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Research article
Ερευνητικό άρθρο

ABSTRACT: In a variety of diseases, altered respiratory modulation is often as an early sign of autonomic dysfunc-
tion. Therefore, understanding and evaluating the effects of mechanical ventilation on the autonomic nervous system 
is vital. The effects of mechanical ventilation on autonomic balance have been assessed by heart rate variability (HRV) 
using frequency domain and non-linear analysis including fractal complexity and entropy analysis in anesthetized 
mice. BALB/c mice (n=48) were divided into two groups: Spontaneous breathing and mechanical ventilation. The 
electrocardiograms were recorded. Four different types of analysis were employed: i. frequency domain analysis, ii. 
Poincaré plots, iii. Detrended Fluctuation Analysis (DFA) and iv. Entropy analysis. An unpaired t-test was used for 
statistical analysis. In a ventilated group, very low frequency (VLF) and low frequency (LF) parameters were not 
changed, whereas the high frequency parameter was decreased compared to spontaneous breathing mice. DFAα1 was 
significantly increased due to mechanical ventilation but DFAα2 was unchanged. In Poincaré plots analysis, standard 
deviation 2 (SD2) / standard deviation 1 (SD1) ratio was increased, however, SD1 and SD2 were not significantly 
affected. Also, Approximate Entropy and Sample Entropy remained unchanged. HF parameter, DFAα1, and SD2/SD1 
were affected by mechanical ventilation. Decreased HF and increased DFAα1, further support the notion that HRV is 
dominated by respiratory sinus arrhythmia at high frequencies, this may be due to decreased vagal tone caused by me-
chanical ventilation. This novel results of HRV analysis are important considering increased usage of HRV techniques 
day by day in animal models and other medical practices.
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INTRODUCTION

Mechanical ventilation has substantial position 
considering that more than 200 million patients 

require respiratory support for surgery under gener-
al anaesthesia (Weiser et al., 2008). Up to 20 million 
patients during their admission to Intensive Care 
Units (ICUs) annually require mechanical ventila-
tion (Ambrosino and Vitacca, 2018). The outbreak of 
COVID-19 pandemic has dramatically increased the 
number of patients who need respiratory care (Iyengar 
et al., 2020). In a variety of diseases, altered respira-
tory modulation is often an early sign of autonomic 
dysfunction (Bernardi et al., 2001). Therefore, under-
standing and evaluating effects of mechanical venti-
lation on autonomic nervous system (ANS) is vital. 
The ANS regulates physiological control mechanisms 
in response to any homeostatic change. A direct eval-
uation of the ANS activity is very challenging. Heart 
rate variability (HRV) is a reliable tool for the assess-
ment of the ANS functions (Schmidt et al., 2005). 
Therefore, analysis of different parameters of HRV 
may allow to monitor the changes in the functions 
of ANS during important processes that the patients 
go through such as weaning from mechanical venti-
lation (da Silva et al., 2023). However, to our knowl-
edge, there are limited amount of studies that focus 
on fractal complexity of heart rate (HR) series under 
mechanical ventilation in the literature. Therefore, in 
the present study, we have focused on possible effects 
of mechanical ventilation on complexity in heart rate 
in anesthetized mice. The analysis method used for 
beat-to-beat heart rate alternations have key impor-
tance considering different numerical methods may 
provide different results. Thus, we have applied four 
different numerical analysis for a comparative eval-
uation: i. frequency-based analysis of HR which is 
the most used in the literature and referred to as heart 
rate variability analysis (HRV), ii. detrended fluctua-
tions analysis (DFA) of HR series, iii. Poincare plots; 
standard deviation 1 (SD1) and standard deviation 2 
(SD2) and the ratio of SD2/SD1, iv. Entropy analysis. 

The HRV is a numerical analysis technique that 
gives the power of heart rate changes that lie within 
certain frequency bands (Tarvainen et al., 2014): Re-
searchers have identified that certain frequency bands 
correlate with certain physiological changes (Malik et 
al., 1996). 

