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Περίληψη 

Ο μετασχηματισμός Kelvin, γνωστός και ως αντιστροφή του Kelvin, είναι μία από τις 

παλαιότερες και πολύ γνωστές μαθηματικές μεθόδους, ο οποίος επιλύει ποικίλα 

προβλήματα δυναμικού. Η σπουδαιότητα και η ελκυστικότητα της τεχνικής αυτής, 

έγκειται στο γεγονός ότι η λύση ενός προβλήματος σε μία επιφάνεια του 3
R , 

παραμένει λύση του προβλήματος  και για μία διαφορετική επιφάνεια, αυτή  που 

είναι η εικόνα της  αρχικής επιφάνειας μέσω της αντιστροφής του Kelvin (W. 

Thompson, 1845). Με την παρούσα εργασία, γίνεται αναφορά  στην  εφαρμογή της 

αντιστροφής τoυ Kelvin στο 2
R , παρουσιάζοντας τη γεωμετρία και τις βασικές 

ιδιότητες του μετασχηματισμού Kelvin στο 2
R  καθώς επίσης και τη διατύπωση του 

θεωρήματος του Kelvin στο επίπεδο (Baganis and Hadjinicolaou, 2009). Η μη 

γραμμικότητα του μετασχηματισμού σε συνδυασμό με το θεώρημα  μας δίνουν τη 

δυνατότητα να εξασφαλίζουμε αναλυτικές λύσεις προβλημάτων συνοριακών τιμών 

για αρμονικές συναρτήσεις σε μη κυρτά χωρία. Μια ενδιαφέρουσα περίπτωση, είναι 

αυτή του εσωτερικού του ισόπλευρου τριγώνου στο οποίο η λύση της εξίσωσης 

Laplace με συνοριακές συνθήκες τύπου Dirichlet ή τύπου Neumann έχει δοθεί από 

τους Dassios & Fokas (Dassios and Fokas, 2005). Το ισόπλευρο τρίγωνο μέσω της 

αντιστροφής του Kelvin ως προς τον περιγεγραμμένο κύκλο του, απεικονίζεται σε 

ένα συμμετρικό μη κυρτό σχήμα και μετά η εφαρμογή μιας σειράς βημάτων δίνει τη 

δυνατότητα κατασκευής αρμονικών  συναρτήσεων, οι οποίες ικανοποιούν πλήρως τη 

γεωμετρία του χωρίου εξωτερικά του μη κυρτού σχήματος.   

 

Abstract 

Kelvin’s transformation, also known as Kelvin inversion, is one of the earliest and  

well known mathematical methods for solving various potential problems. The  

attraction of the technique lay in  the fact that once a problem is solved for one 

surface in 3R , then, with the transformation we have the solution of a problem for a 

different surface, the image of the original under the transformation (W. Thompson, 

1845). The present work deals with Kelvin’s inversion in 2R , by presenting first the 

geometry and the basic properties of the transformation in 2
R and then the formulation 

of the Kelvin theorem in 2-D (Baganis and Hadjinicolaou, 2009). Since the Kelvin 

inversion transforms the boundaries in a nonlinear way, the Kelvin theorem in 2R  

enables us to solve boundary value problems for harmonic functions when one, either 

the image or the pre-image domain accepts separable solutions. An interesting case is 

that of the interior of an equilateral triangle in which the solution of the Laplace 
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equation respect to Dirichlet or Neumann boundary conditions has been given by 

Dassios and Fokas (Dassios and Fokas, 2005). The equilateral triangle is mapped 

under Kelvin’s transformation with respect to the circumscribe circle into a symmetric 

non-convex shape, and then, by applying a sequence of steps one can construct 

harmonic functions which satisfy completely the geometry of the exterior of this 

particular non-convex domain.  

