ΠΕΡΙΛΗΨΗ. Εξετάσθηκαν 51 δείγματα κρεατοπαστών διαφό­
ρων ειδών αλλαντικών θερμικής επεξεργασίας από δύο αλλαντικές επι­
βιομηχανίες της Β. Ελλάδας. Η ολική μεσοφιλή χλωρίδα (ΟΜΧ) των κρεατο­
παστών αυτών κατανέμονται 5,3-6,3 Log₁₀ CFU/g. Στα ι­
δια δείγματα παρατηρήθηκε συσχέτικη η παρουσία ζωντανού α­
ριθμού κολοβακτηριοειδών (5-7 Log₁₀ CFU/g) και οξυγαλακτι­
κών βακτηρίων (5-6,3 Log₁₀ CFU/g). Η L. monocytogenes αν­
τιλείται σε ποσοστό 56 και 38,4% των δειγμάτων από κάθε αλ­
λαντική βιομηχανία αντιστοίχως. Η E. coli αντιλείται σε ποσοστό 20 και
16,6% και η Salmonella spp σε 12 και 16,6% αντίστοιχως. Με­
τά τη θερμική επεξεργασία των κρεατοπαστών για την παραγωγή των αλλαντικών, σε κανένα δείγμα δεν διαπιστώθηκε η παρουσία των προσανατολισμένων ναθανάτων βακτηρίων ούτε και η επιβίωση κολοβακτηριοειδών. Δεν παρατηρήθηκαν επίσης, ανάνευση των τραυματισμένων καταλείμματων τους μετά τη συντήρηση των ιδίων αλ­
λαντικών σε θερμοκρασία 4°C επί 20 ημερών. Η ΟΜΧ των αλλα­
λαντικών, αμέσως μετά τη θερμική επεξεργασία, κυριάρχησε 3-4,7 Log₁₀ CFU/g και αποτελούνταν κυρίως από οξυγαλακτικά (<2-4,5 Log₁₀ CFU/g) και σπόρων (3-4,5 Log₁₀ CFU/g). Μετά τη συντή­
ρηση των αλλαντικών αυτών στους 4°C επί 20 ημέρες σε κενό, πα­
ρατηθείσα αύξηση της ΟΜΧ και των οξυγαλακτικών, η οποία σε ΑΒΣΤΡΑΚΤ. Fifty one (51) samples of several types of cooked sausage paste, prepared by two meat factories in N. Greece were examined. TPC of these samples ranged between 5-6,3 Log₁₀ CFU/g. Coliforms were regularly present reaching populations of 93->2.400 MPN/g and lactic acid bacteria ranged between 5-6,3 Log₁₀ CFU/g. L. monocytogenes was detected in 56 and 38.4% of the samples collected in each factory. E. coli was detected in 20 and 16.6%, and Salmonella spp in 12 and 16.6% respectively. Neither pathogens nor coliforms were detected in 51 samples of cooked sausages originated from the same pastes examined before. No recovery of any injured cells of the pathogenic bacteria and coliforms was observed after their storage at 4°C for 20 days. TPC of the cooked sausage samples, after thermal treatment, ranged between 3-4,7 Log₁₀ CFU/g and consisted mainly of lactic acid bacteria (range <2-4,5 Log₁₀ CFU/g) and sporeformers (range 3-4,5 Log₁₀ CFU/g). After 20 days storage at 4°C the TPC and lactic acid bacteria counts of the cooked sausages, increased by ≤1 Log. We also examined 16 surface and center samples of cooked sausages and meat products without casings, consisting of big meat pieces (bacon, smoked ham, etc). Surface TPC ranged between 5-5,3 Log₁₀ CFU/g and from the center of the meats they ranged between 2-3,5 Log₁₀ CFU/g. Coliforms, E. coli, L. monocytogenes and Salmonella spp were not detected. Lactic acid bacteria were the main flora. Furthermore we examined surface samples of cooked meat products, without casings, during several stages following thermal treatment and up to storage for 24 h at 4°C, without any protective package. TPC immediately after thermal treatment were <2 Log₁₀ CFU/g. After cooling with water increased they increased by 3 Log₁₀ CFU/g and remained the same during the following 24 h storage at 4°C. Coliforms were detected in the stored products. Their populations exceeded 2.400 MPN/g on the surface of the samples after storage for a few days at 4°C. It is assumed that the flora on the surface of these products originated from the environment and the cooling water. Finally we examined 69 samples from surfaces of the slicing and packaging equipment of cooked meat products in 3 meat factories and 28 samples from 12 super markets. L. monocytogenes was detected in 6
Ξέ με νεφό όταν 3 Log_{10} CFU/g και μετά 24 ώρες συντήρησης ήταν 3 Log_{10} CFU/g. Στα δείγματα των αλλαντικών μετά τη συντήρησή τους επί 24 ώρες διαπιστώθηκε η παρουσία κολοβακτηριοειδών. Σε δείγματα μάλιστα αλλαντικών ορισμένων προϊόντων, ο ελαχιστότερος κολοβακτηριοειδής αποδοθέτηκε σε 2-400 MPN/g. Εξαπέταιρη και επίσης 69 δείγματα από τοις εξοπλίσματος των εργαζομένων τεμαχισμού, συσκευασιών και συσκευασιών παράσιτων αλλαντικών, καλαμάτων λαγινικής πώλησης τροφίμων. Λ. poinopotospp. αποδοθέτηκε σε ποσοστά 6 και 14,2% των δειγμάτων που προερχόταν από τα μαγαζιά και τα παραμονά των αλλαντικών τροφίμων και των καταστημάτων λαγινικής πώλησης απαντήσεως. Τα αποτελέσματα αυτά δείχνουν τη σημασία εφαρμογής των κανόνων ορθής γενικής πρακτικής, ιδιαίτερα μετά τη θερμική επεξεργασία, στην παραγωγή και διάθεση των αλλαντικών. Η επικράτηση της μόλυνσης από ποθογόνα βακτήρια και την αυξημένη υγιεινή καταναλωτών που περιορίζει το χρόνο ζωής τους.

Δέξεις ευρετηρίας: Αλλαντικά θερμικής επεξεργασίας, μικροβιολογικοί κίνδυνοι.

ΕΙΣΑΓΩΓΗ

Η συνεχής επιστημονική και τεχνολογική πρόοδος στον τομέα των τροφίμων έχει συμβάλει σημαντικά στη βελτίωση της υγείας και της αποτίμησης της ποιότητας των τροφίμων. Παρ’ όλα αυτά, οι ασθένειες που οφείλονται σε νωπά τρόφιμα ή συστατικά και 4) κακή προσωπική υγιεινή. Πολλοί είναι οι παράγοντες που συμβάλλουν στην παραγωγή και διάθεση των αλλαντικών, κατά τους οποίους προκύπτει η επικράτηση της μόλυνσης από ποθογόνα βακτήρια και την αυξημένη υγιεινή καταναλωτών που περιορίζει το χρόνο ζωής τους.

ΕΙΔΙΚΟΤΕΡΑ

Η συνεχής επιστημονική και τεχνολογική πρόοδος στον τομέα των τροφίμων έχει συμβάλει σημαντικά στη βελτίωση της υγείας και της αποτίμησης της ποιότητας των τροφίμων. Παρ’ όλα αυτά, οι ασθένειες που οφείλονται σε νωπά τρόφιμα ή συστατικά και 4) κακή προσωπική υγιεινή. Πολλοί είναι οι παράγοντες που συμβάλλουν στην παραγωγή και διάθεση των αλλαντικών, κατά τους οποίους προκύπτει η επικράτηση της μόλυνσης από ποθογόνα βακτήρια και την αυξημένη υγιεινή καταναλωτών που περιορίζει το χρόνο ζωής τους.

Δέξεις ευρετηρίας: Αλλαντικά θερμικής επεξεργασίας, μικροβιολογικοί κίνδυνοι.

INTRODUCTION

Recent scientific and technological progress in the food sector has improved the safety and the overall quality of foods. Nevertheless foodborne diseases due to contaminated foods and beverages are still among the main causes of morbidity in many countries and under certain circumstances have serious consequences for consumer health and the national economy (Mead et al. 1999, Notermans and Borgdorff 1997).

Specifically, some types of meat products such as frankfurters, liver pâté, etc., have been incriminated repeatedly as vehicles for foodborne diseases in recent years (Schmidt 1996, Tirado and Schmidt 2000). This year an outbreak has been reported from Spain, where 150 schoolchildren from 4 schools became sick as a result of eating sausages contaminated with E. coli O157:H7 (Anonymous 2001).

Though there are many factors which contribute to foodborne disease, the most common factors are: 1) contamination of ready to eat foods, 2) temperature abuse: inadequate cooling, or inappropriate storage temperatures (including leaving foods at room temperature for too long), 3) contaminated raw foods or contaminated ingredients, and 4) lack of personal hygiene among food handlers (Schmidt 1996).

The obligatory application of Hazard Analysis Critical Control Point system (HACCP) principles (E.C. Directive 93/43, NACMCF 1998, Tompkin 1990, Y.A. 487/2000) aims at minimizing health risks from food consumption by applying controlling procedures at several stages in the food production process, not just at the final stage when the product goes out of the plant or is to be served or sold to the consumer. Production, storage and distribution of cooked meat products include several stages, some of
κατανάλωση των θερμικά επεξεργασμένων αλλαντικών περιλαμβάνει διάφορα στάδια. Ορισμένα από αυτά αυτά, σύμφωνα με τις αρχές του HACCP, αποτελούν Κρίσιμα Σημεία Ελέγχου (KSE) αναλόγως με το αν στα σημεία αυτά υπάρχει η δυνατότητα να περιοριστούν ή να εξαλειφθούν πλήρως κύρια οι βιολογικοί κίνδυνοι (παθογόνοι μικροοργανισμοί) (NACMCF 1998).