In contrast to frequency analysis of the heart rate 
(HRV), DFA, Poincare plots and Entropy analy-
sis are non-linear analysis methods which have not 

been used very often, (Shaffer and Ginsberg, 2017). 
The DFA analysis deals with “non-periodical” and 
or “quasi-periodical” alternations of the beat-to-beat 
heart rate changes (Penzel et al., 2003). The cardiac 
rhythm exhibits complexity as the indicator of a com-
plex interaction between the pacemaker cells of the 
heart and the ANS (Goldberger et al., 2002). DFA has 
been shown to predict cardiovascular outcomes accu-
rately and has been recommended to predict morbid-
ity and mortality for several diseases (Magrans et al., 
2013). DFA is a method that calculates the long-term 
correlations and fractal structure in heart rate dynam-
ics. DFA calculates the scaling exponents (short-term 
and long-term) from the time series and exposes frac-
tal correlation properties of complex heart rate series 
(Sassi et al., 2015). Although the frequency domain 
analysis, so called HRV is reliable in some groups 
(Dabas and Shaw, 2010), however, it may be insuffi-
cient to explain the complexity of heart rate dynamics 
(Peng et al., 1995). The Poincaré plot as “ a practi-
cal non-linear analysis method” has also been used to 
evaluate the autonomic modulation and especially the 
randomness of heart rate (Guzik et al., 2007) although 
it was not well valued.

Entropy analysis have been integrated into the 
complexity testing research to determine the disorder 
status of data dynamics. Entropy can be mathemati-
cally defined as a negative natural logarithm of a con-
ditional probability. A higher value implies a higher 
complexity of time series, with a lower likelihood 
that the similarity will continue as the embedding di-
mension grows (or a grater probability that similar-
ity changes). The Approximate Entropy (ApEn) and 
Sample Entropy (SampEn) algorithms are the most 
popular ones (Mandelbrot and Aizenman, 1979).

Originally, approximate entropy was devised as a 
functional application of a nonlinear dynamical sys-
tem’s Kolmogorov-Sinai entropy. It may also be an 
approximation of a method’s differential entropy rate. 
More recently, to enhance ApEn, SampEn has also 
been developed. Sample entropy converges quite fast-
er at the expense of a greater variance of the estimates 
(when calculated on a shorter series). 

As well known, breathing is the major parameter 
causing heart rate to fluctuate which further reflects 
on the HF parameter in the frequency domain analy-
sis (Song and Lehrer, 2003). A prominent respiratory 
dependent HR change is called as respiratory sinus 
arrhythmia (RSA), which may be a sign of increased 
vagal efferent activity on HR (Malliani et al., 1991). 
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Accordingly, it was considered that HF parameter in 
the frequency domain analysis represents vagal ac-
tivity mainly due to spontaneous breathing or RSA 
(Schipke, 1999). It was proposed that cardiorespirato-
ry center inhibits vagal efferent outflow which accel-
erates the HR during spontaneous inspiration and “va-
gal influence” returns to normal level slowing down 
the HR during spontaneous expiration (Eckberg, 
1983). Another proposed mechanism for respiratory 
dependent HR fluctuations is that the increase in HR 
during inspiration is dependent on the increased “ve-
nous return” induced by decreased intrathoracic pres-
sure (Rothe, 2011). In summary, both “vagal influ-
ence” and “venous return” may increase the heart rate 
during inspiration and decrease HR during expiration. 
Therefore it can be stated that the characteristics of 
every breath may be influenced by various reflexes 
(Corne and Bshouty, 2005). It is hypothesized that 
mechanical ventilation might trigger these reflexes 
and decrease the vagal motor output generated by the 
breathing centers (Bartlett and St. John, 1988). 

The aim of this study is to assess not only interac-
tions between autonomic nervous system and spon-
taneous/mechanical ventilation but also to detect the 
parameters that are affected by mechanical ventila-
tion. 

METHODS

Animals and Anaesthesia
The in-vivo mice experiment of the present 

study was performed with the permission of local 
“Ethics Committee for Animal Experimentations” 
(No:77.637.435-04) and in accordance with the Guide 
for the Care and Use of Laboratory Animals. 10-12 
weeks old, 48 male BALB/c mice weighing 25 ± 2.8 
grams were purchased from the KOBAY Incorporat-
ed Company (Ankara/Turkey). We preferred to use 
male BALB/c mice because it has been reported that 
the menstrual cycle effects HRV analysis (Sato et al., 
1995). The animals were housed for at least five days 
in a special room with a room temperature of 20-22 
°C under the 12-hour light-dark cycles in the animal 
care center. Drinking water and rodent pellets were 
provided ad libitum. All experiments were performed 
at daytime.

