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Research article
Ερευνητικό άρθρο

ABSTRACT: The objective of this study was to investigate polymorphisms of MASP2, TG5 and DQA1 genes using 
PCR-DNA sequencing inseventy Holstein, and Brown Swiss dairy cows (35 cows each). Blood samples were collected 
from each animal into tubes containing disodium EDTA as an anticoagulant for DNA extraction. PCR was carried out 
for amplification of 305-bp of MASP2, 545-bp of TG5 and 373-bp of DQA1genes DNA sequencing assessment elabo-
rated nucleotide sequence variations in the forms of single nucleotide polymorphisms (SNPs) between two breeds. The 
SNPs identified in the investigated genes for the Holstein breed were A46G in the MASP2 gene and C371T in the TG5 
gene. A characteristic T53C SNP was also reported for the Brown Swiss breed in the DQA1 gene.Chi-square revealed a 
significant variation in distribution of all identified SNPs (P <0.001). Consequently, identified SNPs in the investgated 
genes could be efficeient for characterization of Holsteins, and Brown Swiss breeds.
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INTRODUCTION

The diversity within and between cattle breeds is 
closely linked to their origin, history, and evo-

lution (Bradley et al., 1996; MacHugh et al., 1997; 
Troy et al., 2001). A crucial element of biodiversity 
conservation is in situ protection of indigenous, na-
tive breeds of cattle constituting a reservoir of unique 
combinations of genes and alleles, which in thefu-
ture may appear highly valuable, e.g. for the creation 
of new livestock genotypes (Bulla et al., 2013). Al-
though diversity between the world’s cattle breeds 
does not allow the species to be classified as endan-
gered, the loss of local breeds is an irreversible and 
irreplaceable erosion of genetic resources (Taberlet et 
al., 2008; FAO, 2011). The genetic structure can be 
characterized using a variety of molecular markers, 
depending on the research problem (Groeneveld et 
al., 2010). In recent years, analysis of single nucleo-
tide polymorphisms (SNP) has begun to dominate this 
area. New technologies using SNP or whole-genome 
scanning may revolutionize previous achievements in 
biodiversity assessment and genetic characterization 
of breeds, providing therefore a more thorough under-
standing of the molecular basis of functional diversity 
(Groeneveld et al., 2010). There is considerable inter-
est in the application of molecular genetic technolo-
gies in the form of specific DNA markers that are as-
sociated with various QTL to promote more efficient 
and relatively easy selection and breeding of farm 
animals with advantages for inheritable traits such as 
growth rate, body weight, carcass merit, feed intake 
as well as milk yield and composition (Spelman and 
Bovenhuis, 1998).

The bovine mannose-binding lectin-associated 
serine protease (MASP2) gene is located on chromo-
some 16, consisting of 11 exons. It encodes a protein 
of 686 amino acids. Polymorphisms in the MASP-
2gene have a strong link to autoimmune disorders 
(Wu et al., 2015). MASP2 gene polymorphisms and 
MASP2 serum levels are associated with several in-
flammatory disorders and infections. MASP2 is the 
top biomarker for the diagnosis of HCC(M2) and 
upper respiratory tract infection in children (Xiong 
et al., 2015). The levels of MASP2 in sepsis patients 
differ according to age, higher levels were found in 
neonates and lower levels were found in older pa-
tients compared to healthy controls (Świerzko et al., 
2016). Low levels increase the susceptibility to HIV 
and HCV/HBV co-infection (Boldt et al., 2016; Silva 
et al., 2018). Moreover, MASP2 gene has been associ-
ated with rheumatoid arthritis (Goeldner et al., 2014), 

the susceptibility to tuberculosis when the SNPs 
(rs2273346 and rs6695096) of MASP2 occurs (Chen 
et al., 2015), and increased risk of ischemic stroke, 
the SNP (rs147270785_A alleles) of MASP2 has been 
shown to protect against ischemic stroke (Tsakanova 
et al., 2018). It can be also used as a prognostic bio-
marker for liver cancer (Ding et al., 2014) and col-
orectal cancer (Ytting et al., 2011).