Οι μικρότεροι KSE στην παραγωγή και συντήρηση των θερμικά επεξεργασμένων αλλαντικών, όσον αφορά την εξάλειψη των κίνδυνων από μη σπορογόνα βακτήρια, των θερμικά επεξεργασμένων αλλαντικών, όσον αφορά τα, συμφωνά με τις αρχές του HACCP, αποτελούν Κρίσιμα Σημεία Ελέγχου (Genigeorgis 1996)

KSE επίσης μπορεί να θεωρηθούν η διαδικασία ψύξης έξω των μη ενθηκευμένων αλλαντικών (π.χ. χοιρινή μπριζόλα), η αποφυλάκισή των λουκάνικων τύπου Φραγκοκροτήσεως, οι τεμαχισμοί όσον αλλαντικό προφυλάσσεται για πώληση ως φέτες, συνεκπαιδευμένες σε αδιαφάνεια σε εξώγραφο και υδρατμένες με εξώπτευση ή χιονοκατανάλωση.

Επιπλέον των αναφερθέντων KSE υπάρχουν και άλλες φάσεις στο σημείο του σερβις των αλλαντικών στις οποίες είναι δυνατό να περιοριστεί ή να αποφευχθεί η αύξηση του μικροβιακού φορτίου των κρέατος.

Επιπλέον, στην παραγωγή και συντήρηση των αλλαντικών στις οποίες είναι δυνατό να περιοριστεί ή να αποφευχθεί η αύξηση του μικροβιακού φορτίου των κρέατος, έως τέτοιες φάσεις μπορεί να θεωρηθούν η προσθήκη χοιρινού κολλαγόνου (δέρματος) στην κρεατόπαστα ορισμένων είδων αλλαντικών και η παραμονή των κρεατοπαστών έως 24 h. με αυτόν τον τρόπο να προστατεύεται η μικροβιακή ικανότητα μεσοφιλής οικογένειας των αλλαντικών, ενώ όλοι οι βιολογικοί κίνδυνοι (παθογόνοι μικροοργανισμοί) (NACMCF 1998).

Οι ενέργειες επιβεβαίωσης, οι οποίες ελέγχουν την επαρκή θερμική επεξεργασία, συμβάλλουν στην αύξηση του χρόνου ζωής των αλλαντικών, δεδομένου ότι η θερμική επεξεργασία, εκτός από τη διασφάλιση της υγιεινής, στοχεύει και στη μείωση των σαπροφυτικών βιολογικών κίνδυνων (Genigeorgis 1996).

Δύο άλλες θεωρίες μπορεί να θεωρηθούν η διαδικασία ψύξης έξω των μη ενθηκευμένων αλλαντικών ως έτοιμη για ελέγχους στα σημεία αυτά καθιστά αποτελεσματικό τη χρήση της επαρκής θερμικής επεξεργασίας (Genigeorgis 1996). Επιπλέον των προαναφερθέντων KSE υπάρχουν και άλλες φάσεις στην παραγωγή των αλλαντικών στις οποίες είναι δυνατό να περιοριστεί ή να αποφευχθεί η αύξηση του μικροβιακού φορτίου των κρέατος.

Οι ενέργειες επιβεβαίωσης, οι οποίες ελέγχουν την επαρκή θερμική επεξεργασία, συμβάλλουν στην αύξηση του χρόνου ζωής των αλλαντικών, δεδομένου ότι η θερμική επεξεργασία, εκτός από τη διασφάλιση της υγιεινής, στοχεύει και στη μείωση των σαπροφυτικών βιολογικών κίνδυνων. Οι ενέργειες επιβεβαίωσης, οι οποίες ελέγχουν την επαρκή θερμική επεξεργασία, συμβάλλουν στην αύξηση του χρόνου ζωής των αλλαντικών, δεδομένου ότι η θερμική επεξεργασία, εκτός από τη διασφάλιση της υγιεινής, στοχεύει και στη μείωση των σαπροφυτικών βιολογικών κίνδυνων. Οι ενέργειες επιβεβαίωσης, οι οποίες ελέγχουν την επαρκή θερμική επεξεργασία, συμβάλλουν στην αύξηση του χρόνου ζωής των αλλαντικών, δεδομένου ότι η θερμική επεξεργασία, εκτός από τη διασφάλιση της υγιεινής, στοχεύει και στη μείωση των σαπροφυτικών βιολογικών κίνδυνων.
και των Salmonella spp στα βραστά αλλαντικά, στις κρεατόπαστες τους, στα ιδία αλλαντικά μετά τη συντήρηση τους, σε συσκευασία κενού, σε θερμοκρασία 4°C επί 20 ημέρες, στο κολλαγόνο, στο νερό του καταλαλήσαντος ψυχής των αλλαντικών, στις επαράνειες των μη ενθεκθεμένων αλλαντικών αμέσως μετά την ψύξη τους και μετά την παραμονή τους στη συντήρηση για 24 ώρες.

- Η παρουσία της L. monocytogenes, ως δεύτερη γνωστή, λόγω της γνωστής αντισεπτικής της, στις επαράνειες της αποφλοιωτικής μηχανής των λουκάνικων τύπου Φρανκφούρτης, των τελάρων συντήρησης των αποφλοιωμένων λουκάνικων, των μηχανών συσκευασίας και τερατογενών αλλαντοβιομηχανιών και των καταστημάτων λιωτικής πώλησης τροφίμων.

MATERIALS AND METHODS

Total Plate Count (TPC)

Ten g of sausage paste or 10 ml of water were aseptically sampled and then placed into stomacher bags. Volumes of 90 ml of 1% peptone water with 0.1%, Tween 80, for fat emulsification were added to the stomacher bags. The mixtures were next homogenized in the stomacher apparatus (MX1, AES Laboratoire, Coburg, France), for 2 min. The homogenates were ten-fold diluted and volumes of 0.1 ml were plated onto plate count agar (PCA, OXOID). The agar plates were incubated at 37°C for 24-48 h., and then the colonies were counted and recorded.

For sporeforming bacteria counting, the tubes containing the ten-fold dilutions of the samples were placed in a water bath (Tempete Junior, TE-85, Techne Ltd. Duxford, Cambridge, England) at 80°C for 20 min and then they were cooled in ice water. Volumes of 0.1 ml from each tube were spread on PCA, which were then incubated at 37°C for 24 h.

Lactic Acid Bacteria (LAB) count

From the tubes used for TPC count, 0.1 ml was spread in duplicate onto APT agar (OXOID) plates. After drying, the plates were incubated at 37°C for 24-48 h. Colonies which were catalase negative and Gram positive were counted as LAB.

Coliform and E.coli count

For coliform counts the Most Probable Number (MPN) method was used. From the decimal dilutions, that had been prepared for the TPC counts, 1 ml was transferred in a series of tubes containing McConkey broth (OXOID) in triplicate. Tubes used for the examination of water samples contained double strength McConkey broth. The tubes were incubated at 37°C for 24-48 h. The tubes were considered as positive when there was indication of growth, color change and gas production in the Durham tubes (preliminary test). For verification, from each positive tube a volume 1ml was inoculated in tubes containing Brilliant Green Lactose Bile broth (BGLB, BBL) which were then incubated at 35°C for 24-48 h. From the number of positives, the MPN/g of coliforms was estimated with the use of McCrady’s tables.

For the detection and counting of E. coli volumes 1 ml were taken from each of the positive tubes of the preliminary test, and inoculated into tubes containing E.C. broth (OXOID) and Tryptone Water (OXOID). The last two tubes were incubated in a water bath with a temperature of 44.5°C for 24-48 h. An E.C. broth was considered positive for E. coli when there was growth and gas production and the Tryptone Water was considered positive when it showed growth and a positive indole test. Positivity to indole test and growth in E.C. broth simultaneously was considered as positivity to E. coli of the corresponding positive to coliforms tube. Based on Mc Crady’s tables the final count was expressed as E. coli MPN/g.
Detection of Listeria monocytogenes

Ten g samples of sausage pastes were mixed with 90 ml of FDA Listeria enrichment broth (LEB, OXOID), in stomacher bags. The mixtures were homogenized in a stomacher apparatus for 2 min and then incubated at 30°C for 24 h (primary enrichment). After incubation 0.1 ml from the content of each stomacher bag was transferred into tubes containing 9 ml LEB and Fraser broth (Fraser 1988) which were next incubated at 30°C for 24 h (second enrichment).

From each enrichment broth showing growth, a loopful was streaked onto LPM agar (BBL) and MOX agars (BBL) which were next incubated at 37°C for 24-48 h (McLain and Lee 1989). Three colonies with the characteristic appearance of Listeria spp., examined with a dissecting microscope under 45° reflecting illumination, were streaked onto BHI agar (OXOID) for purification. Identification of the pure cultures as L. monocytogenes was based on the following tests: Gram staining; catalase production; motility; utilization of esculin, ramnose, xylose, a-methyl-d-mannopyranoside; production of b-hemolysin on sheep blood agar, and CAMP test (Seelinger et al. 1984).