Just before experiments, each mouse was weighed 
for the calculation of the anaesthetics/analgesics dose. 
The mice were anesthetized with intraperitoneal in-
jection of Na-Pentobarbital (90 mg.kg-1, i.p.) (SIG-
MA Inc. Germany), and an additional, use of Fentanyl 

(0,2 mg.kg-1, i.p.) (GENESIS Inc. Istanbul-Turkey) in 
order to avoid pain. The pedal withdrawal reflex and 
the breathing frequency were both used to assess the 
depth of anaesthesia during the procedure and when 
needed 25 percent of the initial dose was administered 
to prolong the anaesthesia. Animals were placed on a 
thermal plate in order to avoid hypothermia due to the 
anaesthetic and analgesic used. The rectal tempera-
ture of the animals was observed during experiments 
and kept around 36,5 ºC.

Tracheostomy Procedure
Tracheostomy procedures were performed accord-

ing to the model described by Alluri et al. (2017) (Al-
luri et al., 2017). A 1 - 1.5 cm longitudinal midline 
incision just below the larynx was implemented with 
a curved fine scissors. The facial membrane between 
the glands were penetrated by a blunt dissection with 
2 curved serrated forceps in order to expose the tra-
chea. A metal cannula was placed into the trachea 
and connected to the mechanical ventilator with very 
small death space, highly accurate, positive pressure 
pump developed specially for small laboratory ani-
mals (Ozbek, 2002).

Experimental Design, Sham Procedure, Sponta-
neous breathing and mechanical ventilation

In order to evaluate effects of mechanical venti-
lation on the heart rate dynamics and complexity in 
BALB/c mice, we have constructed two groups de-
pending on the ventilation type. A total of 48 mice 
were divided into two groups: the spontaneous 
breathing group (n=24) and mechanical ventilation 
group (n=24). 

The same procedural steps explained above were 
followed in both groups but the metal cannula was 
only connected to mechanical ventilator in mechani-
cal ventilation group. This eliminated any procedural 
differences between the spontaneous breathing group 
(sham group) and mechanical ventilation group that 
could have affected the results. In spontaneous breath-
ing group the frequency of spontaneous breathing was 
between 70 and 80 min-1. 

In the mechanically ventilated group, a constant 
pressure ventilator was used. In the case of mechani-
cal ventilation inspiratory pressure was 15± 1.66 cm 
H2O. The respiratory frequency was adjusted to 72 
min-1 whereas inspiration expiration ratio was 1 to 2. 
The study protocol is summarized in Figure 1.
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The breathing frequency adjustment of mechan-
ically ventilated group was made according to the 
literature (Ewald, Werb and Egeblad, 2011) and to 
our observation of spontaneous breathing rate under 
Na-pentobarbital anesthesia. The mechanical ventila-
tion frequency of 1.2 Hz also remains within the fre-
quency of HF band, which is important for frequency 
domain analysis of HRV. 

After completing the procedures in both groups, 
the animals were placed in a supine position on a 
thermal plate for 60 minutes of electrocardiography 
(ECG) recording. The entire experiment, including 
the procedures and ECG recordings, lasted approx-
imately 90 minutes. Following the ECG recordings, 
the animals were humanely euthanized using the cer-
vical dislocation method under anesthesia.

ECG recordings 
The needle ECG electrodes were placed under 

skin of right arm and left leg for the Lead II. Surface 
ECGs were recorded by using Powerlab/SP8 (AD In-
struments, Australia). ECG sampling frequency was 
adjusted to 4k Hz. The high-pass and low-pass filter 
settings were 0,3 Hz and 1 kHz, respectively, no notch 

filter was required. LabChart 7 software (AD Instru-
ments, Australia) was used for “R” wave detection 
(see Figure 2.).

