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Review article 
Ανασκόπηση

ABSTRACT: This article intended to review many methods and types of stressors in the previous works of literature 
that describe the role of these stressors to induce modifications and alterations in the pharmacological response of the 
drugs acting on the nervous system (neuroacting drugs) in human and animal models. The current review focus on the 
different methods for inducing stress status which categorized as chemical, physical and miscellaneous stressors that 
affect on the well-known pharmacological response of the neuroacting drugs and by which mechanism can the stressor 
induce a modification in the drug target response with mentioning the findings related to changes in the pharmcolo-
giacal response of the neuroacting drugs in previous literature. In conclusion, most studies suggest an alteration of 
the pharmacological response of neuroacting drugs, commonly by potentiating their efficacy and subsequent toxicity, 
due to different stressful methods, which may be obligated to the direct and indirect receptor modification (pharma-
codynamic interaction) in addition to the direct pharmacokinetic influence on the essential parameters of absorption, 
distribution, metabolism, and excretion of the neuroacting drugs.
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INTRODUCTION

Stress means an increase in the free radical forma-
tion inside an organism’s cells due to exposure to 

different stressful methods like chemicals, physical 
and other miscellaneous stressful agents (Lee and 
Jeong, 2007; Srivastava and Kumar, 2015). Differ-
ent types of stressful methods causing an alteration 
in pharmacological response, especially for drugs that 
act on the nervous system. Stress may occur physi-
ologically at the age of progressing and leads to an 
imbalance in the functions of the enzymes in the mi-
tochondria responsible for energy production due to 
the accumulative effects of free radicals causing neu-
rodegeneration (Navarro et al., 2002; Liguori et al., 
2018). The goal of this review article was to focus 
on many methods and types of stressors in the previ-
ous works of literature that describe the role of these 
stressors with their mechanism for inducing modifica-
tions and alterations in the pharmacological response 
of the drugs acting on the nervous system in human 
and animal models because of the importance of the 
pharmacological response in the determining the ac-
tual benefits of using the drugs especially in clinical 
pharmacology.

BIOMARKERS USED FOR STRESS DETEC-
TION

The state of oxidative stress (OS) is inferred us-
ing biochemical tests, the most important of which is 
the measurement of the glutathione and malondialde-
hyde concentrations, as well as the measurement of 
the total antioxidant status (TAS) (Dalle-Donne et al., 
2006; Marrocco et al., 2017), which are among the 
essential vital signs indicating the occurrence of OS:

Glutathione: which consists of three peptide chains 
linked to the sulfur group; widely distributed in the 
organism’s body and have an important and crucial 
part to metabolic as well as the defensive cell function 
by removing the free radical’s toxicity that formed be-
cause of metabolic processes within the cell (Pastore 
et al., 2003; Dalle-Donne et al., 2006). Since the state 
of OS leads to a disruption of the antioxidant cellu-
lar biological defenses such as glutathione within the 
cells of the body of the organism, the state of the OS is 
inferred by measuring the glutathione concentration 
in the biological samples (e.g. Plasma and tissue) of 
the organism as its concentration decreases in the case 
of OS (Abdel Rahman, 1995; Patockova et al., 2003; 
Pastore et al., 2003; Dalle-Donne et al., 2006).

Malondialdehyde: The OS state occurrence leads 

to the cell membrane destruction of the body that 
contains unsaturated fats and this increases the level 
of the concentration of malondialdehyde compound, 
which is the final result of the lipid peroxidation pro-
cess in the fat of the body cell membranes (peroxida-
tion of unsaturated fatty acids, especially arachidonic 
acid). For this reason, the state of the OS is detect-
ed by measuring the malondialdehyde concentration 
(Patockova et al., 2003; Achuba et al., 2005; Del Rio 
et al., 2005; Dalle-Donne et al., 2006; Mendes et al., 
2009), as the concentration of malondialdehyde rises, 
which is a sign of the stress. It is a toxic compound 
as it correlates with DNA and cellular proteins, caus-
ing genetic mutations, dysfunction of the cell, and a 
change in drug response (Marnett, 1999; Del Rio et 
al., 2005).