For the detection of microorganism on the surfaces of the slicing and packaging machines, an area of 100 cm² was swabbed with a sterile cotton swab which had been moistened in saline. The swabs were then placed in tubes containing 10 ml of LEB enrichment broth. The tubes were incubated at 30°C for 24 h (primary enrichment). After the primary enrichment, the procedure used for the sausages was followed.

Detection of Salmonella spp.

Twenty-five g of raw sausage meat paste or cooked sausage were mixed with 225 ml Buffered Peptone Water (BBL) in a stomacher bag. The mixture was homogenized for 2 min and then incubated at 37°C for 24 h (pre-enrichment phase). After incubation 1 ml of each sample was transferred into each of two tubes containing 10 ml of selective enrichment broth Selenite Cystine (OXOID) and Tetrathionate broth (BBL). The tubes were incubated at 37° and 42°C, respectively, for 24 h (enrichment phases). After enrichment, the cultures were streaked onto XLD agar (BBL) and SS agar (OXOID) (Andrews 1985, ISO 1981) which were next incubated at 37°C for 24 h. Of the suspected colonies, two or three were purified on BHI agar (OXOID) and then tested for their biochemical characteristics on TSI agar (OXOID) and LI agar (OXOID) after incubation at 35°C for 24 h. Cultures suspected as being Salmonella spp., were inoculated in Christensen Urea agar (OXOID) and tested also for oxidase production.

RESULTS

Analysis of sausage pastes which originated from two meat plants (Table 1) indicated that 20 and 16.6% of them were contaminated with E. coli, 56 and 38.4% with L. mono-
ΑΠΟΤΕΛΕΣΜΑ

τρυβλία που περιείχαν XLD αγάρ ταρχικός εμπλουτισμός. Μετά τον πρωταρχικό εμπλουτισμό τους.

spp. in sausage pastes (Table 1), is the result of the contamination of the environment of meat processing plants has been reported and is the result of contamination from pastes used in eliminating microbiological hazards from non-spooreforming pathogens. The results also showed that the thermal processing achieved an adequate level of reduction of spoilage bacteria counts which were within the legal limits that ensure a sufficient shelf life for distribution and marketing (Π.Δ. 9/1989).

As Tables 1, 2 and 4 indicate the majority of TPC bacteria of cooked sausages consisted of sporeforming and LAB. Gradual growth of these bacteria was responsible for the limitation of shelf life and final product spoilage.

Microbiological analysis of cooked sausages after storage, in vacuum package, at 4°C for 20 days showed a limited microbial growth which did not exceed 1 Log10. The fact that no recovery of any injured cells of pathogens, including the thermotolerant and psychrotrophic L. monocytogenes (Jones et al. 1997), was observed during storage is very reassuring for the safety of these products.

Three (3) meat plants and twelve (12) super markets (Table 5) were investigated for the presence of L. monocytogenes on the surfaces of equipment which were in contact with ready cooked sausages. The pathogen was present at levels of 6% on the surfaces of the saws of slicing machines of the plants and 14.4% of the super markets.

Microbiological analysis of samples from the surface and the cores of sausages without casings revealed the absence of any pathogen (Table 6). No recovery of any pathogen was observed either from the surface of bacon during the phases following thermal treatment, or from the samples of cooling water (Table 7). Table 8 shows the microbiological profile of collagen and raw sausage meet pastes into which it was incorporated. The TPC of collagen were 1 Log10 higher than that of the paste. Coliform counts were >2,400 MPN/g in both the collage and the pastes. E. coli was detected in all samples.

DISCUSSION

The presence of L. monocytogenes, E. coli and Salmonella spp. in sausage pastes (Table 1), is the result of the frequent presence of these microorganisms in raw meat (Bell and Kyriakidis 1998, Chart et al. 2000, Duffy et al. 2001, Genigeorgis 1987, Limpitakis et al. 1999, Sofos et al. 1999). The presence of many other foodborne pathogens, including Campylobacter spp (Duffy et al. 2001), and Yersinia enterocolytica (Bottone 1997, Duffy et al. 2001) has been reported also. This fact practically makes us consider all pastes as positive for foodborne pathogens and therefore they must be handled properly in order to prevent any potential contamination of cooked sausages as well as the areas where they are stored, sliced and packaged. The presence of L. monocytogenes in the environment of meat plants has been reported and is the result of contamination from pastes, if sanitation of equipment is not effective.
Περιεχόμενα της εξετάσεως δειγμάτων αλλαντικών θερμικής επεξεργασίας.

<table>
<thead>
<tr>
<th>ΕΙΔΟΣ ΑΛΛΑΝΤΙΚΟΥ</th>
<th>ΜΟΡΤΑΔΕ Α</th>
<th>ΜΟΡΤΑΔΕ Β</th>
<th>ΦΛΑΪΣ ΡΕΝ</th>
<th>ΠΑΡΙΖΑ</th>
<th>ΒΙΕΝΝΗΣ</th>
<th>ΦΡΑΝΚΦΟΥΡΤΗΣ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ε. coli</td>
<td>4,5±0,2</td>
<td>4,5±0,2</td>
<td>4,5±0,2</td>
<td>4,5±0,2</td>
<td>4,5±0,2</td>
<td>4,5±0,2</td>
</tr>
<tr>
<td>Λ. monocytogenes</td>
<td>3,5±0,2</td>
<td>3,5±0,2</td>
<td>3,5±0,2</td>
<td>3,5±0,2</td>
<td>3,5±0,2</td>
<td>3,5±0,2</td>
</tr>
<tr>
<td>Σαλμονέλα</td>
<td>3,5±0,2</td>
<td>3,5±0,2</td>
<td>3,5±0,2</td>
<td>3,5±0,2</td>
<td>3,5±0,2</td>
<td>3,5±0,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ΔΕΙΓΜΑΤΑ</th>
<th>ΑΡΩΜΑΤΙΚΑ ΜΟΝΑΔΕΣ (CFU/g)</th>
<th>ΟΞΥΓΑΑΑΚΤΙΚΑ ΜΟΝΑΔΕΣ (MPN/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ε. coli</td>
<td>5,5±0,2</td>
<td>10,000-20,000</td>
</tr>
<tr>
<td>Λ. monocytogenes</td>
<td>3,5±0,2</td>
<td>1,000-2,000</td>
</tr>
<tr>
<td>Σαλμονέλα</td>
<td>3,5±0,2</td>
<td>1,000-2,000</td>
</tr>
</tbody>
</table>

Πινακας 1: Αποτελέσματα μικροβιολογικής εξέτασης δειγμάτων αλλαντικών θερμικής επεξεργασίας.
Table 1. Results of microbiological examination of samples from raw sausage pastes.

<table>
<thead>
<tr>
<th>TYPE OF SAUSAGE</th>
<th>NUMBER OF SAMPLES</th>
<th>TPC (\log_{10} \text{CFU/g MV(Range)})</th>
<th>LAB (\log_{10} \text{CFU/g MV(Range)})</th>
<th>COLIFORMS MPN/g Range</th>
<th>E. coli (Number of positive samples)</th>
<th>L. monocytogenes (Number of positive samples)</th>
<th>Salmonella spp (Number of positive samples)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frankfurters</td>
<td>6</td>
<td>6 (5,8-6,2)</td>
<td>5 (4,9-5,5)</td>
<td>240 - >2,400</td>
<td>2</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Trikalino</td>
<td>3</td>
<td>5,9 (5,7-6)</td>
<td>5,8 (5,2-6,3)</td>
<td>150 - 1,100</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Fleisch Ren</td>
<td>3</td>
<td>6,3 (6-6,4)</td>
<td>6,3 (5,9-6,5)</td>
<td>93</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Mortadella</td>
<td>6</td>
<td>5,5 (5,4-5,8)</td>
<td>5,5 (5,3-5,8)</td>
<td>93 - 1,100</td>
<td>-</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Pariza</td>
<td>3</td>
<td>5,6 (5,4-5,8)</td>
<td>5,9 (5,7-6,2)</td>
<td>93 - 150</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Wiener</td>
<td>4</td>
<td>5,3 (5-5,5)</td>
<td>6 (5,9-6,3)</td>
<td>150 - 240</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL OF SAMPLES</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERCENTAGE OF CONTAMINATED SAMPLES WITH E. coli, L. monocytogenes AND Salmonella spp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20%</td>
<td>56%</td>
</tr>
<tr>
<td>Industry B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frankfurters</td>
<td>4</td>
<td>6,3 (5,9-6,8)</td>
<td>5,7 (5,5-5,95)</td>
<td>1,000 - >2,400</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Pepperoni</td>
<td>4</td>
<td>5,8 (5,3-6)</td>
<td>5,8 (5,4-6)</td>
<td>240 - 1,100</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Zambon</td>
<td>2</td>
<td>5,5 (5,4-5,6)</td>
<td>5,5 (5,4-5,6)</td>
<td>1,100 - >2,400</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Wiener</td>
<td>4</td>
<td>5,9 (5,4-6,2)</td>
<td>5,7 (5,5-5,9)</td>
<td>93 - 1,100</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Pariza</td>
<td>2</td>
<td>6,5 (5-6,15)</td>
<td>5,6 (5,4-5,8)</td>
<td>93</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Mortadella</td>
<td>4</td>
<td>5 (4,8-5,2)</td>
<td>5,7 (5,4-5,9)</td>
<td>240 - 1,100</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Scordato</td>
<td>4</td>
<td>6 (5,85-6,15)</td>
<td>5,6 (5,3-5,8)</td>
<td>93 - 1,100</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Toast Ham</td>
<td>2</td>
<td>5,3 (5,15-5,4)</td>
<td>5 (4,8-5,2)</td>
<td>>2,400</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL OF SAMPLES</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERCENTAGE OF CONTAMINATED SAMPLES WITH E. coli, L. monocytogenes AND Salmonella spp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16,6%</td>
<td>38,4%</td>
</tr>
</tbody>
</table>

Table 2. Results of microbiological examination of samples from cooked sausages.