The thyroglobulin 5′ leader sequence (TG5) gene 
is one of the longest mammalian genes. It is found 
in the centromeric region of the 14th chromosome, 
consisting of 37 exons in cattle (Gan et al., 2008; Ar-
dicli et al., 2018). It has two alleles, TG5T and TG5C 
resulting in three genotypes, TG5TT, TG5CC, and 
TG5CT.TG5 gene is considered as one of the vital 
polymorphic candidate genes encoding hormones 
such as prolactin and somatotropin, which determine 
the level of dairy and meat productivity in cows. It 
is a precursor of the thyroid iodothyronine hormones 
(thyroid hormone, the triiodothyronine (T3), and thy-
roxine (T4) hormones), which adjust various physio-
logical and biochemical processes in virtually all body 
tissues by regu lating gene expression. Moreover, thy-
roid hormones influence lipid metabolism and adipo-
cyte development into adipose tissue. Consequently, 
the thyroglobulin gene is a functional and positional 
candidate gene that influences fat accumulation in 
tissues, including milk (Dolmatova et al., 2020). A 
single-nucleotide polymorphism in the 5′ untranslat-
ed region of the TG5 gene is used for marker-based 
selection targeted at raising marbling (Carvalho et al., 
2012). Various investigations have revealed that the 
thyroglobulin gene polymorphism has been associat-
ed with fat metabolism, especially intramuscular fat 
(Anton et al., 2012; Selionova et al., 2019), as well as 
quality and quantity of milk yield (Anton et al., 2012; 
Tyul’kin et al., 2013; Zinnatova and Zinnatov, 2014).

The bovine DQA1 gene is a highly polymorphic 
gene located on the short arm of chromosome 23. It is 
one of the Major Histocompatibility Complex type-A 
genes (MHC-Class II), which belonged to the Immu-
noglobulin superfamily with the most polymorphism 
(Vandre et al., 2014).The major histocompatibility 
complex (MHC) genes are called bovine leukocyte an-
tigen (BoLA) genes in cattle. They play a critical role 
in the induction and regulation of immune responses. 
Also, they are considered as candidate markers for 
several diseases and immunological traits in bovine 
(Takeshima and Aida, 2006). Although the BoLA 
region appears to be arranged similarly to the MHC 
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region in humans, there are significant differences. 
The BoLA region of chromosome 23 has been divid-
ed into two independent sub-regions by a third of the 
chromosome’s length due to a substantial rearrange-
ment in the class II region (Amills et al., 1998; Band 
et al., 1998). The functionally expressed DQ and DR 
genes are found in the class IIasubregion, while genes 
with unknown functions, such as LAP2, DYA, DYB, 
TAP1, TAP2, DMA, DMB, LMP7, DOB, and DOA are 
found in the class IIbsubregion. The principal class II 
restriction elements for CD4 T-helper cells are the DR 
and DQ molecules, which are produced by the BoLA 
gene (Aida, 1995; Glass et al., 2000). Each BoLA 
haplotype produces only a single DR product and 
one or more DQ products. On the other hand, human 
MHC class II expresses several DR and DQ products. 
DQ genes are duplicated in about half of the typical 
class II haplotypes, both sets of DQ genes can be ex-
pressed. This duplication in association with the DQA 
and DQB genes polymorphisms significantly increas-
es variation at the cell surface due to inter-andintra-
haplotype pairing of DQ a- and b chains.Duplicated 
DQ genes produce DQ restricted T-cell clones while 
a single DQ gene pair produce the majority of DR re-
stricted clones in cattle (Glass et al., 2000). It is found 
that duplicated DQ haplotypes complicate the use of 
restriction elements in cattle. Therefore, cattle can ex-
press a variety of class II gene products, any of which 
could contribute positively or negatively to the immu-
nological response to specific antigens. Cattle have 
one DRA gene, three DRB genes (only one of which, 
DRB3, is thought to be functionally significant), and 
one or two DQA and DQB genes, depending on a hap-
lotype (Andersson et al., 1986; Sigurdardóttir et al., 
1992). Five DQA and five DQB loci are located in the 
DQ region, with exon 2 of the DQA1, DQA2, DQB1, 
and DQB2 genes being highly polymorphic(Davies et 
al., 1997; Russell et al., 1997).

There is little information on the molecular char-
acterization of MASP2, TG5,and DQA1 genes in Eu-
ropean breeds of cattle (Ibeagha-Awemu et al., 2007; 
Schennink et al., 2009). Although research has elabo-
rated associations between these studied genes poly-
morphism and productive traits in a single breed, there 
is however a lack of studies regarding genetic polymor-
phisms of these genes in Holstein and Brown Swiss 
breeds of cattle. Consequently, the objective of the 
present study was to characterize thegenetic structure of 
Holstein, and Brown Swiss breeds of cattle using poly-
morphism at loci of functional genes encoding MASP2, 
TG5, and DQA1via DNA sequencing approach. 