 

Λέξεις κλειδιά 

Αντιστροφή Kelvin, ισόπλευρο τρίγωνο, εξίσωση Laplace  

 

 

1. Εισαγωγή 

Το περιεχόμενο της επιστολής του William Thompson (αργότερα Lord Kelvin) προς 

τον Liouville στις 8 Οκτωβρίου 1845, ήταν η περιγραφή μιας μη γραμμικής 

απεικόνισης στον 3R . Η απεικόνιση αυτή, γνωστή σήμερα ως μετασχηματισμός του 

Kelvin ή αντιστροφή του Kelvin ως προς μία σφαίρα στην περίπτωση του  3R  ή ως 

προς ένα κύκλο στην περίπτωση του 2R , παρέχει την σπουδαία ιδιότητα της 

διατήρησης της αρμονικότητας. Αυτό σημαίνει ότι αν η λύση της εξίσωσης Laplace 

είναι γνωστή σε ένα χωρίο, τότε η λύση της εξίσωσης Laplace είναι επίσης γνωστή 

και στην εικόνα του χωρίου που προκύπτει μέσω του μετασχηματισμού του Kelvin. H  

ιδιότητα αυτή μας εφοδιάζει με μια μαθηματική τεχνική με την οποία μπορούμε να 

δίνουμε αναλυτικές λύσεις σε προβλήματα δυναμικού  και η οποία έχει εφαρμοσθεί 

σε πολλές περιπτώσεις προβλημάτων με μη κυρτά και λεία σύνορα όπου η γνωστή 

μέθοδος «χωρισμός των μεταβλητών» δεν μπορεί να εφαρμοσθεί. 

Στην παρούσα εργασία χρησιμοποιείται η αντιστροφή του Kelvin για την επίλυση 

ενός εξωτερικού προβλήματος δυναμικού σε ένα μη κυρτό χωρίο που είναι η εικόνα 

του ισόπλευρου τριγώνου μέσω της αντιστροφής του Kelvin ως προς το 

περιγεγραμμένο κύκλο. Αξίζει να σημειωθεί, ότι δεν υπάρχει καμπυλόγραμμο 

σύστημα συντεταγμένων που να επιτρέπει το χωρισμό μεταβλητών για την εξίσωση 

Laplace στο ισόπλευρο τρίγωνο. Τελευταία όμως, μια νέα προσέγγιση για την 

εξασφάλιση λύσεων σε προβλήματα συνοριακών τιμών στο 2R  και για την εξίσωση 

Laplace σε κυρτά χωρία παρουσιάσθηκε από τους Dassios and Fokas (Dassios and 

Fokas, 2005). Η λύση εκφράζεται μέσω μιας ολοκληρωτικής αναπαράστασης 

συναρτήσει των φασματικών συναρτήσεων (spectral functions) οι οποίες ορίζονται 

από επικαμπύλια ολοκληρώματα  πάνω σε κάθε πλευρά του συνόρου του κυρτού 

πολυγώνου. Οι φασματικές συναρτήσεις, ικανοποιούν μία  εξίσωση την 

επονομαζόμενη από τον Fokas (Fokas, 2001) ως global relation ή από τον Shanin 

(Shanin, 1997) ως functional equation. Ανάλογα με τον τύπο του προβλήματος η 

ποσότητα προς ολοκλήρωση εκφράζεται συναρτήσει των γνωστών δεδομένων 

Dirichlet και των άγνωστων δεδομένων Neumann και αντίστροφα. Στην περίπτωση 

που έχουμε συνοριακές συνθήκες Dirichlet τα δεδομένα Neumann υπολογίζονται από 

την απεικόνιση Dirichlet – to – Neumann  ενώ στην περίπτωση που έχουμε 

συνοριακές συνθήκες Neumann τα δεδομένα υπολογίζονται από την απεικόνιση 

Neumann – to – Dirichlet  οι οποίες και οι δύο δίνονται από τους Dassios and Fokas 

(Dassios and Fokas, 2005). 