SELECTING AND CONSIDERING THE CEN-
TRAL NERVOUS SYSTEM AS A TARGET FOR 
STRESS MODIFYING DRUGS 

The central nervous system (CNS) differs from the 
rest of the body’s systems by being more suscepti-
ble to stress (e.g., OS), due to its continued constant 
need for oxygen- significantly. It has a low concentra-
tion of antioxidants as well as has a high amount of 
polyunsaturated fats, and the fact that its large cellular 
compounds such as fats, carbohydrates, proteins, and 
nuclear acids that considered more susceptible to ox-
idation damage (Storz and Imlay, 1999; Patockova et 
al., 2003; Achuba et al., 2005; Sayre et al., 2008). The 
nervous tissue is more susceptible to the OS because 
of the production of high amount of free radicals. The 
reason is that the brain uses up to 20 % of the whole 
body oxygen, the CNS has a much amount of unsat-
urated fatty acids and the brain contains a high per-
centage of iron that stimulates metabolic processes. It 
has weak effectiveness of anti-oxidant enzymes, and 
these factors make the brain more susceptible to OS 
and thus have changed the effectiveness and pharma-
cological response to drugs that work on the nervous 
system (Pastore et al., 2003; Sayre et al., 2008).

TYPES OF STRESSORS

CHEMICAL STRESSORS
Hydrogen peroxide (H2O2): is one of the most 

common oxidizing compounds that stimulate free 
radical formation, the most important of which is the 
hydroxyl radical by Fenton Reaction. The hydroxyl 
radical is the leading cause of an OS that breaks down 
cell components, stimulates lipid peroxidation, and 
breaks down proteins, including protein receptors. It 
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stimulates regular or programmed death of the cell 
and is reliant on the concentration through direct ox-
idation of proteins and nucleic acids (Navarro et al., 
2002; Patockova et al., 2003; Sayre et al., 2008). H2O2 
reduces the effectiveness of dehydrogenases in the 
Krebs cycle, energy production, stimulates the growth 
factor and the receptor of the Aspartate neurotransmit-
ter, which leads to an elevation in the calcium influx 
into the nerve cell and has a vital role for the serotonin 
receptor of rat brain, leading to poor behavior (Pato-
ckova et al., 2003; Sayre et al., 2008). Experimental-
ly, H2O2 causes OS in chickens when given at 0.5% 
in water along with fourteen days and causes a neuro-
behavioral change in the open field activity (Mousa, 
2012; 2014, Mousa and Mohammad, 2012a;b, Mou-
sa, 2021; Mousa et al., 2021), besides modifying the 
pharmacokinetics (Mousa and Mohammad, 2012c).

Tertbutyl-hydroxyl peroxide: works by damaging 
the nerve cells in the brain by lowering body tempera-
ture and binding to the central and peripheral binding 
sites of the GABAA receptor on the outer surface of 
the mitochondrial membrane inside the neuron (Sar-
nowska et al., 2009).

Ethanol and nicotine: They cause OS by produc-
ing free radicals and depleting glutathione in the liver, 
kidney, lungs, and testes of rats, which is essential in 
the process of free radical disposal (Navasumrit et al., 
2000; Husain et al., 2001).

Neuropeptide S: It induced OS, was found to alter 
the behavior of mice by causing a powerful OS that 
increases motor activity (Castro et al., 2009).

PHYSICAL STRESSORS
Mechanical immobilization: It has been observed 

that immobilization-induced stress by increasing the 
neurotransmitter dopamine level in the brain, and 
diazepam reduces the effects of this stress in rats 
(Hegarty and Vogel, 1995; Uehara et al., 2003). Re-
stricting the movement of rats leads to stress. It alters 
activity measures used in the open field, as well as a 
change in behavior and a reduction of the glutathione 
of the nervous system (Nade and Yadav, 2010) while 
repeating restricting the movement, can induce stress 
in the rats and increases the neuron’s sensitivity in the 
brain to diazepam which leads to an increased in its 
pharmacological response (Kalman et al., 1997).

Immersion: It was found that stress triggered by 
immersion by immersing chicken chicks in the water 
increased the number of places where the central ben-

zodiazepine drugs were bound to the GABAA recep-
tor, making these drugs closely bound to this receptor 
(Garcia et al., 2002).

Swimming: Which causes stress of rats (Moto-
hashi et al., 1993) besides chickens (Marin and Arce, 
1996) and increases the number of the benzodiazepine 
binding sites (central and peripheral) on the GAB-
AA receptor of the nervous tissue without increasing 
number related to GABAA receptors, indicating an 
increased brain sensitivity to diazepam leading to an 
increase in its effect and pharmacological response 
to stress (Miller et al., 1987; Motohashi et al., 1993; 
Marin and Arce, 1996; Kalman et al., 1997).

Defeat Stress: It also increases the number of bind-
ing sites on the GABAA receptor in the brain with-
out elevating the brain’s number of GABAA receptors 
(Miller et al., 1987; Jie et al., 2018).

MISCELLANEOUS STRESSORS 
Apomorphine: A drug that works on the CNS and 

is used as emetics causes OS in the rat brain and in-
terferes with drugs that work on the nervous system 
and altering their pharmacological response (Moreira 
et al., 2003). 

