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Αξιοσημείωτες συνέπειες του  

Θεμελιώδους Θεωρήματος της Άλγεβρας 
 

Εμμανουήλ Βρετουδάκης1, Θεοδοσία Γλακουσάκη1, Βασιλική Τζιράκη1 , Δημήτρης Καλυκάκης1 

 
1Πειραματικό Γενικό Λύκειο Ηρακλείου 

 

Περίληψη 

 

Στην παρούσα εργασία μελετούμε ιδιότητες των πολυωνύμων και των ρητών παραστά-σεων οι 

οποίες συνήθως αποσιωπούνται στα σχολικά εγχειρίδια. Θεματικά, η εργασία μας εντάσσεται 

στο πλαίσιο της Άλγεβρας Α΄ και Β΄ Λυκείου. Τα βασικά ερωτήματα που διερευνούμε είναι τα 

εξής: α) πότε ένα πολυώνυμο θεωρεί-ται ότι είναι πλήρως παραγοντοποιημένο; β) πώς 

αναλύεται μια ρητή συνάρτηση σε απλά κλάσματα; γ) μπορεί το θεώρημα του Bolzano να 

αποδειχθεί με στοιχειώδη τρόπο στην πε-ρίπτωση των πολυωνύμων; δ) τί μορφή έχει η γραφική 

παράσταση μιας πολυωνυμικής συ-νάρτησης τρίτου βαθμού; Απαντούμε τα παραπάνω 

ερωτήματα με κύριο μεθοδολογικό εργαλείο το Θεμελιώδες Θεώρημα της Άλγεβρας.   

 

Λέξεις κλειδιά 

Θεμελιώδες Θεώρημα ; Άλγεβρας; θεώρημα Bolzano 

Εισαγωγή 

Μια από τις σημαντικότερες έννοιες της Άλγεβρας όπως την συναντάμε στη Γ΄ Γυμνασίου, την 

Α΄ και Β΄ Λυκείου είναι η παραγοντοποίηση. Η μετατροπή δηλαδή ενός αθροίσματος σε 

γινόμενο παραγόντων. Πρόκειται για την αντίστροφη διαδικασία της ανάπτυξης ενός γινομένου 

και βασίζεται στην επιμεριστική ιδιότητα του πολλαπλασιασμού ως προς τη πρόσθεση: 

α∙β+α∙γ=α∙(β+γ). Γενικά η παραγοντοποίηση ενός πολυωνύμου με πραγματικούς συντελεστές  
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δεν είναι απλή διαδικασία και ορισμένες φορές απαιτεί υψηλή αλγεβρική επιδεξιότητα. Στα 

σχολικά εγχειρίδια παρουσιάζονται διάφοροι μέθοδοι παραγοντοποίησης (κοινός παράγοντας, 

ομαδοποίηση, χρήση ταυτοτήτων, πραγματικές ρίζες τριωνύμου κ.λπ.). Παρόλα αυτά, πουθενά 

δεν αναφέρεται  και δεν διασαφηνίζεται ποια θα έπρεπε να είναι η αναμενόμενη μορφή ενός 

πλήρως παραγοντοποιημένου πολυωνύμου. 

Στην εργασία μας αυτή απαντάμε το παραπάνω ερώτημα χρησιμοποιώντας το Θεμελιώδες 

Θεώρημα της Άλγεβρας σε μορφή κατάλληλα προσαρμοσμένη για πολυώνυμα με πραγματικούς 

συντελεστές χωρίς χρήση των μιγαδικών αριθμών. Στη συνέχεια αξιοποιούμε την απάντηση 

αυτή και εξηγούμε πως μια ρητή παράσταση μπορεί να αναλυθεί σε απλά κλάσματα.  