Ο συνδυασμός της αντιστροφής του Kelvin και των ολοκληρωτικών 

αναπαραστάσεων του Fokas μας παρέχουν την λύση της εξίσωσης Laplace σε ένα μη 

κυρτό χωρίο που είναι η εικόνα του ισόπλευρου τριγώνου. 
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Η δομή της εργασίας έχει ως εξής. Στην ενότητα 2 γίνεται αναφορά  στη 

γεωμετρία, στις ιδιότητες του μετασχηματισμού του Kelvin στην επίδρασή του στους 

βασικούς διαφορικούς τελεστές και τέλος παρουσιάζεται η διατύπωση  του 

θεωρήματος Kelvin στο 2R  (Baganis and Hadjinicolaou, 2009). Στην τρίτη ενότητα 

γίνεται εφαρμογή της μεθόδου της αντιστροφής του Kelvin στο ισόπλευρο τρίγωνο 

ως προς τον περιγεγραμμένο κύκλο, και επίσης γίνεται περιγραφή της διαδικασίας 

εύρεσης της εικόνας του τριγώνου. Στην ενότητα 4 γίνεται συνοπτική αναφορά στις 

λύσεις δύο εξωτερικών προβλημάτων, το πρώτο είναι πρόβλημα Dirichlet με 

συνοριακή συνθήκη την άρτια συνιστώσα του αναπτύγματος της σειράς Fourier ενώ 

το δεύτερο είναι πρόβλημα Neumann με συνοριακή συνθήκη την περιττή συνιστώσα 

του αναπτύγματος της σειράς Fourier. Στην πέμπτη ενότητα παραθέτουμε κάποια 

σχόλια, για την αντιστροφή του Kelvin στο επίπεδο, καθώς επίσης και για τα 

αποτελέσματα που προκύπτουν από τις δύο εφαρμογές.   

 

2. Γεωμετρία και ιδιότητες της αντιστροφής του Kelvin. 

Έστω V το εσωτερικό μιας κλειστής, φραγμένης, λείας επιφάνειας S στο 2R .  

Παριστάνουμε το διάνυσμα θέσης με r  και το αντίστοιχο μέτρο του με 

    rr                                                                                                                      (2.1)                                                                           

Επιλέγουμε τον κύκλο ακτίνας  0  και κέντρου (0,0) ως τον κύκλο αντιστροφής 

για τον μετασχηματισμό του Kelvin  

   :K 2R 2R , 
2

2
(K ):=

r
r: r r                                                                           (2.2)                                                           

 
               Σχ.1 Αντιστροφή. Kelvin   

 

Άμεσα από τον ορισμό προκύπτει ότι 

   
2rr                                                                                                                     (2.3)                                                                                                                                     

που σημαίνει ότι τα μέτρα των δύο διανυσμάτων θέσης είναι αντιστρόφως ανάλογα 

επομένως το σημείο της αρχής απεικονίζεται στο άπειρο και η εικόνα της επιφάνειας 

S είναι μία λεία επιφάνεια  S´, που βρίσκεται έξω από τον κύκλο με εξωτερική 

επιφάνεια V´ η οποία είναι η εικόνα του V  (σχ. 1). 

Ένα άλλο αποτέλεσμα που προκύπτει ευθέως από τον ορισμό είναι  

   ˆ ˆr r                                                                                                                        (2.4) 

το οποίο δείχνει τη σχέση ανάμεσα στα δύο μοναδιαία διανύσματα. 

Επίσης αξίζει να αναφέρουμε την επίδραση του μετασχηματισμού Kelvin στους 

διαφορικούς τελεστές: 



Open Education - The Journal for Open and Distance Education and Educational Technology 

Volume 8, Number 1,  2012  Section one.  © Open Education                       ISSN: 1791-9312  
 

 

94 

 

α) Η σχέση η οποία συνδέει τις κλίσεις (gradients) στο αρχικό χωρίο και στην εικόνα 

του είναι 

   

2

2
ˆ( 2 )r r

r
r
r

                                                                                              (2.5)                                                                                                  

β) Η επίδραση της αντιστροφής του Kelvin στον τελεστή Laplace είναι                          

   

4

4
() ( )

r
u ur r                                                                                                     (2.6)                                                                                                                       

Από τη σχέση (2.6) απορρέει το ακόλουθο θεμελιώδες αποτέλεσμα το οποίο 

καλούμε στη συνέχεια θεώρημα Kelvin σε δύο διαστάσεις του οποίου η απόδειξη 

δίνεται από Baganis and Hadjinicolaou  (Baganis and Hadjinicolaou, 2009).   