MATERIALS AND METHODS

Ethics statement
The collection of samples and care of the animals 

used in this study followed guidelines for experimen-
tal animals established by Research Ethics Commit-
tee, Faculty of Veterinary Medicine; Mansoura Uni-
versity (code Ph. D/58).

Animals and experimental samples
SeventyHolstein and Brown Swiss dairy cows (35 

cows of each breed) were used in this study. Animals 
belonged to a private farm located at Ismailia desert 
road, Ismailia Governorate, Egypt. Animals were in 
the third lactation season and were raised in a com-
mercial dairy herd of approximately 450 animals. 
Cows were 3 years of age on average and 450 kg of 
average body weight. Animals were housed in a cubi-
cle (free-stall/feedlot) barn with straw-bedded stalls 
and a slatted floor that was scraped regularly. They 
were fed a total mixed ration (TMR), milked twice/
day, and artificially inseminated. The annual milk 
production per cow averaged 8500 kg energy-cor-
rected milk. Blood samples were collected from each 
animal into tubes containing disodium EDTA as an 
anticoagulant for DNA extraction. 

DNA extractionand Polymerase Chain Reaction 
(PCR)

Extraction of the genomic DNA from whole blood 
was done using Gene JET whole blood genomic DNA 
extraction kit following the manufacturer procedure 
(Thermo Scientific, Lithuania). The purity and con-
centration of DNA samples were screened by Nano-
drop for further analysis. 

PCR was carried out for amplification of frag-
ments of 305-bp ofMASP2, 545-bp of TG5, and373-
bp of DQA1genes.The primers used in the amplifi-
cation are shown in Table 1. The polymerase chain 
reaction mixture was done in a final volume of 100 μL 
in a thermal cycler. Each reaction volume contained 6 
μL DNA, 41 μL H2O (d.d water), 50 μL PCR master 
mix (Jena Bioscience, Germany), and 1.5 μL of each 
primer. The reaction mixture was subjected to an ini-
tial denaturation temperature of 94°C for 4 minutes. 
The cycling proceeded for 30 cycles of 94°C for 1 
minute for denaturation, annealing temperatures (as 
shown in Table 1) for 1 min, extension at 72 °C for 1 
min, and a final extension at 72 °C for 7 min. Samples 
were held at 4 °C and representative results of PCR 
analysis were detected by agarose gel electrophore-
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sis.The fragment patterns were then visualized under 
U.V using a gel documentation system.

DNA sequencing and polymorphism detection
Before DNA sequencing, removing primer dim-

mers, nonspecific bands, and other impurities was 
done. As described by Boom et al., (1990), purifi-
cation of PCR products with the expected size was 
carried out using a PCR purification kit following 
the manufacturer procedures (Jena Bioscience # pp-
201×s/Germany). Quantification of PCR product was 
carried out using Nanodrop (Uv-Vis spectrophotome-
ter Q5000/USA) in order to yield high products and to 
ensure enough concentrations and purity of the PCR 
products (Boesenberg-Smith et al., 2012). To detect 
single nucleotide polymorphisms in the investigated 
genes between the two breeds, PCR products with tar-
get band were sent for DNA sequencing in forward 
and reverse directions using ABI 3730XL DNA se-
quencer (Applied Biosystem, USA), depending on 
the enzymatic chain terminator technique developed 
by Sanger et al., (1977). 

Analysis of DNA sequencing data was carried out 
by chromas 1.45 (http://www.technelysium.com.au) 
and blast 2.0 software (Altschul et al., 1990). Differ-
ences were classified as single-nucleotide polymor-
phisms (SNPs) between PCR products of investigated 
genes and reference sequences available in GenBank.
Based on DNA sequencing data alignment, amino 

acid sequence variation between the two breeds was 
performed using the MEGA4 software package(Ta-
mura et al., 2007). 

Statistical analysis
Statistical analysis was performed using Graph-

pad statistical software program (Graphpad prism for 
Windows version 5.1, Graphpad software, Inc., San 
Diego, CA, USA). Difference in the frequencies of 
SNPs in MASP2, TG5, and DQA1between Holstein 
and Brown Swiss breeds was statistically evaluated 
using (Crosstabs).Fisher’s exact test was carried out 
to compare the distribution of the identified SNPs.