<table>
<thead>
<tr>
<th>TYPE OF SAUSAGE</th>
<th>NUMBER OF SAMPLES</th>
<th>TPC (\log_{10} \text{CFU/g MV(Range)})</th>
<th>LAB (\log_{10} \text{CFU/g MV(Range)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frankfurters</td>
<td>6</td>
<td>3,85 (3,3-4)</td>
<td>3,5 (3-3,85)</td>
</tr>
<tr>
<td>Trikalino</td>
<td>3</td>
<td>4 (3,8-4,2)</td>
<td>4 (3-8-4,2)</td>
</tr>
<tr>
<td>Fleisch Ren</td>
<td>3</td>
<td>3,8 (3,7-4)</td>
<td>3,2 (3-3,4)</td>
</tr>
<tr>
<td>Mortadella</td>
<td>6</td>
<td>3 (3)</td>
<td><2</td>
</tr>
<tr>
<td>Pariza</td>
<td>3</td>
<td>3 (2,9-3,1)</td>
<td><2</td>
</tr>
<tr>
<td>Wiener</td>
<td>4</td>
<td>3,5 (3,3-3,7)</td>
<td>3,3(3-3,6)</td>
</tr>
<tr>
<td>TOTAL OF SAMPLES</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industry B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frankfurters</td>
<td>4</td>
<td>4,7 (4,3-4,9)</td>
<td>4,5(4,3-4,9)</td>
</tr>
<tr>
<td>Pepperoni</td>
<td>4</td>
<td>4,3 (4-4,7)</td>
<td>4,3 (4-4,7)</td>
</tr>
<tr>
<td>Zambon</td>
<td>2</td>
<td>3,3 (3-3,45)</td>
<td>3,5 (3-3,45)</td>
</tr>
<tr>
<td>Wiener</td>
<td>4</td>
<td>3,7 (3-3,95)</td>
<td>3,3 (3-3,45)</td>
</tr>
<tr>
<td>Pariza</td>
<td>2</td>
<td>3,7 (3-6-3,8)</td>
<td>3 (3)</td>
</tr>
<tr>
<td>Mortadella</td>
<td>4</td>
<td>3 (2,9-3,2)</td>
<td>3 (2,9-3,15)</td>
</tr>
<tr>
<td>Scordato</td>
<td>4</td>
<td>3,3 (3-3,5)</td>
<td>3 (2,9-3,3)</td>
</tr>
<tr>
<td>Toast Ham</td>
<td>2</td>
<td>3,5 (3,5)</td>
<td>3,5 (3,5)</td>
</tr>
<tr>
<td>TOTAL OF SAMPLES</td>
<td>26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The results of the examination of the samples for E. coli, L. monocytogenes and Salmonella spp were negative.
Πίνακας 3. Αποτελέσματα μικροβιολογικής εξέτασης δειγμάτων αλλαντικών θερμικής επεξεργασίας μετά τη συντήρησή τους επί 20 ημέρες σε θερμοκρασία 4°C.

<table>
<thead>
<tr>
<th>ΕΙΔΟΣ ΑΛΛΑΝΤΙΚΟΥ</th>
<th>ΑΡΙΘΜΟΣ ΔΕΙΓΜΑΤΩΝ</th>
<th>ΤΥΠΟΣ ΑΛΛΑΝΤΙΚΟΥ</th>
<th>ΟΜΧ Log10 CFU/g M.O (Διακύμανση)</th>
<th>ΟΞΥΓΑΑΑΑΑΑΚΤΙΚΑ Log10 CFU/g M.O (Διακύμανση)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΒΙΟΜΗΧΑΝΙΑ Α</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Λουκάνικο τύπου Φρανκφούρτης</td>
<td>6</td>
<td>4,3 (4,1-4,8)</td>
<td>4 (3,8-4,6)</td>
<td></td>
</tr>
<tr>
<td>Τρικαλινό</td>
<td>3</td>
<td>4 (3,9-4,1)</td>
<td>4 (3,8-4,2)</td>
<td></td>
</tr>
<tr>
<td>Φλάές Ren</td>
<td>3</td>
<td>4 (4)</td>
<td>4 (4)</td>
<td></td>
</tr>
<tr>
<td>Μορταδέλλα</td>
<td>6</td>
<td>3,6 (3,5-3,7)</td>
<td>3,7 (3,5-3,8)</td>
<td></td>
</tr>
<tr>
<td>Πάριζα</td>
<td>3</td>
<td>3,7 (3,5-3,9)</td>
<td>3,7 (3,5-3,8)</td>
<td></td>
</tr>
<tr>
<td>Βέννης</td>
<td>4</td>
<td>3,8 (3,3-4)</td>
<td>3,85 (3,6-4)</td>
<td></td>
</tr>
<tr>
<td>ΣΥΝΟΛΟ ΔΕΙΓΜΑΤΩΝ</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΒΙΟΜΗΧΑΝΙΑ Β</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Λουκάνικο τύπου Φρανκφούρτης</td>
<td>4</td>
<td>5 (4,8-5,3)</td>
<td>5 (4,8-5,3)</td>
<td></td>
</tr>
<tr>
<td>Πεπερόνι</td>
<td>4</td>
<td>4,8 (4,5-4,95)</td>
<td>5 (4,8-5,2)</td>
<td></td>
</tr>
<tr>
<td>Ζαμπόν</td>
<td>2</td>
<td>3,7 (3,5-3,9)</td>
<td>3,7 (3,5-3,8)</td>
<td></td>
</tr>
<tr>
<td>Μπίρας</td>
<td>4</td>
<td>3,7 (3,5-3,95)</td>
<td>3,7 (3,5-3,9)</td>
<td></td>
</tr>
<tr>
<td>Πάριζα</td>
<td>2</td>
<td>4 (3,95-4,15)</td>
<td>4,3 (4,15-4,5)</td>
<td></td>
</tr>
<tr>
<td>Μορταδέλλα</td>
<td>4</td>
<td>3,3 (3,2-3,4)</td>
<td>3,7 (3,4-3,9)</td>
<td></td>
</tr>
<tr>
<td>Σκορδάτο</td>
<td>4</td>
<td>3,7 (3,5-3,9)</td>
<td>3,6 (3,3-3,8)</td>
<td></td>
</tr>
<tr>
<td>Τόστ Χάμ</td>
<td>2</td>
<td>3,7 (3,6-3,8)</td>
<td>4 (3,85-4,15)</td>
<td></td>
</tr>
<tr>
<td>ΣΥΝΟΛΟ ΔΕΙΓΜΑΤΩΝ</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Τα αποτελέσματα της εξέτασης των δειγμάτων για E. coli, L. monocytogenes και Salmonella spp ήταν αρνητικά.

Table 3. Results of microbiological examination of samples from cooked sausages after their storage at 4°C for 20 days.

<table>
<thead>
<tr>
<th>TYPE OF SAUSAGE</th>
<th>NUMBER OF SAMPLES</th>
<th>TPC Log10 CFU/g M.V(RANGE)</th>
<th>LAB Log10 CFU/g M.V (Range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frankfurters</td>
<td>6</td>
<td>4,3 (4,1-4,8)</td>
<td>4 (3,8-4,6)</td>
</tr>
<tr>
<td>Trikalino</td>
<td>3</td>
<td>4 (3,9-4,1)</td>
<td>4 (3,8-4,2)</td>
</tr>
<tr>
<td>Fleisch Ren</td>
<td>3</td>
<td>4 (4)</td>
<td>4 (4)</td>
</tr>
<tr>
<td>Mortadella</td>
<td>6</td>
<td>3,6 (3,5-3,7)</td>
<td>3,7 (3,5-3,8)</td>
</tr>
<tr>
<td>Pariza</td>
<td>3</td>
<td>3,7 (3,5-3,9)</td>
<td>3,7 (3,5-3,8)</td>
</tr>
<tr>
<td>Wiener</td>
<td>4</td>
<td>3,8 (3,3-4)</td>
<td>3,85 (3,6-4)</td>
</tr>
<tr>
<td>TOTAL OF SAMPLES</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industry B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frankfurters</td>
<td>4</td>
<td>5 (4,8-5,3)</td>
<td>5 (4,8-5,3)</td>
</tr>
<tr>
<td>Pepperoni</td>
<td>4</td>
<td>4,8 (4,5-4,95)</td>
<td>5 (4,8-5,2)</td>
</tr>
<tr>
<td>Zambon</td>
<td>2</td>
<td>3,7 (3,5-3,9)</td>
<td>3,7 (3,6-3,8)</td>
</tr>
<tr>
<td>Wiener</td>
<td>4</td>
<td>3,7 (3,5-3,9)</td>
<td>3,7 (3,5-3,9)</td>
</tr>
<tr>
<td>Pariza</td>
<td>2</td>
<td>4 (3,95-4,15)</td>
<td>4,3 (4,15-4,5)</td>
</tr>
<tr>
<td>Moertadella</td>
<td>4</td>
<td>3,3 (3,2-3,4)</td>
<td>3,7 (3,4-3,9)</td>
</tr>
<tr>
<td>Scordato</td>
<td>4</td>
<td>3,7 (3,5-3,9)</td>
<td>3,6 (3,3-3,8)</td>
</tr>
<tr>
<td>Toast Ham</td>
<td>2</td>
<td>3,7 (3,6-3,8)</td>
<td>4 (3,85-4,15)</td>
</tr>
<tr>
<td>TOTAL OF SAMPLES</td>
<td>26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The results of the examination of the samples for E. coli, L. monocytogenes and Salmonella spp were negative.
Πίνακας 4. Αποτελέσματα εξέτασης της μικροβιακής χλωρίδας των αλλαντικών θερμικής επεξεργασίας