 

Θεώρημα Kelvin σε  2-Διαστάσεις. Έστω V  είναι ένα φραγμένο χωρίο στον 2R και 

έστω V´ είναι η εικόνα του μέσω του μετασχηματισμού  

   
2

2r
r r .                                                                                                           (2.7) 

Αν u r είναι μία λύση της ( ) 0u r , V r  τότε u ur = r είναι μία λύση της  

( ) 0u r , Vr . 

 

3. Αντιστροφή Kelvin στο Ισόπλευρο τρίγωνο. 

Έστω  V είναι το εσωτερικό χωρίο, φραγμένο από ένα ισόπλευρο τρίγωνο  S. 

Υποθέτουμε ότι το μήκος κάθε πλευράς είναι l και οι κορυφές του τριγώνου είναι οι 

εικόνες, στο μιγαδικό επίπεδο, των μιγαδικών αριθμών  

   3
1

3

i
l

z e , 2 1z z , 3
3

l
z                                                                                (3.1) 

Τότε, οι πλευρές 2 1( , )z z , 1 3( , )z z  και 3 2( , )z z  του ισοπλεύρου τριγώνου 

περιγράφονται από τα διανύσματα θέσης  1  r , 2  r and 3  r αντίστοιχα. 

   11 1 ()( , tan)
2323

l l
r ,      1

3 3
                                                           (3.2α)                                           

   
2 2

22

2 2 2 2

cos sin
 ()( , )

3sin3cos3sin3cos

l l
r ,         2

3
                         (3.2β) 

   
3 3

33

3 3 3 3

cos sin
 ()( , )

3sin3cos3sin3cos

l l
r ,         3

5

3
                      (3.2γ) 

Εφαρμόζοντας  την αντιστροφή Kelvin σε δύο διαστάσεις   

     

2

() ()
()r

r r ,                                                             (3.3)                                        

ως προς τον περιγεγραμμένο κύκλο του ισοπλεύρου τριγώνου δηλαδή τον κύκλο με 

ακτίνα  
3

l
 και κέντρο (0,0), τα παραπάνω διανύσματα μετασχηματίζονται στα 

ακόλουθα διανύσματα θέσης  jr ,  j = 1, 2, 3. 

   
2

11 1 1

2
 ()( cos, sin2)

3 3

l l
r ,                                1

3 3
                         (3.4α)                                        

   2 2
22 2 2 2 2

3 3
 ()(sin2 cos,sin sin2)

2 3 6

l l l
lr ,       2

3
                         (3.4β) 
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    2 2
33 3 3 3 3

3 3
 ()(sin2cos,sin sin2)

2 3 6

l l l
lr ,     3

5

3
,                        (3.4γ) 

 

Το σύνορο S´ είναι η εικόνα της περιμέτρου S και το εξωτερικό χωρίο V´ είναι η 

εικόνα του εσωτερικού  V. (σχ.2).  

 

 

Σχ. 2. Αντιστροφή Kelvin για το ισόπλευρο τρίγωνο.. 

 

4.  Εφαρμογή 

Σε αυτή την ενότητα παρουσιάζεται η μεθοδολογία  και η λύση του εξωτερικού 

προβλήματος, πρώτον με συνοριακή συνθήκη Dirichlet και δεύτερον με συνοριακή 

συνθήκη Neumann. Και στις δύο περιπτώσεις αναζητούμε μία αρμονική συνάρτηση 

(u )r που να ικανοποιεί την αντίστοιχη συνοριακή συνθήκη και επιπλέον, για να 

είναι το πρόβλημα καλά τοποθετημένο, η ( )u r  πρέπει να ικανοποιεί την 

ασυμπτωτική συνθήκη   

    ( )u cr , όταν r  τείνει στο άπειρο,                                                            (4.1) 

για κάθε 'Vr  με Rr , όπου R είναι κάποιος θετικός αριθμός και  c είναι μία 

θετική σταθερά. 