Frequency Domain and Non-linear Analysis of HR 
series

R waves were detected by setting threshold val-
ue using Pan-Tompkins real-time QRS detection 
algorithm (Singh, 2010), then the tachogram of RR 
intervals was obtained. These RR tachograms were 
transformed to time series by using Berger interpola-
tion. Same data sets were used for all of the analyses, 
namely the same time series used for the frequency 
domain and non-linear analysis. 

Frequency Domain Analysis 
Kubios HRV Software (University of Eastern, Fin-

land) was used for the HRV analysis. Each recording 
period was represented by four minutes of R-R tacho-
gram and they were re-sampled with 10 Hz to convert 
to time series. 

The frequency bands of our analysis are selected 
as proposed by Thireau et al. (2008) (Thireau et al., 
2008), LF and HF bands were modified due to me-

Figure 1. A Schematic diagram of the group design.
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chanical ventilation frequency selection of our study 
so as to include mechanical ventilation frequency in 
HF band. The bandwidth chosen were as follows: 
VLF: 0,00-0,15 Hz, LF: 0,15-1,0 Hz, HF: 1,0-5 Hz.

Ultra-low frequency (ULF) and very high frequen-
cy (VHF) parameters were not defined for mouse 
therefore were not included in this study, LF/HF ratio 
was also evaluated additionally. Percentage of power 
spectrum densities (%PSD), namely relative powers 
of frequency bands were documented.

Detrended Fluctuations Analysis (DFA)
We analyzed RR time series according to DFA al-

gorithm introduced by Peng (Peng et al., 1995), using 
Kubios HRV Software (University of Eastern, Fin-
land). This method uses the detrending approach to 
better examine the fluctuations in time series. Scaling 
exponents obtained as a result of this analysis reflects 
the relationship between the fluctuation function and 
the sample size. This relation between them is an ex-
pression of the self-similarity of the time series. This 
method consists of several steps: Firstly, the integrat-
ed time series y (k) is obtained from the sum of the 
differences between the average RR (RRa) and each 
RR value (RRi) in the time series (Eq1).

y (k) = ∑k
(i=1) [RRi-RRa]               (1)

The integrated time series y (k) is divided into 
non-overlapping, equal sized (n) boxes. For the de-
trending of integrated time series, the local trend yn 
(k) is calculated for each box and then detrended by 
the subtracting from integrated time series y (k). Fluc-
tuation function F (n) is calculated by the root-mean-
square of the detrended time series obtained from the 
previous step as follows equation (Eq2);

F (n) = √ 1
N ∑N

(k=1) [y (k)-yn (k)]2    (2)

Where F (n) is the fluctuation function of box size 
n, N is the number of the value in the time series, y (k) 
is the integrated time series, yn (k) is the local trend 
series in each box. 

The logarithmic relationship between the fluctu-
ation function F (n) and the box size n is scaled to 
determine the correlation properties of the time series. 
The scaling exponent DFAα1 and DFAα2 are obtained 
from calculation the slope of this logarithmic relation 
(see, Figure 3.). 

In this study, short-term (DFAα1) and long-term 
(DFAα2) scaling exponents were calculated for dif-
ferent box sizes 4<n<11 and 12<n<64 respectively in 
both groups (Lin et al., 2016). 

Poincaré plot analysis
The analysis of the Poincaré plot was performed 

with the use of the Kubios HRV Software (Univer-
sity of Eastern, Finland) by drawing an ellipse to the 
plotted points. From the analysis point of view, Poin-
caré plot is a quantitative visual analysis technique. 
The correlation spectrogram attained by Poincaré plot 
allows a compact representation of the time series 

Figure 2. “R” wave detection.