<table>
<thead>
<tr>
<th>ΕΙΔΟΣ ΑΛΛΑΝΤΙΚΟΥ</th>
<th>ΔΡΙΘΜΟΣ ΑΔΙΓΜΑΤΩΝ</th>
<th>ΟΜΧ</th>
<th>ΟΣΥΓΑΛΑΚΤΙΚΑ</th>
<th>ΣΠΟΡΟΓΟΝΑ</th>
<th>ΚΟΛΟΒΑΚΤΗΡΙΟΕΙΔΗ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Λουκάνικο τύπου Φρανκφούρτης</td>
<td>2</td>
<td>4,3 (4,3)</td>
<td>4,3 (3,9-4,5)</td>
<td><3</td>
<td></td>
</tr>
<tr>
<td>Πάριζα</td>
<td>2</td>
<td>4,6 (4,5-4,7)</td>
<td>3,3 (3-3,6)</td>
<td><3</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Results of examination of cooked sausage microflora.

<table>
<thead>
<tr>
<th>TYPE OF SAUSAGE</th>
<th>NUMBER OF SAMPLES</th>
<th>TPC Log_{10} CFU/g (Διακύμανση)</th>
<th>LAB Log_{10} CFU/g M.O (Διακύμανση)</th>
<th>SPOREFORMERS Log_{10} CFU/g M.O (Διακύμανση)</th>
<th>COLIFORMS MPN/g (Διακύμανση)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frankfurters</td>
<td>2</td>
<td>4,3 (4,3)</td>
<td>4 (4)</td>
<td>4,3 (3,9-4,5)</td>
<td><3</td>
</tr>
<tr>
<td>Pariza</td>
<td>2</td>
<td>4,6 (4,5-4,7)</td>
<td>3 (3)</td>
<td>3,3 (3-3,6)</td>
<td><3</td>
</tr>
</tbody>
</table>

Πίνακας 5. Απομόνωση της Listeria monocytogenes από δείγματα προερχόμενα από διάφορες επιφάνειες των εξοπλισμών αλλαντοβιομηχανιών και καταστημάτων λιανικής πώλησης αλλαντικών θερμικής επεξεργασίας

ΠΡΟΕΛΕΥΣΗ ΛΕΙΓΜΑΤΩΝ

A. ΑΠΟ ΤΙΣ ΑΛΛΑΝΤΟΒΙΟΜΗΧΑΝΙΕΣ

1. Μηχανές τεμαχισμού (μαχαίρια) | 33 | 2 (6%) |
2. Τραπεζια τεμαχισμού | 8 | - |
3. Αποφλοιωτικές μηχανές λουκάνικων τύπου Φρανκφούρτης | 12 | - |
4. Τελάρα αποθήκευσης λουκάνικων τύπου Φρανκφούρτης | 16 | - |

B. ΑΠΟ ΤΑ ΚΑΤΑΣΤΗΜΑΤΑ ΛΙΑΝΙΚΗΣ ΠΩΛΗΣΗΣ ΤΡΟΦΙΜΩΝ

1. Μηχανές τεμαχισμού (μαχαίρια) | 14 | 2 (14,2%) |
2. Τραπεζια τεμαχισμού | 14 | - |

Table 5. Isolation of Listeria monocytogenes from samples of several surfaces of the equipment of meat industries and retail shops that are in contact with cooked sausages.

<table>
<thead>
<tr>
<th>SAMPLE ORIGIN</th>
<th>NUMBER OF EXAMINED SAMPLES</th>
<th>L. monocytogenes Number of positive samples (Percentage of positive)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. FROM MEAT INDUSTRIES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Slicing machines (saws)</td>
<td>33</td>
<td>2 (6%)</td>
</tr>
<tr>
<td>2. Slicing tables</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>3. Peeling machines for frankfurters</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>4. Container for frankfurter storage</td>
<td>16</td>
<td>-</td>
</tr>
<tr>
<td>B. FROM RETAIL SHOPS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Slicing machines (saws)</td>
<td>14</td>
<td>2 (14,2%)</td>
</tr>
<tr>
<td>2. Slicing tables</td>
<td>14</td>
<td>-</td>
</tr>
</tbody>
</table>
συντήρησή τους επί 20 ώρες σε θερμοκρασία 4 °C, σε συσκευάσεις λενόν (Πίνακας 3), εδείξει μικρή αύξηση του μικροβιολογικού τους φορτίου, η οποία δεν υπερβοήθη τον 1 Log₁₀. Ιδιαίτερη σημασία για την ασφαλεία τους έχει το γεγονός ότι δεν παρατηρήθηκε, στο δείγμα αυτό, ανά­
ήφη η συνήθως τροφιμοσαστική θερμοσαστική μικρο­
βιολογία μικροοργανισμών αυτών. Τα δείγματα αυτά είναι αποτελε­
σθαν > 2.400 MPN/g τόσο στο κολλαγόνο όσο και στις κρεα­
τοι νερό των καταιονητήρων ψύξης.

Από τη μικροβιολογική ανάλυση των δειγμάτων αυτών το επερείνει και το κέντρο των μη ενθηκευμένων αλλα­
τοπαστών, η παρουσία της L. monocytogenes στο εξωτικόμο τους, που έχεται σε επαφή με ε­
τομα θερμοκολλαγόνων αλλαντικά. Το παθογόνο βακτηρίων έπαιζε παρόν σε ποσοστά 6% και 14,4% των δειγ­
μάτων αυτών από τα μικροβιολογικά δείγματα και των καταστημάτων αποτροπής.

Από τη μικροβιολογική ανάλυση των δειγμάτων αυτών το επερείνει και το κέντρο των μη ενθηκευμένων αλλα­
νταιων, δεν διαπιστώθηκε η παρουσία παθογόνου κλη­
ρού (Πίνακας 5). Επίσης, όπως έχεται δείγμα του Πίνακα 7, και αναλληλογονοποιεί τον Πίνακα 7, ο οποίος δεν ανέγινε τόσο από τα δείγματα αυ­
τά την επαφή μεταξύ τους, κατά τις διάφορες φά­
σεις αμέσως μετά τη θερμική επεξεργασία, όσο και αυτό το νερό των καταστημάτων αποτροπής.

ΣΤΟΝ ΠΙΝΑΚΑ 8 φαίνονται τα αποτελέσματα της μικρο­
βιολογικής ανάλυσης των δειγμάτων της κολλαγογονο­
tης και της κρέατοπαστών στην οποία αναμένεται. Η ΟΜΧ τους έπαιζε παρόν σε ποσοστά 6% και 14,4% των δειγ­
μάτων αυτών, από τα δείγματα αυ­
τά την επαφή μεταξύ τους, κατά τις διάφορες φά­
σεις αδινής μετά τη θερμική επεξεργασία, όσο και αυτό το νε­
ρό των καταστημάτων αποτροπής.

ΣΥΖΗΤΗΣΗ
Η παρουσία των L. monocytogenes, E. coli και Salmonella spp στις κρέατοπαστές (Πίνακας 1) είναι αποτελε­
sθαν > 2.400 MPN/g τόσο στο κολλαγόνο όσο και στις κρεατοπαστές. Ο πληθυσμός των κολοβακτηριοειδών ήτα­
ταν >2.400 MPN/g τόσο στο κολλαγόνο όσο και στις κρεα­
τοπαστές, ενώ διαπιστώθηκε και η παρουσία της L. monocytogenes, E. coli και S. senftenberg στο περιβάλλον των δειγμάτων αυτών. Η παρουσία των S. enteritidis, S. typhimurium και S. derbyensis είναι αποτελε­
sθαν κατά 2.8 min. Από τη μικροβιολογική ανάλυση των δειγμάτων αυτών έκθεσης των δειγμάτων την κρέατοπαστών και της κρέατοπαστών στην οποία αναμένεται. Η ΟΜΧ τους έπαιζε παρόν σε ποσοστά 6% και 14,4% των δειγ­
μάτων αυτών, από τα δείγματα αυ­
τά την επαφή μεταξύ τους, κατά τις διάφορες φά­
σεις αμέσως μετά τη θερμική επεξεργασία, όσο και αυτό το νε­
ρό των καταστημάτων αποτροπής.