Τέλος, η σχέση που συνδέει τις κάθετες παραγώγους στα δύο σύνορα είναι      

   
'2

2

3ir

n nl
,                                                                                                       (4.2) 

όπου 
n

 εκφράζει την κάθετη παράγωγο στο σύνορο S ενώ 
n

 εκφράζει την 

κάθετη παράγωγο στο σύνορο S´.  

 

4.1  Πρόβλημα Dirichlet 

Θεωρούμε το πρόβλημα Dirichlet:    

      ( ) 0u r         r V´,                                                                                   (4.3) 

      ( ) ,        S  ́u fr  r                                                             (4.4) 

όπου V΄ είναι το εξωτερικό χωρίο μιας κλειστής και λείας μη κυρτής επιφάνειας στο 
2R , φραγμένη από την καμπύλη  S´ που διαγράφουν τα διανύσματα θέσης (3.4α), 
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(3.4β) και (3.4γ), (Σχ. 3). Ακόμη επιβάλλουμε την ίδια συνάρτηση  f 2 ( )C R  να 

ισχύει σε κάθε τμήμα της καμπύλης  S´ και ειδικότερα την άρτια συνιστώσα του 

αναπτύγματος της σειράς Fourier 

 

 
Σχ.. 3. Γεωμετρία του προβλήματος 

 

    
2

( ) cos
j

j

m s
f s

l
 ,   j=1,2,3  και  m                                                             (4.5) 

όπου   

1
1

3

2

l
s ,               

1
3 3

                                                               (4.6α)      

2
2

3

2

l
s l ,           

2
3

                                                              (4.6β)                                                                                 

    3
3

3
2

2

l
s l ,        

3

5

3
                                                             (4.6γ)                                                                                     

 

Για την επίλυση του προβλήματος εφαρμόζουμε την ακόλουθη μεθοδολογία που 

στηρίζεται σε τέσσερα αλγοριθμικά βήματα   (Baganis and Hadjinicolaou, 2009): 

α) Εφαρμόζουμε την αντιστροφή Kelvin στα δεδομένα Dirichlet του δοθέντος      

συνόρου για να υπολογίσουμε τις   αντίστοιχες τιμές Dirichlet πάνω στο σύνορο      

του ισόπλευρου τριγώνου που είναι η εικόνα του αρχικού συνόρου. 

β)  Εφαρμόζουμε το “Dirichlet to Neumann map” και παράγουμε τα δεδομένα 

Neumann  για το σύνορο του ισόπλευρου τριγώνου οπότε εξασφαλίζεται η 

ολοκληρωτική αναπαράσταση της λύσης του αντίστοιχου  προβλήματος Dirichlet 

για το εσωτερικό του ισόπλευρου τριγώνου (Dassios and Fokas, 2005). 

γ)  Εφαρμόζουμε  αντιστροφή Kelvin για τα δεδομένα Neumann του συνόρου του 

ισόπλευρου  τριγώνου που προέκυψαν στο (β) βήμα,  οπότε αυτά μετασχημα-

τίζονται στα αντίστοιχα δεδομένα Neumann  για το αρχικό σύνορο.  

δ)  Η εφαρμογή του Θεωρήματος Kelvin στο 2R  μας επιτρέπει να μετασχηματίσουμε  

     τη λύση του προβλήματος Dirichlet για το εσωτερικό του ισοπλεύρου τριγώνου      

(αυτή που προέκυψε στο (β) βήμα) στη λύση του ανάλογου εξωτερικού     

προβλήματος για την εικόνα της αντιστροφής του ισόπλευρου τριγώνου η οποία      

ικανοποιεί τις αρχικές συνοριακές συνθήκες. 