Xylazine: It was found that its administration with 
zolazepam and tiletamine in deer resulted in an OS in 
increasing the malondialdehyde concentration in the 
serum with rising glucose level (Yaralioglu-Gurgoze 
et al., 2005).

Chlorpyrifos: This is an insecticide that was found 
to cause OS in rats with an elevation in the process 
of lipid peroxidation of the red blood cells, indicat-
ing that it could interfere with the drugs administered 
with it (Mansour and Mossa, 2009).

Minerals (Cadmium, lead, mercury, and arsenic): 
They were found that exposure to these minerals caus-
es OS by depleting antioxidants levels, which leads to 
increased active oxygen with rising of radicals such 
as the hydroxyl root besides high oxide root leading to 
the breakdown of proteins, fats, DNA, and the toxic-
ity mechanism of these minerals may be attributed to 
their ability to cause OS (Storz and Imlay, 1999; Ercal 
et al., 2001; Jemai et al., 2007).

Sodium fluoride: causes OS, as this was inferred 
by the increase in the malondialdehyde concentration 
in the plasma of mice (Altintas et al., 2010).
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MECHANISM OF STRESS INDUCTION
Only, the stressful agents are causing an elevation 

in the hydroxyl group (OH-) (Fenton reaction), caus-
ing free radicals to be formed called Reactive Oxygen 
Species (ROS), which interact and destruct the cellu-
lar components like proteins (e.g., Receptors), carbo-
hydrates, lipids, and nuclear acids (Figure 1) (Kar and 
Choudhury, 2016).

STRESS INDUCES A MODIFICATION IN THE 
BLOOD-BRAIN BARRIER

Many stressful methods destroy the blood-brain 
barrier (BBB), which may lead to more passage of 
the drugs acting on the nervous system. OS plays a 
role in increasing the permeability of the substance of 
the blood (e.g., Drugs) to the CNS through the BBB, 
which has an essential function in the balance of the 
CNS, as it was found that the OS works to change 
the location of the occludin (a protein responsible for 
the vital link between tight junction between the bar-
rier cells) which increases the barrier’s influence over 
substances and drug infiltration between the blood 
and the CNS (Lochhead et al., 2010; Daneman and 
Prat, 2015).

STRESS VERSUS NEUROTRANSMITTERS OF 
THE NERVOUS SYSTEM

Stressful agents that formed free radicals interact 
with the synthesis and release of the neurotransmitters 
in the presynaptic neuron in addition to its modifica-
tion of the neurotransmitters’ affinity and efficacy on 
their receptors on the postsynaptic neurons (Figure 2) 
(Kar and Choudhury, 2016). OS plays a significant 
part in the pathogenicity of multiple sclerosis, that de-
stroys the myelin and axonal parts of neuron as well as 
free radical elevation, a decrease in concentrations of 
antioxidants in the blood and cerebrospinal fluid, and 
an increase in the neurotransmitter glutamate during 
the disease occurrence (Sayre et al., 2008). OS is caus-

ing degenerative diseases of neurons, affecting their 
susceptibility to neurotransmitters’ secretion (Sayre et 
al., 2008). The OS destroys the neurons that produce 
Catecholamines such as adrenaline, noradrenaline, 
and dopamine in the brain, thereby leading to neuro-
logical diseases, including Parkinson’s disease (Sayre 
et al., 2008). The H2O2 that causes OS destroys nerve 
cells in the brain of rats that producing neurotrans-
mitters such as dopamine (Hussain et al., 1995) and 
it causes oxidation in the neurotransmitter dopamine 
to neurotoxic compound (Sayre et al., 2008). It was 
found that H2O2 increases the secretion of dopamine 
and noradrenaline neurotransmitters from the neu-
rons of the brain of rats and increases their effect on 
their receptors by inhibiting the reuptake of these 
neurotransmitters into the neuron (Langeveld et al., 
1995). H2O2 is used to induce OS and study neuro-
pathological effects in the brain because it stimulates 
glutamate receptors by increasing secretion, increas-
ing Nitric Oxide production, increasing the percent-
age of programmed neuronal cell death (Apoptosis) 
(Fatokun et al., 2007). The OS is the causative agent 
of diseases, neuropathy, and the cause of epilepsy cas-
es, as it was found that stimulating the receptor of glu-
tamate leads to the occurrence of these cases (Coyle 
and Puttfarcken, 1993).