Η παρουσία των L. monocytogenes, E. coli και Salmonella spp στις κρέατοπαστές (Πίνακας 1) είναι αποτελε­
sθαν > 2.400 MPN/g τόσο στο κολλαγόνο όσο και στις κρέα­
tοπαστές, ενώ διαπιστώθηκε και η παρουσία της L. monocytogenes, E. coli και S. senftenberg στο περιβάλλον των δειγμάτων αυτών. Η παρουσία των S. enteritidis, S. typhimurium και S. derbyensis είναι αποτελε­
sθαν κατά 2.8 min. Από τη μικροβιολογική ανάλυση των δειγμάτων αυτών έκθεσης των δειγμάτων την κρέατο­
παστών και της κρέατοπαστών στην οποία αναμένεται. Η ΟΜΧ τους έπαιζε παρόν σε ποσοστά 6% και 14,4% των δειγ­
μάτων αυτών, από τα δείγματα αυ­
τά την επαφή μεταξύ τους, κατά τις διάφορες φά­
σεις αμέσως μετά τη θερμική επεξεργασία, όσο και αυτό το νε­
ρό των καταστημάτων αποτροπής.

ή συντήρηση τους επί 20 ώρες σε θερμοκρασία 4 °C, σε συσκευάσεις λενόν (Πίνακας 3), εδείξει μικρή αύξηση του μικροβιολογικού τους φορ­
Σε μόλυνση από τις χρεστόπαστες, η οποία όμως μπο­
ρεί να λειτουργήσει και αντίστροφως όταν δεν είναι απο­
tελεσματική η εξυγίανση του εξοπλισμού.

Η μικροβιολογική εξέταση των δειγμάτων από τα έ­
tοιμα αλλαντικά θερμικής επεξεργασίας (Πίνακας 2), που
προέρχονταν από τις προαναφερθείσες χρεστόπαστες,
δείχνει ότι κανένα, από τα παθογόνα βακτήρια που ελέγ­
χθηκαν, δεν επέζησε. Η μικροβιακή χλωρίδα που απα­
ριθμήθηκε στα αλλαντικά αυτά βρέθηκε να πληροί τις
προδιαγραφές της νομοθεσίας (Π.Δ. 9/1989) και αποτε­
λείται κυρίως από οξυγαλακτικά και σπορογόνα βακτή­
ρια (Πίνακας 4).

Τα αποτελέσματα αυτά δείχνουν ότι τα προγράμματα
θερμικής επεξεργασίας των αλλαντικών που εφαρμόζουν
οι βιομηχανίες που εξετάσθηκαν, επιτυγχάνουν την α­
σφάλεια τους σχετικά με τους μη σπορογόνους παθογό­
νους μικροοργανισμούς. Αναλόγως με το πρόγραμμα που εφαρμόζοντας για κάθε είδος αλλαντικού, η θερμοκρασία
στο κέντρο θέρμανσης τους έφθανε τους 74,1 °C έως 88,8 °C
και η τιμή FP

70
κυμαινόταν από 23 έως 373 λεπτά (Σερ­
γκελίδης 1999). Έχει αναφερθεί ότι για 7 δεκαδικές μει­
wσεις του πληθυσμού της πλέον ανθεκτικής
S. senftenberg,
σε λουκάνικα τύπου Φρανκφούρτη και πάρια, είναι αρ­
κετή μία θερμική επεξεργασία με τιμή FP

70
=2,8min, δη­
λαδή θέρμανση ισοδύναμη με 2,8 min στους 70 °C. Κατά
τη βιομηχανική θερμική επεξεργασία των αλλαντικών έ­
χουν διαπιστωθεί τιμές ΡΡ

70
κατά πολύ μεγαλύτερες της
ανωτέρω (Σεργκελίδης 1999). Άλλωστε για την εξασφά­
lιση ικανοποιητικής διάρκειας ζωής των αλλαντικών συ­
nιστάται τιμή FP

70
>40 min (Bogh Sorensen 1994).

Για τη διασφάλιση όμως της υγιεινής του συνόλου των

contamination (Blackman and Frank 1996, Genigeorgis 1995). The importance of monitoring and controlling in this particular CCP has been shown dramatically by the second largest outbreak of listeriosis in USA, due to the con­sumption of frankfurters. From late 1998 to early 1999, 101 confirmed cases of listeriosis with 25 deaths were recorded (Ryser 1999). In this outbreak contamination of sausages occurred in the packaging area from the ventilation system, which was located close to the packaging line. The discovery of the source of these listeriosis cases resulted in the publication of a directive from the US Food Safety and Inspection Service (FSIS) for the review of the HACCP plans of all plants in order to review all CCPs and to consider new and previously unexamined CCPs (FSIS 1999).

Although modern techniques of slicing and packaging are, to a high degree, automated, yet to a certain degree handling by workers may be introduced. If flexible gloves are not worn, contamination of sausage pieces with microorganisms such as Staphylococcus aureus by carrier workers is possible (Mosel et al. 1995). During slicing and packaging, in addition to contamination risk with pathogens, dispersion of spoilage bacteria on the packaged slices and pieces of sausages is possible. Such spoilage bacteria are LAB which make up a major part of microbiological flora in the environment of meat plants (Quintavalla et al. 1998). Dispersion of LAB may occur from the slicing and packaging machines whenever fermented dry sausages have been sliced or packaged there before (Makela 1992).

Our findings from the examination of samples from sausages without casings during several phases following thermal treatment showed that their microbial load

<table>
<thead>
<tr>
<th>ΕΙΔΟΣ ΑΛΛΑΝΤΙΚΟΥ</th>
<th>ΠΡΟΕΛΕΥΣΗ ΔΕΙΓΜΑΤΟΣ</th>
<th>ΑΡΙΘΜΟΣ ΕΞΕΤΑΣΘΕΝΤΩΝ ΔΕΙΓΜΑΤΩΝ</th>
<th>OMX</th>
<th>ΚΟΛΟΒΑΚΤΗΡΙΟΕΙΔΗ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΚΑΠΝΙΣΤΗ ΣΠΑΛΑ</td>
<td>Επιφάνεια</td>
<td>4</td>
<td>5 (4,9-5,3)</td>
<td>240->2.400</td>
</tr>
<tr>
<td></td>
<td>Εσωτερικό</td>
<td>4</td>
<td>5 (4,9-5,3)</td>
<td><3</td>
</tr>
<tr>
<td>ΜΠΡΙΖΟΛΑ ΧΟΙΡΙΝΗ</td>
<td>Επιφάνεια</td>
<td>4</td>
<td>5,3 (5-5,6)</td>
<td>1.100->2.400</td>
</tr>
<tr>
<td></td>
<td>Εσωτερικό</td>
<td>4</td>
<td>2 (2)</td>
<td><3</td>
</tr>
<tr>
<td>ΜΠΕΙΚΟΝ ΡΟΛΟ</td>
<td>Επιφάνεια</td>
<td>2</td>
<td>5,3 (5,15-5,5)</td>
<td>1.100->2.400</td>
</tr>
<tr>
<td></td>
<td>Εσωτερικό</td>
<td>2</td>
<td>5 (5)</td>
<td><3</td>
</tr>
<tr>
<td>ΜΠΕΙΚΟΝ ΠΛΑΚΑ</td>
<td>Επιφάνεια</td>
<td>2</td>
<td>5 (5)</td>
<td>240->2.400</td>
</tr>
<tr>
<td></td>
<td>Εσωτερικό</td>
<td>2</td>
<td>3,5 (3,3-3,7)</td>
<td><3</td>
</tr>
<tr>
<td>ΜΠΟΥΤΙ ΧΟΙΡΙΝΟ</td>
<td>Επιφάνεια</td>
<td>2</td>
<td>2 (2)</td>
<td><3</td>
</tr>
<tr>
<td></td>
<td>Εσωτερικό</td>
<td>2</td>
<td>2 (2)</td>
<td><3</td>
</tr>
</tbody>
</table>

E. coli, L. monocytogenes και Salmonella spp δεν ανιχνεύθηκαν στα εξετασθέντα δείγματα.

Επιπλέον, τεχνικές αποθήκευσης όπως η αποθήκευση σε κρύον παραμένουν αντιπολεμικές με την ύπαρξη των βιομηχανικών συστημάτων αποθήκευσης στους εργοστασίους.

Περισσότερα στο κείμενο «Μικροβιολογικής Επεξεργασίας των Αλλαντικών».
Table 6. Results of microbiological examination of samples from cooked sausages without casings

<table>
<thead>
<tr>
<th>TYPE OF SAUSAGE</th>
<th>SAMPLE ORIGIN</th>
<th>NUMBER OF EXAMINED SAMPLES</th>
<th>TPC Log_{10} CFU/g MV(Range)</th>
<th>LAB Log_{10} CFU/g MV(Range)</th>
<th>COLIFORMS MPN/g Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMOKED PORK SHOULDER</td>
<td>Surface</td>
<td>4</td>
<td>5 (4.9-5.3)</td>
<td>5 (4.9-5.3)</td>
<td>240-> 2.400</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>4</td>
<td>2 (2)</td>
<td>-</td>
<td><3</td>
</tr>
<tr>
<td>SMOKED PORK STEAK</td>
<td>Surface</td>
<td>4</td>
<td>5,3 (5-5,6)</td>
<td>5 (4.9-5.3)</td>
<td>1.100->2.400</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>4</td>
<td>2 (2)</td>
<td>-</td>
<td><3</td>
</tr>
<tr>
<td>ROLLED BACON</td>
<td>Surface</td>
<td>2</td>
<td>5,3 (5,15-5,5)</td>
<td>5 (5)</td>
<td>1.100->2400</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>2</td>
<td>3,5 (3,3-3,7)</td>
<td>4 (3,7-4,3)</td>
<td><3</td>
</tr>
<tr>
<td>FLAT BACON</td>
<td>Surface</td>
<td>2</td>
<td>5 (5)</td>
<td>5,6 (5,4-5,7)</td>
<td>240-> 2.400</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>2</td>
<td>3,7 (3,6-3,8)</td>
<td>4 (4)</td>
<td><3</td>
</tr>
<tr>
<td>HAM</td>
<td>Surface</td>
<td>2</td>
<td>5,3 (5,3)</td>
<td>5 (4.9-5,1)</td>
<td>1.100->2.400</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td>2</td>
<td>2 (2)</td>
<td>2 (2)</td>
<td><3</td>
</tr>
</tbody>
</table>

E. coli, L. monocytogenes and Salmonella spp were not detected in the examined samples.
Πίνακας 7. Αποτελέσματα μικροβιολογικής εξέτασης δειγμάτων από την επιφάνεια μπέικον ρολού, κατά τις διάφορες φάσεις μετά τη βραστική επεξεργασία, και τον νερό της ψήσης.

