Differentiation of leptospiral serovars by restriction endonucleases analysis

Eljalii I.M., Ali A.S.

ABSTRACT. DNA from ten leptospiral field isolates was digested with restriction enzymes, HindIII, BamHI and EcoRI to differentiate leptospiral serovars. A high heterogeneity among the serovars examined was revealed. Similarities were observed among isolates of the same serovar. No relationship was found between the restriction patterns and the species from which the field strain was isolated. It appears that restriction endonuclease analysis would be useful in the differentiation of the leptospiral serovars.

Key words: Leptospira, serovars, restriction enzymes

INTRODUCTION

Leptospirosis is a significant zoonotic disease with important veterinary and public health impact. Different leptospira species cause various forms of the disease in man and animals that are collectively referred to as leptospirosis. Leptospires are members of the Leptospiraceae family within the order Spirochaetales (Garrity and Holt, 2001). The genus Leptospira was formerly divided into two species: Leptospira interrogans that is the pathogenic species and Leptospira biflexa that is the free-living saprophyte. Both L. interrogans and L. biflexa are divided into numerous serovars. Over 60 serovars of L. biflexa and more than 200 serovars of L. interrogans are recognized. Serovars that are genetically related have traditionally been grouped into serogroups. The phenotypic classification of leptospires has been replaced by a genotypic one that comprises of approximately 16 species for the entire Leptospira spp (Yasuda et al., 1987; Ramadass et al., 1992; Perolat et al., 1998; Brenner et al., 1999; Levett, 2001). The genetically defined species of Leptospira do not correspond to the previous two species and both pathogenic and non-pathogenic serovars occur within some species. Thus, neither serogroup nor serovar reliably predicts the species of Leptospira. Genetic heterogeneity within serovars occurs resulting in strains of some serovars being classified in multiple species (Brenner et al., 1999; Feresu et al., 1999; Levett, 2001).

The identification of leptospiral serovars was performed by the cross agglutination absorption test, but this method did not differentiate strains within serovars (Hathaway et al., 1985). DNA-based techniques were introduced to identify leptospiral serovars and even they couldn’t differentiate between field strains (Zuerner and Bolin, 1990; Pacciarini et al., 1992; Djordjevic et al., 1993; Zuerner et al., 1993; Corney and Colley, 1996; Bolin and Zuerner, 1996; Letocard et al., 1997; Rocha, 2004). Restriction endonuclease analysis (REA) has been widely used as an epidemiological tool and a typing method for bacterial isolates of public
health or veterinary importance. Marshall et al. (1981) were the first to apply the REA in the classification of leptospires. Since then, after the improvement of DNA extraction methods and the resolution of the restriction fragments, the REA has been widely used to differentiate and classify leptospires (Marshall et al., 1984; Thiermann et al., 1985, 1986; Terpstra et al., 1987; Tamai et al., 1988; Ellis et al., 1988; Thiermann and Le Vebvre, 1988; Silbreck and Davis, 1989; Zuerner and Bolin., 1990; Woodward and Redstone, 1993; Corney and Colley, 1996; Bolin and Zurner, 1996). The technique has become more sensitive and an accurate taxonomic tool and hence genotyping differences were revealed among field isolates and their corresponding reference strains, whereas cross agglutination absorption test has failed to detect these differences.

The main objective of the present study was to study and compare the DNA profiles of leptospiral field isolates by restriction endonuclease analysis.

MATERIALS AND METHODS

Leptospiral Isolates

Ten field isolates (belong to 5 serovars) and two reference strains were used in this study. The field isolates and reference strains details are shown in Table 1. The field isolates were isolated from clinical incidents of leptospirosis. The isolates were identified serologically based on microscopic agglutination test.

Preparation of Chromosomal Leptospiral DNA

The field isolates and reference strains were cultured in Johnson-Seiter (JS) medium. Then the cultures were incubated for up to 10 days at 30°C. Genomic DNA was extracted from the leptospiral reference strains and field isolates cultures using a commercial genomic DNA purification kit (Wizard R, Promega, USA) that was used based on the recommendations of the manufacturer.

Digestion with Restriction Endonucleases

The restriction endonucleases used for digestion were *HindIII, BamHI* and *EcoRI* (Promega, USA). The enzymes were selected according to Ellis et al., 1991. The digestion reaction mixture used, comprised of the DNA sample, reaction buffer, enzyme and distilled water. A total digestion mixture of 20 μl was used. One to three microgram of purified leptospiral DNA was digested with 4 to 5 U of restriction enzyme. Digestion was done at 37°C for 1 hour in the recommended buffer.

Agarose Gel Electrophoresis of Digested Products

The DNA fragments, resulting from the digestion with restriction enzymes, were separated by means of electrophoresis in 0.7% agarose in tris-borate buffer.
RESULTS

The restriction patterns produced by digestion of the leptospiral field isolates DNA with HindIII, BamHI and EcoRI are presented in Figures 1, 2 and 3, respectively. Generally, the digestion with the three enzymes separately produced a high heterogeneity among serovars, while similarities were observed among the isolates of the same serovar. Particularly the two isolates of the serovar portland-vere produced identical restriction patterns by each of the three enzymes, as did the isolates of serovars, hardjo and kennewicki. The two isolates of serovar copenhageni produced identical restriction patterns with HindIII and BamHI, while one isolate of this serovar (Ic-02-003) was not digested with EcoRI. Although the two isolates of serovar grippo-typhosa were identified serologically, they seem to be different by restriction patterns by each of the three enzymes. Although the two isolates HB-15B-012, HB-15B-013 were identical and were identified serologically as Leptospira hardjo, they were quite different from Leptospira hardjo strain hardjoprajitno in their DNA profile with each of the three enzymes. The canicola reference strain produced a restriction pattern identical to that shown by the two isolates of serovar portland-vere. Knowing that the two serovars belong to serogroup canicola.
DISCUSSION

After detection of leptospiral infection, it is often necessary for diagnostic and epidemiological purposes to identify the serovar involved (Savio et al. 1994). In the present study, a comparison between DNA profiles of leptospiral field isolates was examined based on restriction endonuclease analysis (REA). At the same time the relationship between the digestion pattern, the serovar and origin of the isolates was assessed. The digestion with enzymes HindIII, BamHI and EcoRI revealed a high heterogeneity between the serovars examined. The most interesting result in this study was the observation of no common fragment shared between all the serovars with any of the enzymes used. The high heterogeneity among leptospiral serovars would support the concept of the serovar as the basic taxonomic unit of leptospiral classification (Brown and Levett, 1997). The variable restriction patterns observed in this study will be useful in the differentiation and classification of leptospiral serovars. The identical restriction patterns of the two isolates of one serovar would suggest a common source or close genetic correlation or that the isolates were belonging to the same strain, whereas the markedly dissimilar patterns would indicate otherwise. In the present study, an identical restriction pattern was observed among the isolates of the same serovar using the three enzymes HindIII, BamHI and EcoRI. So the two isolates from serovars portland-vere, copenhageni, hardjo and

References