Figure 3. Schematic presentation for the log-log plot of fluctua-
tion function F(n). Slope of the logF(n) trend was characterized 
to correlation properties of HR signal. An α = 0.5 indicates white 
noise (uncorrelated-random data). An α greater than 0.5 and less 
than or equal to 1.0 specifies determined long-range power-law 
correlations. An α = 1 is parallel to the 1/f noise whereas α = 1.5 
corresponds to brown noise (Haddadian et al., 2013). It is gener-
ally acknowledged that fractal like fluctuations, which are typical 
of healthy physiological control, range between 0.75- 1.25 (Del-
ignières and Marmelat, 2012). 
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regardless of the longitude of the time series. Each 
pair of RR intervals (previous and next) are placed in 
the rectangular coordinate system according to their 
coordinates (x, y), where x is the value of the RRn 
interval and y is the value of RRn + 1 (Tayel and Al-
Saba, 2015). The dispersion of the graph provides a 
section of points whose center is located on the line 
called “line of identity”. The identity line is the graph 
of the function x = y (RRn = RRn+1). Points above 
the line of identity means that RR intervals that are 
longer than the previous one, and points below the 
line of identity means a shorter RR interval than the 
preceding RR interval (Roy, Goswami and Sengupta, 
2020).The following 3 parameters are calculated us-
ing these coordinates: (i) SD1, (ii) SD2 and (iii) SD2/
SD1 which were included in the present study. 

 (i) SD1, the standard deviation of the distance of 
each point from the y= x axis, defines the ellipse’s 
width. SD1 was considered to be correlating with 
blood pressure changes, and power in the LF and HF 
bands, and total power of frequency domain analy-
sis obtained from short-term recordings of 5 minutes 
(Zerr et al., 2015). 

 (ii) SD2, the standard deviation of each point from 
the y= x + average R-R interval, defines the ellipse’s 
length. It has been hypothesized that SD2 reflects LF 
band power and baroreflex sensitivity (Brennan, Pala-
niswami and Kamen, 2002). 

 (iii) SD2/SD1 ratio was considered as being the 
analog of LF/HF ratio from frequency domain analy-
sis (Guzik et al., 2007).

Entropy Analysis
The analysis of the entropy was performed with 

the use of the Kubios HRV Software (University of 
Eastern, Finland). Approximate entropy and SampEn 
measure the probability that in a given sequence of 
length N, runs of templates that are close to m points 
remain close (less than a certain tolerance level r) to 
m + 1 points. For the parameter selection of r and m, 
there is no fail-proof rule. Typically, values between 
10 and 25 percent (usually 20 percent) of the standard 
HRV deviation are used. M = 2 is often used for tem-
plate length; m = 1 is used for very short time series 
(Sassi et al., 2015).

The regularity and complexity of a time series are 
calculated by estimated entropy. ApEn is intended for 
short time series in which there might be any noise 
and does not give any information about the dynam-

ics of the underlying mechanism. Large ApEnvalues, 
applied to HRV data, imply poor predictability of 
fluctuations in successive RR intervals. Small values 
of ApEn mean the signal is periodic and predictable 
(Shaffer and Ginsberg, 2017).

A less biased and more accurate calculation of sig-
nal accuracy and complexity was developed to pro-
vide sample entropy. SampEn values are translated 
and used as ApEn and can be determined from less 
than 200 values in a much shorter time series (Shaffer 
and Ginsberg, 2017)

Statistical Analysis
The differences of mean HRV parameters between 

spontaneous breathing group (sham group) and me-
chanically ventilated group (study group) were com-
pared using unpaired student’s t-test. To do so, we ap-
plied the Shapiro-Wilk test to check whether the data 
are normally distributed or not. Since our data seem 
to be normally distributed according to Shapiro-Wilk, 
further analysis of our data was carried out by para-
metric statistical method. For statistical analyses, 
IBM SPSS Statistics Version 21.0 (SPSS Inc., Chica-
go, IL, USA) were used and p<0,05 was accepted as 
statistically significance level. 

RESULTS

Frequency Domain Analysis
To eliminate variations between animals’ magni-

tude of heart rate fluctuations we preferred to evalu-
ate the relative power of frequency bands defined in 
methods. Therefore, the relative powers of heart rate 
frequency band comparisons between groups were as 
follows: Mean VLF parameters in ventilated group 
was significantly increased from 45,29% ± 23,24% 

Figure 4. The relative powers of frequency domain analysis in 
both spontaneous breathing and ventilated group. ***: signifi-
cantly different, p<0,001, compared to spontaneous breathing.
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to 56,02% ± 37,52% (p<0.05). In contrast, mean LF 
power was not changed, 19,77% ± 19,07% vs 27,99% 
± 31,04% (p>0.05), whereas mean HF power was 
dropped drastically from 28,30% ±18,23 to 15,99% 
± 24,05 (p<0,0001). In parallel with this finding the 
mean ratio of LF/HF was found to be elevated in ven-
tilated group when compared to spontaneous breath-
ing group from 1,33 ± 3,05 to 4,20 ± 6,65 (p>0.05), 
see Figure 4.

Detrended Fluctuations Analysis (DFA) 
Detrended Fluctuations Analysis scaling expo-

nents, DFAα1 (short-term) and DFAα2 (long-term), 
were compared between the two groups: 

Figure 5a includes representative results obtained 
from a spontaneous breathing and an mechanically 
ventilated animal. For each animal, α1 and α2 scaling 
exponents are illustrated separately to visualize the 
difference in slopes. The mean values of short term 
and long-term scaling exponents, DFAα1 and DFAα2, 

are shown in Figure 5b. Mean DFAα1 were calculated 
in spontaneous breathing and mechanically ventilated 
group as 0,503 ± 0,24 and 0,729 ± 0,29, respectively. 
There was a statistically significant increase (p<0,01) 
in DFAα1 in mechanically ventilated group when 
compared to spontaneous breathing group, see Figure 
5b. Mean DFAα2 was calculated as 0,901 ± 0,26 and 
0,951 ± 0,28 in the spontaneous breathing and me-
chanically ventilated groups, respectively. The differ-
ence was not statistically significant.

Poincaré plot analysis
In Poincaré plots, SD1, SD2 parameters and SD2/

SD1 ratio were compared between the two groups. 
Figure 6a illustrates two typical Poincaré plots be-
longing to spontaneous breathing and ventilation 
groups. In the spontaneous breathing group, RR (n) 
vs RR (n+1) plots are accumulated around a circular 
shape. In contrast, plots of the mechanically ventilat-
ed group are accumulated around an elliptical shape. 

Figure 5 (a) Representative linear relationship between fluctuation function “logF(n)” and windows size “log10 n (beats)” (b) DFAα1 
(short-term) and DFAα2 (long-term) scaling exponents in both spontaneous breathing and mechanically ventilated group. ** p<0,01.
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Figure 6b illustrates Poincaré plots representing the 
means of group values. 

Calculated mean SD1 values were 2,51 ± 1,40 ms 
and 1,67 ± 1,40 ms and calculated mean SD2 values 
were 5,34 ± 3,72 ms and 7,50 ± 7,17 ms in sponta-
neous breathing and mechanically ventilated groups, 
respectively. Finally, mean SD2/SD1 ratio was 2,20 
± 0,93 in spontaneous breathing and 5,36 ± 3,70 in 
mechanically ventilated group.

According to these findings, while mean SD1 de-
creased, mean SD2 was found to be increased. Even 
though both changes were insignificant, the mean ra-
tio of SD2/SD1 was found to be increased significant-
ly in the mechanical ventilation group (p<0,001). 

Entropy Analysis
In the entropy analysis, ApEn and SampEn were 

compared between the two groups (see, Figure 7.). 
Figure 7 Mean ApEn and SampEn in both spontaneous breathing 
and mechanically ventilated group.

Figure 6 (a) Representative Poincaré Plot graphics of two animals from each group. (b). Poincaré Plot analysis results of both sponta-
neous breathing and mechanically ventilated animal groups. ***: p<0,001 compared to spontaneous breathing.
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Calculated mean ApEn values were 1,31 ± 0,28 and 
1,21 ± 0,34, and the calculated mean SampEn values 
were 1,51 ± 0,40 and 1,30 ± 0,46 in the spontaneous 
breathing and mechanically ventilated groups, respec-
tively. Both of the mean ApEn and SampEn values 
have decreased insignificantly (p>0.05).