<table>
<thead>
<tr>
<th>ΠΡΟΕΔΕΥΣΗ ΔΕΙΓΜΑΤΟΣ</th>
<th>ΑΡΙΘΜΟΣ ΔΕΙΓΜΑΤΩΝ</th>
<th>ΟΜΧ Log_{10} CFU/g M.O (Διακύμανση)</th>
<th>ΟΞΥΓΑΑΑΑΚΤΙΚΑ Log_{10} CFU/g M.O (Διακύμανση)</th>
<th>ΚΟΛΟΒΑΚΤΗΡΙΟΕΙΔΗ MPN/g (Διακύμανση)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Επιφάνεια αμέσως μετά τη βραστική επεξεργασία</td>
<td>4</td>
<td><2 (2)</td>
<td><2 (2)</td>
<td><3</td>
</tr>
<tr>
<td>Επιφάνεια αμέσως μετά τη ψήση</td>
<td>4</td>
<td>3 (2,9-3,3)</td>
<td><2 (2)</td>
<td><3</td>
</tr>
<tr>
<td>ΔΕΙΓΜΑΤΑ ΠΡΟΕΛΕΥΣΗ</td>
<td>4</td>
<td>3 (2,9-3,3)</td>
<td>3 (2,85-3,15)</td>
<td><17</td>
</tr>
<tr>
<td>Νερό κατανυστήρησης ψήσης</td>
<td>4</td>
<td><100</td>
<td>-</td>
<td><3</td>
</tr>
</tbody>
</table>

E. coli, L. monocytogenes και Salmonella spp δεν ανιχνεύθηκαν στα εξετασθέντα δείγματα.

and Sofos 1999). Rapid microbial growth on the surface of sausages without casings shortens their shelf life significantly. Unpleasant odors are noticed when microbial counts reach 10^{6} CFU/cm²; and slimy surfaces are noticed when microbial counts reach 10^{7} CFU/cm² (Varnam and Sutherland 1995).

Low storage temperature constitutes one of the most important hurdles for the growth of sporeforming or non-sporeforming, spoilage or pathogenic microorganisms. To be effective it must be ≤4°C (Genigeorgis and Sofos 1999). In cases where it is higher, there is a high possibility for growth of these microorganisms and consequently the appearance of spoilage symptoms like green color and slimy surface, is accelerated, rendering the sausages unsuitable for consumption. For these reasons storage temperature of cooked sausages is a CCP and must be monitored and controlled. In a recent survey in Greece, 55% of home and 32% of retail shop refrigerators had temperatures ≥9°C (Sergelidis et al. 1997). Temperatures of meat plant refrigerators ranged from 0-2°C. In a similar survey in Holland 50% of the home refrigerators had temperatures ≥100°C (Willoox et al. 1993). These findings are very disturbing because at such temperatures, psychrotrophic spoilage and pathogenic bacteria can grow significantly with hazardous consequences for consumer health (Genigeorgis and Sofos 1999).

Paste contamination is a CCP in the processing of sausage. It was thought that one source of contamination would be the collagen emulsion from pork skin itself. Our examination of collagen emulsion samples showed that their microbial count was 10^{6} Log_{10} higher than that of the paste to which they were added (Table 8). Collagen seemed to be the collagen emulsion from pork skin itself. Our examination of collagen emulsion samples showed that their microbial count was Log_{10} higher than that of the paste to which they were added (Table 8). Collagen seemed to be a significant contributor to the increase in microbial counts of cooked sausages without casings shortens their shelf life significantly. Unpleasant odors are noticed when microbial counts reach 10^{6} CFU/cm²; and slimy surfaces are noticed when microbial counts reach 10^{7} CFU/cm² (Varnam and Sutherland 1995).

Collagen seemed to be the collagen emulsion from pork skin itself. Our examination of collagen emulsion samples showed that their microbial count was Log_{10} higher than that of the paste to which they were added (Table 8). Collagen seemed to be a significant contributor to the increase in microbial counts of cooked sausages without casings shortens their shelf life significantly. Unpleasant odors are noticed when microbial counts reach 10^{6} CFU/cm²; and slimy surfaces are noticed when microbial counts reach 10^{7} CFU/cm² (Varnam and Sutherland 1995).

Paste contamination is a CCP in the processing of sausage. It was thought that one source of contamination would be the collagen emulsion from pork skin itself. Our examination of collagen emulsion samples showed that their microbial count was 10^{6} Log_{10} higher than that of the paste to which they were added (Table 8). Collagen seemed to be a significant contributor to the increase in microbial counts of cooked sausages without casings shortens their shelf life significantly. Unpleasant odors are noticed when microbial counts reach 10^{6} CFU/cm²; and slimy surfaces are noticed when microbial counts reach 10^{7} CFU/cm² (Varnam and Sutherland 1995).

Paste contamination is a CCP in the processing of sausage. It was thought that one source of contamination would be the collagen emulsion from pork skin itself. Our examination of collagen emulsion samples showed that their microbial count was 10^{6} Log_{10} higher than that of the paste to which they were added (Table 8). Collagen seemed to be a significant contributor to the increase in microbial counts of cooked sausages without casings shortens their shelf life significantly. Unpleasant odors are noticed when microbial counts reach 10^{6} CFU/cm²; and slimy surfaces are noticed when microbial counts reach 10^{7} CFU/cm² (Varnam and Sutherland 1995).
E. coli, L. monocytogenes and spp were not detected in the examined samples.

Salmonella

Water from cooling showers

Table 7. Results of microbiological examination of samples from the surface of bacon, during several phases following thermal treatment and from cooling water.

<table>
<thead>
<tr>
<th>SAMPLE ORIGIN</th>
<th>NUMBER OF EXAMINED SAMPLES</th>
<th>TPC Log_{10} CFU/g MV(Range)</th>
<th>LAB Log_{10} CFU/g MV(Range)</th>
<th>COLIFORMS MPN/g Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface after thermal</td>
<td>4</td>
<td><2 (<2)</td>
<td><2 (<2)</td>
<td><3</td>
</tr>
<tr>
<td>treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface after cooling</td>
<td>4</td>
<td>3 (2.9-3.3)</td>
<td><2 (<2)</td>
<td><3</td>
</tr>
<tr>
<td>Surface after 24 hour storage</td>
<td>4</td>
<td>3 (2.9-3.3)</td>
<td>3 (2.85-3.15)</td>
<td><17</td>
</tr>
<tr>
<td>Water from cooling showers</td>
<td>4</td>
<td><100</td>
<td>-</td>
<td><3</td>
</tr>
</tbody>
</table>

E. coli, L. monocytogenes and Salmonella spp were not detected in the examined samples.

tes ή τα τεμάχια των αλλαντικών. Τέτοια βακτήρια είναι τα οξυγαλακτικά, τα οποία ενθηκευμένα αλλαντικα καθώς και από τις επαράνειες τους, κατά τις διάφορες φάσεις μετά τη θερμική τους επεξεργασία (Πίνακες 6 και 7), εκδίδουν πως τα μορφιασμένα τους φυτικό προφορές χωρίς από το νερό της ψυξής τους και το περιβάλλον συντήρησής τους. Επομένως, ενώ πριν τους φορτίο προερχόταν κυρίως από το νερό της ψυξής τους, κατά τις διάφορες φάσεις μετά τη θερμική τους επεξεργασία, τα οποία αποτελούν το μεγαλύτερο μέτρο των αλλαντικών, ήταν ο ίδιος πλισμός έχει προηγηθεί και η συσκευασία αλλαντικών αέρα (Μάκελα 1992).