Η λύση παρουσιάζεται αναλυτικά στο  (Baganis and Hadjinicolaou, 2009) και 

είναι: 
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( )  u r

12 2 2
31 1

14 2 2 4
3 1 1

3 21 2 3 ( 1) 1
  = cos

in s' 2 n m

l

n

r m sn m
ln e ln d

l l l nn n m m' '
r r r r

                  

22 2 2
2 2

24 2 2 4
3 2 2

3 21 2 3 ( 1) 1
cos

in s' 2 n m

l

n

r m sn m
ln e ln d

l l l nn n m m' '
r r r r

 

32 2 25
33 3

34 2 2 4

3 3

3 21 2 3 ( 1) 1
cos

in s' 2 n m

l

n

r m sn m
ln e ln d

l l l nn n m m' '
r r r r

             

      (4.7) 

 

4.2  Πρόβλημα Neumann 
Θεωρούμε το πρόβλημα Neumann :    

    ( ) 0u r         r V´,                                                                                   (4.8) 

    ( )
,        S  ́

u
f

n

r
 r                                                             (4.9) 

όπου V΄ είναι το εξωτερικό χωρίο μιας κλειστής και λείας μη κυρτής επιφάνειας στο 
2R , φραγμένη από την καμπύλη  S´, (Σχ. 3). Ακόμη επιβάλλουμε την ίδια συνάρτηση  

f 2 ( )C R  να ισχύει σε κάθε τμήμα της καμπύλης  S´ και ειδικότερα την περιττή 

συνιστώσα του αναπτύγματος της σειράς Fourier: 

   
2( )

( ) sin
j

j

su
f s

n l

r
                                                                                  (4.10)  

όπου j=1,2,3,   και  js  ορίζονται από τις  (4.6α), (4.6β) and (4.6γ). 

Η μέθοδος επίλυσης στηρίζεται επίσης σε τέσσερα αλγοριθμικά βήματα  (Baganis 

and Hadjinicolaou, 2010): 

α) Μετασχηματίζουμε τις συνοριακές συνθήκες Neumann, του αρχικού      

εξωτερικού προβλήματος στις αντίστοιχες  συνοριακές συνθήκες Neumann για το      

σύνορο του ισόπλευρου τριγώνου χρησιμοποιώντας  την αντιστροφή του Kelvin.  

β) Εφαρμόζουμε το “Neumann to Dirichlet map” οπότε υπολογίζουμε τα δεδομένα       

Dirichlet  για το σύνορο του ισόπλευρου τριγώνου και επομένως εξασφαλίζεται η       

ολοκληρωτική αναπαράσταση της λύσης της εξίσωσης Laplace στο εσωτερικό     

του ισόπλευρου τριγώνου. 

γ)  Αντιστρέφοντας  τα δεδομένα  Dirichlet που προέκυψαν στο βήμα (β)  έχουμε τα  

     αντίστοιχα δεδομένα Dirichlet για το σύνορο του αρχικού προβλήματος.  

δ) Εφαρμόζουμε το Θεώρημα Kelvin στη λύση του εσωτερικού προβλήματος   

Neumann οπότε προκύπτει η  ολοκληρωτική αναπαράσταση της λύσης του       

αρχικού εξωτερικού προβλήματος που είναι η εικόνα του ισόπλευρου τριγώνου        

μέσω της αντιστροφής του Kelvin. 

Η παραπάνω μεθοδολογία μας δίνει  τη λύση η οποία παρουσιάζεται αναλυτικά 

στο  (Baganis and Hadjinicolaou, 2010) και είναι:  

 

   

(2 1)3
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(2 3)
1 3

1 1
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j j j jj

j j j

3
u r ln f s q s ln d

l n' '
r

r r r r
              (4.11) 
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Στην σχέση (4.11)  οι συναρτήσεις ( )jf s είναι τα δεδομένα Neumann για το 

σύνορο S και δίνονται από την σχέση 

   
2

2

2
( ) sin

3

j

j

j

sl
f s

lr
                                                                                         (4.12) 