DISCUSSION
This is the first investigation to report significant 

changes in HRV in mice without any other alterations 
rather than ventilatory status. In the present study, we 
evaluated the effects of mechanical ventilation on the 
frequency domain and non-linear HRV analysis results 
under Na-Pentobarbital anesthesia in mice. (Xiuy-
ing, Abboud and Chapleau, 2002; Yan et al., 2009) 
showed that activity of autonomic nerves including 
vagal efferents persists under Na-Pentobarbital anes-
thesia in mice (Xiuying, Abboud and Chapleau, 2002; 
Yan et al., 2009). Thus, our discussion will be focused 
not on effects of Na-Pentobarbital anesthesia but on 
mechanical ventilation. 

Our frequency domain HRV analysis results 
showed that mechanical ventilation decreased HF 
parameter significantly however did not change LF 
or VLF parameters. It has been suggested that VLF 
reflects thermoregulation, the renin-angiotensin-al-
dosterone system. And other slow changes which re-
flect on VLF parameter were found to be related to 
peripheral vascular system (Kitney, 1980). Whereas 
LF reflects changes in the sympathetic nervous sys-
tem (Shaffer and Ginsberg, 2017). Frazier et al. did 
not observe any significant change in frequency do-
main parameters in 6 male mongrel canines (Frazier, 
Moser and Stone, 2001). (Borghi-Silva et al., 2008) 
found that bi-level positive airway pressure (BiPAP) 
reduced HF parameter and did not change VLF and 
LF significantly in patients with chronic obstructive 
pulmonary disease (COPD) (39). (Bloomfield et al., 
2001) showed that HF parameter perished during 
breath-holding task (Bloomfield et al., 2001). (Pagani 
et al., 1984) found that controlled breathing increased 
HF parameter in healthy subjects (Pagani et al., 1984) 
although Melo et al (2018) reported decreased HF 
parameter during controlled breathing (Melo et al., 
2018). In accordance with the literature, our findings 
indicate that respiratory status or breathing patterns 
may affect vagal efferents which in turn may alter 
sympathovagal balance. The altered sympathovagal 
balancemay be caused by the Hering-Breuer reflex 
which inhibits inspiratory muscle activity by decreas-
ing vagal activity when the lungs inflate to a certain 

threshold (Bartlett and St. John, 1988). This reflex 
also leads to decreased HR caused by increased ab-
dominal pressure and intrapleural pressure (Bartlett 
and St. John, 1988). 

The Poincaré plot is a non-linear analysis meth-
od that reflects nature of the beat-to-beat intervals 
geometrically. Whereas SD1 is reported to be the 
analogue of HF parameter, SD2 considered as the 
analogue of LF parameter. Therefore SD2/SD1 ratio 
is comparable with LF/HF ratio (Guzik et al., 2007; 
Shaffer and Ginsberg, 2017). In our model, there was 
no significant difference in SD1 and SD2 between 
spontaneous breathing and mechanically ventilated 
groups. Although, we observed that the distribution 
shape of the plots was different. The spontaneous 
breathing group’s plot shape was more circular com-
pared to mechanically ventilated group’s plot shape. 
Our analysis also showed that the ratio of SD2/SD1 
was increased significantly due to mechanical venti-
lation. The change of the plot shapes also correlates 
with this finding. Parallel to our results, Guzik et 
al. (2005) found that the increased respiratory rate 
caused a significant reduction of SD2/SD1 (Guzik et 
al., 2005), which may mean that SD2/SD1 ratio is in 
fact sensitive to RSA. Brennan et al. (2001) stated that 
strong RSA usually occurs above the line of identi-
fication as a spur, indicating a rapid slowing of the 
heart rate. The presence of this trait makes the Poin-
caré plot a valuable tool in RSA assessment (Bren-
nan, Palaniswami and Kamen, 2001). However, in our 
study the spur shaped differences occurring above the 
line of identification were not observed. We believe 
that this may be caused by the differences between 
analysis time periods or study design. 

In our study, mechanical ventilation did not change 
ApEn and SampEn values when compared to spon-
taneous breathing group at our analysis conditions 
(m=2, r=0,2). Parallel to our findings, Gonçalves et 
al. (2008,2013) found that both ApEn and SampEn-
were not affected by mechanical ventilation in rats 
(Gonçalves et al., 2008, 2013). Weippert et al. (2015) 
found that ApEn, SampEn were strongly affected by 
metronome breathing (Weippert et al., 2015), which 
may mean that both ApEn and SampEn are affected 
by changes in the respiration pattern but not mechan-
ical ventilation. 