The results of the examination of samples from the surface of bacon, during several phases following thermal treatment and from cooling water. The numbers of coliforms and LAB were less than 100 CFU/g. Overall GMP application is of crucial importance for the achievement of hygienic and safe sausages. Furthermore continuous training of personnel is also of paramount importance in the effective application of the HACCP. Surveys in several countries have shown that neither employees in the food industry, nor consumers, know much about microbial contamination. The consideration of this movement and the designation of zones which restrict such movement is a CP.
Πίνακας 8. Αποτελέσματα μικροβιολογικής εξέτασης δειγμάτων γαλακτώματος κολλαγόνου και κρεατόπαστα με κολλαγόνο

<table>
<thead>
<tr>
<th>ΠΡΟΕΛΕΥΣΗ</th>
<th>ΔΕΙΓΜΑΤΟΣ</th>
<th>ΑΡΙΘΜΟΣ ΕΞΕΤΑΣΘΕΝΤΩΝ</th>
<th>ΟΜΧ</th>
<th>ΟΜΧ (Διακύμανση)</th>
<th>ΟΣΥΓΑΛΛΑΚΤΙΚΑ</th>
<th>ΚΟΛΟΒΑΚΤΗΡΙΟΕΙΑ</th>
<th>E. coli</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Κολλαγόνο</td>
<td>4</td>
<td>7</td>
<td>6,9-7,2</td>
<td>5,3</td>
<td>>2.400</td>
<td><44</td>
</tr>
<tr>
<td></td>
<td>Κρεατόπαστα</td>
<td>4</td>
<td>6,3</td>
<td>6,2-6,4</td>
<td>5,7</td>
<td>>2.400</td>
<td><23</td>
</tr>
</tbody>
</table>

Table 8. Results of microbiological examination of samples from collagen and paste with collagen.

γης. Το γεγονός αυτό καταδεικνύει, όπως προαναφέρθηκε, τη σημασία εφαρμογής κανόνων ορθής υγιεινής πρακτικής. Σε περίπτωση που το νερό ψύξης είναι μολυσμένο, η εφαρμογή προγράμματος καθαρισμού και απολυμάνσεων πλημμελής και ο διαχωρισμός καθαρών ζωνών ανεπαρκής, αυξάνεται σημαντικά ο κίνδυνος μόλυνσης των βραστών αλλαντικών με σαπροφυτικούς και παθογόνους μικροοργανισμούς.

Η μικρή αύξηση (≥1 Log_{10}) του μικροβιακού πληθυσμού των ενθηκευμένων αλλαντικών, μετά τη συντήρηση τους σε θερμοκρασία 4°C επί 20 ημερών, δείχνει αρ' ενός μεν τον προστατευτικό ρόλο των θηκών των αλλαντικών, αρ' ετέρου δε τη σημασία της σωστής θερμοκρασίας συντήρησης στον περιορισμό της ανάπτυξης των μικροοργανισμών (Genigeorgis and Sofos 1999).

Η γρήγορη αύξηση του μικροβιακού πληθυσμού στα επιφανειακά στρώματα των μη ενθηκευμένων αλλαντικών περιορίζει σημαντικά τη διάρκεια ζωής των τροφίμων αυτών. Δυσάρεστες οσμές εμφανίζονται όταν ο πληθυσμός της μικροβιακής χλωρίδας φθάσει τις IO 7 CFU/cm², ενώ γλοιώδεις ουσίες όταν φθάσει τις IO 8 CFU/cm² (Varnam and Sutherland 1995).

Η χαμηλή θερμοκρασία συντήρησης, αποτελεί ένα από τα σημαντικότερα εμπόδια ανάπτυξης των σπορογόνων και μη σαπροφυτικών ή παθογόνων μικροοργανισμών και για να είναι αποτελεσματική θα πρέπει να είναι <4°C (Genigeorgis and Sofos 1999). Σε περίπτωση που είναι υψηλότερη, υπάρχει μεγάλη πιθανότητα ανάπτυξης των μικροοργανισμών αυτών με συνέπεια να επιταχυνθεί η εμφάνιση διαφόρων αλλοιώσεων (π.χ. πράσινη χροια, γλοιώδεις επιφάνειες) και να καταστούν τα αλλαντικά ακατάλληλα για κατανάλωση. Για τούς λόγους αυτούς η θερμοκρασία συντήρησης των βραστών αποτελεί γενικώς ΚΣΕ και θα πρέπει να παρακολουθείται και να ελέγχεται αναλόγως.

food hygiene and safety for food industry employees is of great significance. Food industry employees must come to understand their essential role in the production of safe food. Food industry employees must feel that they are active participants in the application of the HACCP principles and are insuring safe food for us all.

ΒΙΒΛΙΟΓΡΑΦΙΑ - REFERENCES

E.K. Οδηγία 93/43/E.K. του Συμβουλίου.
Έρευνα, που αφορούσε τη διαπίστωση των θερμοκρασιών που επικρατούσαν στα οικιακά και στα ψυγεία καταστημάτων ιαννίτικης πώλησης τροφίμων στη Β. Ελλάδα είδρευε ότι το 55% των οικιακών ψυγείων και 32% των ψυγείων των καταστημάτων πώλησης τροφίμων είχαν θερμοκρασία > 9°C. Επί περίπτωσης των οικιακών ψυγείων που εκλήθησαν ήταν σε θερμοκρασία > 10°C (Willox et al. 1993). Το ενήμερο αυτό είναι πολύ αναμφισβήτητο, διότι σε τέτοιες θερμοκρασίες μπορούν να αναπτυχθούν υψηλότερα σειρατομοφιτικοί και παθογόνοι μικροοργανισμοί με επικίνδυνες συνέπειες για την υγεία των καταναλωτών (Genigeorgis και Sofos 1999).

Η προηγούμενη ερευνητική κατάσταση είναι ΚΣΕ στην παρεξήγηση αλλαντικών. Πιθανή πηγή μόλυνσης, στο στάδιο αυτό, μπορεί να είναι και το γαλάκτωμα κολλαγόνου από το χοιρινό δέρμα. Η εξέταση των δειγμάτων γαλακτώματος κολλαγόνου από τα μικροβιακά φορτία του ήταν υψηλά κατά 1 Log από το αντίστοιχο της κρεατοπαστών (Trevisani 1996). Αυτό δείχνει πως το κολλαγόνο συμβάλλει σημαντικά στην αύξηση του μικροβιακού φορτίου των κρεατοπαστών. Η ΟΜΧ των κρεατοπαστών μπορεί να περιοριστεί στην αύξηση του μικροβιακού φορτίου των κρεατοπαστών (Severini και Μόσελ 1993). Η ερευνητική κατάσταση είναι επιθετική στην αύξηση του μικροβιακού φορτίου των κρεατοπαστών, καθώς η ΟΜΧ στην κρεατοπαστά στην οποία αυτό είχε αναπτυχθεί (Πίνακας 8). Αυτό δείχνει ότι το κολλαγόνο συμβάλλει σημαντικά στην είσοδο παθογόνων στο περιβάλλον με την περίπτωση της προμήθειας μπαχαρικών και άλλων προϊόντων. Η ΟΜΧ των κρεατοπαστών είναι πολύ άμεση με την περίπτωση της προμήθειας μπαχαρικών και άλλων προϊόντων, και διαδέχεται του κρέατος, ο έλεγχος των συστατικών, και ιδιαίτερα του κρέατος, ο έλεγχος των συστατικών μπορεί να περιορίσει σημαντικά τον ρόλο του μικροβιακού φορτίου των κρεατοπαστών. Η ΟΜΧ των κρεατοπαστών είναι μικρότερη της ΟΜΧ των κρεατοπαστών μπορεί να περιοριστεί στην αύξηση του μικροβιακού φορτίου των κρεατοπαστών, αυτό περιορίζεται η είσοδο παθογόνων στο περιβάλλον. Με τον τρόπο αυτό μπορεί να είναι και το γαλάκτωμα κολλαγόνου από το χοιρινό δέρμα. Η ερευνητική κατάσταση είναι ΚΣΕ στην παρεξήγηση αλλαντικών. Πιθανή πηγή μόλυνσης, στο στάδιο αυτό, μπορεί να είναι και το γαλάκτωμα κολλαγόνου από το χοιρινό δέρμα.

Περιοδικό της Ελληνικής Κτηνιατρικής Εταιρείας 2002, 53(3)
και ο σωρής διαγωνισμός τους από τις μολυσμένες ζώνες στις αλλαντοβιομηχανίες. Επιπλέον επικεντρώνεται αντιμετώπιση εφαρμογή προγραμμάτων καθαρισμού και απολύμανσης, καθώς και καταπολέμησης τρωκτικών και εντόμων και άλλων ανεπιθύμητων επισκεπτών στο χώρο παραγωγής.

Η εφαρμογή κανόνων ορθής υγιεινής πρακτικής είναι εφικτή και απαραίτητη στις αλλαντοβιομηχανίες. Επιπλέον απαιτούνται αυστηρή εφαρμογή προγραμμάτων καθαρισμού και απολύμανσης, καθώς και καταπολέμηση τρωκτικών και εντόμων και άλλων ανεπιθύμητων επισκεπτών στο χώρο παραγωγής.

Η εφαρμογή κανόνων ορθής υγιεινής πρακτικής είναι κεφαλαιώδους σημασίας για την επιτυχία της παραγωγής υγιεινών αλλαντικών.

Για το λόγο αυτό είναι αναγκαίο η διαρκής εκπαίδευση και ενημέρωση, σε θέματα υγιεινής, των εργαζομένων στη βιομηχανία τροφίμων. Μόνο με τον τρόπο αυτό θα αντιμετωπίσουν την ουσιαστική ρόλο που έχουν στην παραγωγή υγιεινών τροφίμων και θα αισθανθούν συμμέτοχοι στην εφαρμογή των αρχών του HACCP και θα εξασφαλίσουν υγιεινά τρόφιμα για όλους μας.

Δ. ΣΕΡΓΚΕΛΙΔΗΣ, Α. ΑΜΙΝ, Α. ΣΑΡΗΜΒΕΗ, Κ. ΓΕΝΗΠΩΡΓΗΣ

References: