2000). The crude lipid content was sufficient according to the dietary lipid requirement of 5-12% for tilapia (Lim et al., 2009). Floc volume was increased with the increase of the feeding rate of tilapia and settled to the bottom of the tanks. This means that uptake of biofloc by the fish was insufficient to prevent its build-up and the need to remove it regularly from the system was clear. Therefore, characterization of floc and improved approaches to its removal are pre-requisites for effective management of BFT system. Protein is increased positively with increased feeding rate, while lipid and carbohydrates negatively decreased. The results coincided with previous reports (Azim & Little, 2008; Azimet et al., 2008; Crab et al., 2010) but disagreed with Emerenciano et al. (2012).

Growth performance and feed utilization efficiency were significantly improved by different feeding rates, implying a potential role of Biofloc system in mitigating stress factors and promoting fish welfare. Biofloc system substantially contributes to tilapia growth and production where wastes turned over into natural food particles such as suspended bacteria (Avnimelech, 2007; Azim & Little, 2008; Beveridge & Baird, 2000; Little et al., 2008; Yuan et al., 2010). The best significant food conversion rate was observed in 0.5% feeding rate where decreased amount of feed was necessary for producing one unit of fish leading consequently to production cost reduction. The results are similar to Avnimelech et al., 1994 and Luo et al., 2014.

In the current study, there is a negative relationship between crude protein and fat contents in the fish body. According to Xu & Pan (2012), biofloc can influence the whole body composition of cultured shrimp with increased lipid content in the whole shrimp body. Izquierdo et al. (2006) also found that the whole body lipid content of shrimp growing in mesocosms systems with biofloc exhibited an increasing trend. This might be due to the essential amino acids, fatty acids (PUFA and HUFA) and other nutritional elements provided by the biofloc in the BFT treatment (Izquierdo et al., 2006; Xu et al., 2008b).

Hematological parameters reflect the health status of fish (Harikrishnan et al., 2011). The overall improvement in haematological characteristics reported in 1.5% feeding rate group, used in the current study, indicate that the biofloc system had positive effect on the physical conditions of the tilapia. The results are similar to many previous records (Öz et al., 2018 &2020 a, b; Xu & Pan (2013) and disagree with some reports (Azim & Little, 2008; Souza et al., 2014 and Xu & Pan, 2014). This difference might be attributed to different experimental conditions and culture species.

The results of the fish serum biochemical analysis in this study reflected a significant increase in serum total proteins and Albumin in 0.1% feeding rate group. The results indicate the contribution of the biofloc system in improving the immune response of Nile tilapia (Ballester et al., 2010; Long et al., 2015). Biofloc is not only a source of additional nutrition, such as proteins, lipids, minerals and vitamins (Izquierdo et al., 2006; Moss et al., 2006; Ju et al., 2008b; & Xu et al., 2012a), but also provides abundant natural microbes and bioactive compounds such as carotenoids and fat-soluble vitamins (Ju et al., 2008a), and other immune-stimulatory compounds (Crab et al., 2012) that may stimulate the immune response of cultured fish.

The total intestinal length and the heights of the intestinal villi were significantly increased with decreased feeding rate. The role of intestine in nutrient digestion and absorption is well-known in herbivorous fish as tilapia (Grosell et al., 2010). Moreover, the intestinal villi height and the muscular layer thickness are good indicators of a healthy intestine (Khojasteh, 2012). Therefore, the increased intestinal absorptive area with a subsequent increase in nutrient absorption and retention highlight the observed improvement in growth performance, immune response and stress resistance in Nile tilapia in the current study. German and Horn (2006) confirmed the present results; they...
found that intestine lengths of carnivores were longer than those of omnivores, and these were longer than those of herbivores.

CONCLUSION

Based on the current results, it could be concluded that using biofloc technique in tilapia rearing had beneficial effects on maintaining good water quality, improving the feed utilization and growth performance, increasing fish body protein content, physical and immune response promotion as well as increasing the absorptive capacity of the intestine. Subsequently, biofloc offers not only excellent benefits for fish farmers (economically) and consumers (safe product) but also, for the sustainability of the environment (treating wastes which turned over into natural feed stuff for fish saving the artificial food cost). Further research efforts should be made to improve the biofloc uptake by the fish to prevent its accumulation.

CONFLICT OF INTEREST

None of the authors have any conflict of interest to declare.

REFERENCES

Gutierrez-Wing MT and Malone RF (2006) Biological filters in aquaculture: trends and research directions for freshwater and marine appli-

Ju ZY, Forster I, Conquest L, Dominy W and Horgen FD (2008a) Enhanced growth effects on shrimp (Litopenaeus vannamei) from inclusion of whole shrimp flocc or flocc fractions to a formulated diet. Aquat Nut 14:533-543.

Koirie R (2018a) Large-scale biofloc tank culture of tilapia in Malawi - a technical success story. Environ. Aquaculture/ Technical articles (This title was originally published in World Aquaculture).