Peng et al. (1995) noted in the initial article in-
troducing the DFA algorithm that the DFAα exponent 
(box size: 4-16) is likely due to the physiological in-
terbeat interval fluctuation. This fluctuation is dom-
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inated by the relatively smooth heartbeat oscillation 
associated with respiration on very short time scales 
(Peng et al., 1995). Addition to this, results of the pres-
ent study showed for the first time that DFAα1 reflects 
not only changes of breathing frequency but also re-
versed respiratory physiology by mechanical ventila-
tion. In accordance with this, DFAα1 (box size:4-11) 
was increased in response to mechanical ventilation 
in our study. The only systematic research about the 
effects of breathing frequency on the short-term DFA 
exponent by Penttila et al. (2003), stated that the scal-
ing exponent was increased by a reduction in respi-
ration rate from 15 to 6 breaths per minute (Penttilä 
et al., 2003). However, the authors offered no expla-
nation for this finding. Weippert et al. (2015) found 
that metronome breathing increased DFAα1 and de-
creased DFAα2 in a study with 24 healthy individuals 
(Weippert et al., 2015). Perakakis et al (2009) found 
reduced DFAα1 when the breathing frequency of 14 
healthy volunteers raised from 0.1Hz to 0.2Hz (Per-
akakis et al., 2009). Our study confirmed the original 
argument by Peng et al. (1995) that periodic breathing 
oscillations are responsible for the crossover at scales 
close to the respiratory period (Peng et al., 1995).

In our study we found a decreased HF parameter 
and an increased DFAα1, which further support the 
notion that HRV is dominated by RSA at high fre-
quencies, due to respiratory regulation pattern of va-
gal discharge to the heart (Denver, Reed and Porges, 
2007; Grossman and Taylor, 2007); a very well-known 
mechanism. In addition, the time delays in sympa-
thetic signalling pathways due to second messenger 
cAMP for the depolarization of pacemaker cells in the 
SA node, also strengthen the hypothesis that high-fre-
quency HRV parameters such as HF parameter and 
DFAα1, is driven by the parasympathetic system alone 
(Perakakis et al., 2009). 

On the other hand, there is another aspect of the 
increased DFAα1 due to mechanical ventilation. As 
mentioned in the other sections, detrended fluctuation 
analysis deals with “non-periodical” and or “qua-
si-periodical” alternations of the beat-to-beat heart 

rate changes (Penzel et al., 2003), which means DFA 
parameters are indicators of cardiac complexity (Peng 
et al., 1995). Fractal complexity was increased solely 
by mechanical ventilation while irregularity remained 
unchanged according to ApEn and SampEn analysis 
results of our study. 

CONCLUSION
The present study provides evidence that SD2/

SD1 ratio, HF parameter and DFAα1 are significantly 
affected by mechanical ventilation. When compared 
with the rest, DFAα1 and HF parameter better reflect 
mechanical ventilation induced changes in vagal ac-
tivity than the behavior of HR and other HRV indi-
ces. Moreover, we have also demonstrated that fractal 
complexity was increased solely by mechanical ven-
tilation while irregularity remained unchanged. These 
changes might be the result of decreased vagal tone 
caused by activation of various reflex mechanisms 
triggered by mechanical ventilation. This novel re-
sults of HRV analysis are important considering in-
creased usage of HRV techniques day by day in ani-
mal models and other medical practices. It may also 
be concluded that to correctly interpret short-term 
HRV scaling behavior, it is important to consider res-
piration and heart rate together.

LIMITATIONS
This study may have several limitations. As with 

any study, comparisons may be confounded by dif-
ferences between groups other than mechanical ven-
tilation. Nevertheless, given the selected 5-minute 
duration of the RR-interval data, the physiological 
significance of the HRV may be under-represented 
in our results and analyses. Some limitations have to 
be considered when comparing results of the present 
study with other (short-term) analyses. Different defi-
nitions of ranges for the frequency bands and DFA 
short and long-term correlations (box sizes) may 
contribute to the differences in obtained results when 
compared with other studies.
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