ενώ ( )jq s είναι τα δεδομένα  Dirichlet  για το σύνορο S  
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 ,                (4.13) 

   
2 2 22 4 2

3 3
2 3 3 1 3 2

1
( ) ( ) ( ) ( )

3

i s i s i ns
l l l

n n n

n

q s N k e N k e N k e
l

  ,        (4.14) 
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Συμπεράσματα 

Στην εργασία αυτή γίνεται επισκόπηση της  αντιστροφής του Kelvin στο επίπεδο  

παρουσιάζοντας πρώτα τη γεωμετρία και τις ιδιότητες και στη συνέχεια το θεώρημα 

Kelvin. Το εντυπωσιακό χαρακτηριστικό του μετασχηματισμού που απορρέει από το 

θεώρημα Kelvin είναι η διατήρηση της αρμονικότητας, επομένως η λύση ενός 

εσωτερικού προβλήματος δυναμικού μετασχηματίζεται στην αντίστοιχη λύση του 

ισοδύναμου εξωτερικού προβλήματος και αντίστροφα. Χρησιμοποιώντας την 

αντιστροφή Kelvin μπορούμε να ανάγουμε το πρόβλημα σε απλό ή ακόμα και σε 

γνωστό. Η αποτελεσματικότητα της μεθόδου αντιστροφής εξαρτάται από την επιλογή 

κατάλληλου κύκλου αντιστροφής. Αυτό φαίνεται πολύ καλά στην εφαρμογή που 

παρουσιάζεται σε αυτή την εργασία όπου με την επιλογή του περιγεγραμμένου 

κύκλου του ισοπλεύρου τριγώνου ως κύκλο αντιστροφής, παρατηρούμε ότι η 

εξωτερική επιφάνεια του προβλήματος είναι η εικόνα του εσωτερικού του 

ισοπλεύρου τριγώνου για το οποίο η λύση της εξίσωσης Laplace είναι γνωστή από 

Dassios and Fokas. Ένα άλλο χαρακτηριστικό της μεθόδου  που πρέπει  να 

επισημάνουμε είναι ότι, η αντιστροφή Kelvin είναι μία  μονοδιάστατη ακτινική, 

σύμμορφη απεικόνιση επομένως τα δεδομένα Dirichlet στο αρχικό σύνορο αλλά και 

στο σύνορο της εικόνας παραμένουν αμετάβλητα.  Δεν συμβαίνει όμως το ίδιο με τα 

δεδομένα Neumann. Στην περίπτωση αυτή, ένας αριθμητικός παράγοντας αντανακλά 

την απαιτούμενη διόρθωση που πρέπει να γίνει στο κάθετο διάνυσμα του αρχικού 

συνόρου ή του συνόρου της εικόνας, ώστε  αυτά τα δύο να συμπίπτουν. Στο πρώτο 

πρόβλημα της εργασίας έχουμε ως συνοριακή συνθήκη Dirichlet την άρτια 

συνιστώσα του αναπτύγματος του Fourier, ενώ στο δεύτερο ως συνοριακή συνθήκη 

Neumann την περιττή συνιστώσα του Fourier. Οι παραπάνω δύο μορφές συνοριακών 

δεδομένων μαζί με  την περίπτωση της  περιττής  συνιστώσας για δεδομένα   

Dirichlet και της  άρτιας συνιστώσας  για δεδομένα  Neumann, παρέχουν την 

απαιτούμενη βάση για το ανάπτυγμα Fourier  μιας οποιαδήποτε συνάρτησης που 

περιγράφει τη συνοριακή συνθήκη (Baganis and Hadjinicolaou,2009, 2010). 

Επομένως, σε περιπτώσεις που τα δεδομένα του συνόρου είναι σε μορφή τέτοια που 

δεν επιτρέπουν τον αναλυτικό υπολογισμό των αντιστοίχων ολοκληρωμάτων της 

ολοκληρωτικής αναπαράστασης, τότε υπάρχει η εναλλακτική λύση να 

χρησιμοποιήσουμε τα αναπτύγματα Fourier.    
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