EFFECT OF DIFFERENT STRESS METHODS 
ON THE PHARMACOLOGICAL RESPONSE 
OF SOME DRUGS ACTING ON THE NERVOUS 
SYSTEM 

It was found that OS destroys the cell membrane by 
the lipid peroxidation process and leads to a change in 
the cell membrane’s biological properties, including 
fluid entering the cell and disrupting or losing the re-
ceptor function in the cell membrane (Dalle-Donne et 
al., 2006; Donne et al., 2006). Stress factors involved 
in modulating the pharmacological responses of some 
neuroacting drugs were illustrated in Table 1.

Figure 1. Flow chart of the impact of the OS on the cellular components (Kar and Choudhury, 2016).
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Figure 2. Flow chart of the OS involved in neurotransmitters and neuronal dysfunction (Kar and Choudhury, 2016). 

Table 1. Summary of the stress factors involved in the modulation of the pharmacological responses of some neuroacting drugs
ReferenceTheory of interactionDrug 

response
ModelNeuroacting drugStress factor

Mousa and 
Mohammad, 2012a; 
2012c;  Zhang et al., 
2002

+ affinity; -metabolism 
and excretion; K 
channels opening; modify 
pharmacokinetic parameters

+ChickensDiazepamH2O2
 

Mousa and 
Mohammad, 2012b

+ affinity; - metabolism and 
excretion

+ChickensXylazine

Mousa, 2014+ affinity; - metabolism and 
excretion

+ChickensKetamine

Ahmed, 2010+ affinity; - metabolism+ChickensPropofol

Wohaieb et al., 1994Down regulation; - 
metabolism

+RabbitsDetomidine-ketamine

Mohammad et al., 1999+ affinity; - metabolism+RatsPentobarbital
Akaishi et al., 2004Activating Ca+2 channels; - 

NT release
-RatsNeuroleptics

Baigi et al., 2008- affinity and metabolism-RatsBenzoquinone
Mehta et al., 2009+ free radical formation+RatsChlorpyrifos

Weidauer et al., 2004+ lipid peroxidation+RatsParaquat

Lopez et al., 2007+ lipid peroxidation; 
- antioxidant defense 
mechanism 

-HumansAntiepileptic drugs

Mohammad, 1994+ oxidative damage in the 
CNS

+MiceDetomidine-ketamineCadmium

Mohammad et al., 2000+ inhibition of the CNS+Micexylazine
Abdel Baky and Ali, 
2009

+ inhibition of the CNS+HumansDiazepam Doxorubicin

Porcu and Morrow, 
2014

+ basal levels+Rats and 
Humans

Neuroacting steroidsEthanol

Khokhar and Tyndale, 
2011

Changes in brain metabolism+RatsPropofolNicotine

Garcia et al., 2002+ affinity+ChickensBenzodiazepinesImmersion
Kasahara et al., 2015+ Glucocorticoid release-MiceEndotoxinRestraint 
Barbaccia et al., 1996+ GABAA receptor function+RatsNeuroacting steroidsFoot shock

+: Increase; -: Decrease; NT: Neurotransmitter; CNS: Central nervous system
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STRESS-INDUCING PHARMACODYNAMIC 
INTERACTION 

Stress can induce a modification in the pharma-
cological response of the neuroacting drugs in one or 
more ways through increasing the binding sites at the 
receptors, increasing the receptors’ susceptibility, and 
decreasing the numbers of the receptors (down-reg-
ulation). The stress can reduce the RNA production, 
which inhibits the development and production of 
protein substances in the cell, including protein recep-
tors within the cell and those on the cell membrane, 
causing a reduction in the receptors’ number (Craw-
ford et al., 1997; Gunn et al., 2015).

STRESS-INDUCING PHARMACOKINETIC 
INTERACTION 

Stress modifies drug disposition and availability to 
the target receptors by increasing the absorption of the 
drug from the site of treatment and alters their distri-
bution by the destruction of the protein binding while 
decreasing the metabolism by affecting the cyto-
chrome P450 enzymes responsible for drug elimination 
and effect termination and later decrease drug excre-
tion (Mohammad et al., 1999; Mousa, 2012; Mousa 

and Mohammad, 2012c).

CONCLUSIONS
In conclusion, there are many methods of stress-

ors used for induction of stress in animal models like 
chemical, physical and miscellaneous stressors and 
the majority of them practices the chemical method 
by using H2O2. Most studies suggest an alteration of 
the pharmacological response of neuroacting drugs, 
commonly by potentiating their efficacy and subse-
quent toxicity, due to different stress methods, which 
may be obligated to the direct and indirect receptor 
modification (pharmacodynamic interaction) in ad-
dition to the direct pharmacokinetic influence on the 
essential parameters of absorption, distribution, me-
tabolism, and excretion of the neuroacting drugs.
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