Gene and genotypic frequencies
Gene and genotypic frequencies were calculat-

ed by allele simple counting (Falconer and Mackay, 
1996). Chi-square was carried out to test Hardy-Wein-
berg equilibrium and show genotype distribution in 
the Holstein and Brown Swiss cattle populations.

RESULTS

Molecular characterization of MASP2, TG5 and 
DQA1 genes

PCR-DNA sequencing revealed a variation in nu-
cleotide sequence in form of SNPs between Holstein 
and Brown Swiss breeds (Table 2). Fisher’s exact 
test showed a significant difference in the frequen-
cies of studied genes between the two breeds. DNA 
sequencing of the MASP2 gene (305-bp) revealed 

Table 1 Forward and reverse primer sequence, length of PCR product and annealing temperature for MASP2, TG5 and DQA1 genes

Primer Forward Reverse
Annealing

Temperature
(°C)

Length of
PCR 

product(bp)
Reference

MASP2 5′-GTTTGTGGGAG
GAATAGTGTC -3′

5-′-AGTTAAGTAGTG
GAAGAGTGGC -3′ 60 305 [60]

DQA1 5′′-TCAATTTCTTC
TTTCACTTTGCT-3′

5′-GGTTTGAAGGGGT
AGATTAATAAA-3′ 58 373 [59]

TG5 5′′-GGGGATGACTA
CGAGTATGACTG-3′

5′-GTGAAAATCTT
GTGGAGGCTGTA-3′ 55 545 [21]

Table 2. Distribution of SNPs of MASP2, DQA1, and TG5 in Holstein and Brown Swiss cattle
Breeds

Gene SNP type Holstein
(N=35)

Brown Swiss
(N=35)

Total animals 
(n=70)

Fisher’s 
exact P-value

Masp2 A46G 21 ---- 21/70 20.82 < 0.0001**

DQA1  T53C ---- ----- 15/70 43.45 < 0.0001**

TG5 C371T 19 ---- 12/70 57.85 < 0.0001**
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Table 3. Type and position of SNPs in MASP2, DQA1 and TG5 genes and corresponding amino acid number and type

Gene SNP type SNP position Breed/no of animals 
harboring SNP Type of mutation Amino acid

number and type
MASP2 A/G 46 Holstein/ 21 Nonsynonymous 16 K to E
DQA1 T/C 53 Brown Swiss/ 15 Nonsynonymous 18 F to S
TG5 C/T 371 Holstein/ 12 Nonsynonymous 124 S to F

Figure 1. Representative DNA sequence alignment of MASP2 gene (305-bp) between Holstein and Brown Swiss cattle and reference 
sequence available in GenBank gb|XM_027564920.1|. Asterisks represent similarity. H is Holstein and B is Brown Swiss

Figure 2. Representative DNA sequence alignment of DQA1 gene (373-bp) between Holstein and Brown Swiss cattle and reference 
sequence available in GenBank gb|LR797963.1|. Asterisks represent similarity. H is Holstein and B is Brown Swiss
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Figure 3. Representative DNA sequence alignment of TG5 gene (545-bp) between Holstein and Brown Swiss cattle and reference 
sequence available in GenBank gb|KF202096.1|. Asterisks represent similarity. H is Holstein and B is Brown Swiss

one non-synonymous SNP (A46G) specific for many 
Holstein cows. In the same line, DNA sequencing 
of DQA1 (373-bp) revealed also one non-synony-
mous SNP (T46C) specific for manyBrown Swiss 
cows. In theTGF5 gene, the identified SNP (C371T) 
was non-synonymous and specific for many Hol-
stein cows. Variations in the nucleotide sequence of 
MASP2 gene (305-bp), DQA1 (373-bp), and TG5 
(545-bp) genes between the two breeds, as well as be-
tween these breeds and reference sequences available 
in GenBankwere classified as single-nucleotide poly-
morphisms (SNPs) (Figure. 1, 2, and 3). Amino acids 
sequence variation of the coding regions of MASP2, 
TG5,and DQA1genes between two breeds is shown in 
Table 3. The three identified SNPs in the investigated 
genes were non-synonymous.

The population of seventyHolstein and Brown 
Swiss (35 each) was genetically described. Where, 
the incidence and frequency of genotypes and alleles 
for each gene were calculated (Tables 4, 5 and 6). The 
χ2 -test showed that the genotype distributions in the 
cattle populationswere notin Hardy-Weinberg equi-
librium (p<0.05).

DISCUSSION
Despite the increasing number of studies assess-

ing the genetic variability of various cattle breeds 
around the world, very few of them have focused on 
characterizing thegenetic diversity of native Central 
European cattle breeds and analyzed their genet-
ic structure (Gutiérrez et al., 2003; Petrakova et al., 
2012). Studies that determined phylogenetic affilia-
tion of various breeds of cattle based on functional 
gene polymorphism are also uncommon. There was 
a bias in research towards the assessment of genetic 
variability of cattle breeds belonging to northern Eu-
rope, or towards the determination of phylogenetic af-
filiation of European and African cattle breeds based 
on haplotype variation (Gautier et al., (2007). Several 
studies indicated that functional gene polymorphism 
is closely linked to specific production traits in cattle, 
and analysis of variability at gene loci makes it possi-
ble to assess the predisposition of animals to a specific 
type of production (Kamiński and Zabolewicz, 2000; 
Dobicki et al., 2002; Liefers et al., 2002; Buchanan 
et al., 2003; Brym et al., 2005; Curi et al., 2006; Ko-
misarek and Antkowiak, 2007; Ghasemi et al., 2009; 
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Karimi et al., 2009; Signorelli et al., 2009; Rahbar et 
al., 2010).

In this context, PCR-DNA sequencing was car-
ried out for molecular characterization of fragments 
of 305-bp of MASP2, 545-bp of TG5, and373-bp of 
DQA1 genes in Holstein and Brown Swiss breeds of 
cattle exposed to environmental conditions of Egypt. 
The SNPs identified in the investigated genes for the 
Holstein breed were A46G in the MASP2 gene and 
C371T in the TG5 gene. A characteristic T53C SNP 
was also reported for theBrown Swiss breed in the 
DQA1 gene.The occurrence of some exclusive SNPs 
in each breed is probablyrelated to the founder effect 
associated with origin, history, evolution, and to dif-
ferences in genetic constituents in each breed (Bradley 
et al., 1996; MacHugh et al., 1997; Troy et al., 2001). 
There is little information available on the molecu-
lar characterization of productive genes in European 
breeds of cattle (Ibeagha-Awemu et al., 2007; Schen-
nink et al., 2009). Moreover, this is the first study that 

reports genetic polymorphisms of MASP2, TG5, and 
DQA1 genes in Holstein and Brown Swiss breeds. 
The χ2 -test showed that the genotype distributions 
in the cattle populations were not in Hardy-Weinberg 
equilibrium (p<0.05).

Several studies have reported the association of 
MASP2, TG5, and DQA1genes polymorphism with 
production and components in cattle (Al-Waith et al., 
2018; Zhang et al., 2019; Dolmatova et al., 2020). 
However, unlike our study, all of these studies inves-
tigated the association of gene polymorphism in only 
one breed of cattle. Also, all previous studies report-
ed gene polymorphisms using other genetic mark-
ers (RFLP and SSCP). The current study explored 
polymorphisms via SNP genetic marker which may 
revolutionize previous achievements in conservation 
decisions, biodiversity assessment, and genetic char-
acterization of breeds, providing, therefore, a more 
understanding of the molecular basis of functional 
diversity (e.g. Groeneveld et al., (2010). SNPs analy-

Table 4. Frequency of genotypes and alleles for the MASP2 locus in Holstein and Brown Swiss breeds

Gene Item Breed Number/frequency of genotypes Allele frequency
AA AG GG A G

MASP2 Observed
Expected

Holstein
N= 35

10/0.29
4.046

4/0.11
15.708

21/0.60
15.246 0.34 0.66

Brown Swiss
N= 35

35/1.0
-

-
-

-
- 1 0

Holstein: Chi Square calculated (2א) = high significance differences 19.66 Chi Square tabulated (2א) at DF 1 and p< 0.05 = 3.84. 
Brown Swiss: A allele is the only allele at its locus and AA is the only genotype in the population

Table 5. Frequency of genotypes and alleles for the DQA1 locus in Holstein and Brown Swiss breeds

Gene Item Breed Number/frequency of genotypes Allele frequency
TT TC CC T C

DQA1 Observed
Expected

Holstein
N= 35

35/1.0
-

-
-

-
- 1 0

Brown Swiss
N= 35

17/0.49
11.3715

6/0.17
17.157

12/0.34
6.4715 0.57 0.43

Holstein: T allele is the only allele at its locus and TT is the only genotype in the population. Brown Swiss: Chi Square calculated (2א) 
= high significance differences 14.76 Chi Square tabulated (2א) at DF 1 and p< 0.05 = 3.84.

Table 6. Frequency of genotypes and alleles for the TG5 locus in Holstein and Brown Swiss breeds

Gene Item Breed Number/frequency of genotypes Allele frequency
CC CT TT C T

TG5 Observed
Expected

Holstein
N= 35

13/0.37
7.7315

7/0.20
17.437

15/0.43
9.8315 0.47 0.53

Brown Swiss
N= 35

35/1.0
-

-
-

-
- 1 0

Holstein: Chi Square calculated (2א) = high significance differences 12.55 Chi Square tabulated (2א) at DF 1 and p< 0.05 = 3.84. 
Brown Swiss: C allele is the only allele at its locus and CC is the only genotype in the population



J HELLENIC VET MED SOC 2022, 73 (4)
ΠΕΚΕ 2022, 73 (4)

5028 A. EL ZEER, M. FOUDA, R. DARWISH, A. ATEYA

sis could explain the history of European cattle more 
accurately than other markers (Gautier et al., 2007; 
Svensson et al., 2007; McKay et al., 2008; Socol et 
al., 2015). Particular importance is also attributed 
to SNPs in the search for linkages between a mark-
er with a specific location in the genome and an un-
known gene locus. The search for such associations is 
important because they allow a phenotypic effect to 
be assessed by identifying its genetic basis (Svensson 
et al., 2007; McKay et al., 2008). Additionally, DNA 
sequence alignment revealed novel single nucleotide 
polymorphisms in MASP2, TG5, andDQA1genes 
when matched with the Gen Bank reference sequence 
(Figure 1, 2, and 3). Interestingly, our results indicat-
ed that the polymorphisms identified are reported here 
for the first time.

Assessment of genetic variation based on func-
tional gene polymorphism can be used both to char-
acterize thegenetic structure of different breeds of 
cattle and to supplement analysis of genetic diversity 
based on polymorphisms of genetic markers (Kaspr-
zak-Filipek et al., 2019). In the current study, PCR 
was carried out to amplify 305-bp of MASP2, 545-
bp of TG5, and373-bp of DQA1 genes. However, one 
SNP in each of MASP2 and TG5 genes was character-
istic for theHolstein breed. Additionally, one SNP in 
the DQA1 gene was also characteristic for theBrown 
Swiss breed. The similarity in the remaining part of 
the amplified fragments and the common SNPs be-
tween the two breeds may be attributed to conducting 
PCR-DNA sequencing on a conserved part i.e. exon 
of investigated genes that enables accurate molecular 
characterization of genes and deciphers physiological 
differences in milk production and disease resistance 
between breeds (Singh et al., 2014). Other causes may 
be the close geographic proximity and gene flow be-
tween breeds in the past. It should be noted that all an-
alyzed populations represented local breeds which, in 
the past, were the most popular breeds in East-Central 
Europe, before intensification and globalization of ag-

riculture that led to their marginalization. Current ge-
netic resource conservation programs are contributing 
to an increase in the numbers and to the preservation 
of valuable gene reservoirs(Kasprzak-Filipek et al., 
2019).

It has been suggested that genes related to milk 
yield and composition traits exist in all autosomal 
chromosomes in cows. The most important genes 
affecting the amount and percentage of milk fat are 
found on Bos taurus autosomal chromosomes (BTA) 
5, 6, 9, 14, 20, and 26 (Khatkar et al., 2004). It was re-
ported that MASP2, TG5, and DQA1 genes polymor-
phisms were associated with milk production, masti-
tis resistance susceptibility, and heat tolerance traits in 
dairy cows suggesting the phenotypic variation in the 
latter traits between Holstein and Brown Swiss breeds 
could be attributed to these genetic loci.

The limitation of this study should be acknowl-
eged; a higher number of animals are needed. Other 
breeds of cattle should and much information about 
pedigree and relatedness of animals also should be 
considered.

CONCLUSION
PCR-DNA sequencing ofMASP2, TG5, and DQA-

1genes revealed a nucleotide sequence variation in 
the form of SNPs between Holstein and Brown Swiss 
breeds. These findings suggest that variability in the-
segenes could be used for efficient characterization 
and genotyping of European cattle breeds. 
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