Η παραγοντοποίηση ενός πολυωνύμου είναι στενά συνδεδεμένη με τις ρίζες του με την έννοια 

ότι:  «αν ο πραγματικός αριθμός  ρ  είναι ρίζα του πολυωνύμου P(x) τότε και μόνο τότε το  x-ρ  

είναι παράγοντας του P(x)». Ένα θεώρημα που εγγυάται ύπαρξη πραγματικών ριζών είναι το 

θεώρημα του Bolzano. Αποδεικνύουμε με στοιχειώδη τρόπο το θεώρημα του Bolzano στη 

περίπτωση των πολυωνύμων ως άμεση συνέπεια του Θεμελιώδους Θεωρήματος της Άλγεβρας.  

Τέλος, χρησιμοποιώντας κατάλληλους αλγεβρικούς μετασχηματισμούς, το λογισμικό Geogebra 

και επιχειρήματα πλήρους παραγοντοποίησης, προσδιορίζουμε τις δυνατές μορφές που μπορεί 

να έχει η γραφική παράσταση ενός πολυωνύμου τρίτου βαθμού και ερμηνεύουμε βασικές 

διαφορές ανάμεσα σε αυτές και τις αντίστοιχες γραφικές παραστάσεις πολυωνύμου δευτέρου 

βαθμού. 

 

Το θεμελιώδες θεώρημα της άλγεβρας – πλήρης παραγοντοποίηση πολυωνύμου 

Το Θεμελιώδες Θεώρημα της Άλγεβρας, που είναι από τα σπουδαιότερα στα Μαθηματικά, 

παρέμενε πολύ καιρό χωρίς αυστηρή απόδειξη. Πολλοί ιστορικοί θεωρούν ότι ο Φλαμανδός 

μαθηματικός Albert Girard (1595-1632) είναι ο πρώτος που το δια-τύπωσε το 1629 στο έργο του 

L’ Invention en l’ algebra, όπου αναφέρει ότι «κάθε εξίσωση της άλγεβρας διαθέτει τόσες λύσεις 

όσες υποδηλώνει ο εκθέτης του ανώτερου ό-ρου». Απόπειρες για την απόδειξη του 

Θεμελιώδους Θεωρήματος της Άλγεβρας  έγιναν από πολλούς διάσημους μαθηματικούς  όπως 

οι Cardano, Descartes, Viete, Leib-niz, Euler, Bernoulli, Lagrange, Laplace κ.ά. 
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Είναι γενικά αποδεκτό ότι η πρώτη αυστηρή απόδειξη του Θεμελιώδους Θεωρήματος της 

Άλγεβρας δόθηκε από τον Γερμανό μαθηματικό Johann Carl Friedrich Gauss (1777-1855) το 

1799, στη διδακτορική του διατριβή με τίτλο «Μια νέα απόδειξη του θεωρήματος ότι κάθε ρητή 

ακέραια αλγεβρική συνάρτηση μιας μεταβλητής μπορεί να αναλυθεί σε πραγματικούς 

παράγοντες πρώτου και δεύτερου βαθμού», που υποστήριξε στο Πανεπιστήμιο του Helmstedt 

στη γενέτειρά του Braunschweig. Αυτή ακριβώς τη διατύπωση του Θεμελιώδους Θεωρήματος 

της Άλγεβρας, όπως δηλώνεται στο τίτλο της διατριβής του Gauss, επιλέγουμε και εμείς για το 

σκοπό της εργασίας μας αυτής. 

 

Θεώρημα (Θεμελιώδες Θεώρημα της Άλγεβρας) 

 

Φάση 2- Οργάνωση και παρουσίαση υλικού 
 

Κάθε μη-σταθερό πολυώνυμο με πραγματικούς συντελεστές παραγοντοποιείται σε παράγοντες 

πρώτου ή/και δευτέρου βαθμού. 

Ειδικότερα, κάθε μη-σταθερό πολυώνυμο με πραγματικούς συντελεστές γράφεται σαν γινόμενο 

μιας μη-μηδενικής σταθεράς και ενός αριθμού πολυωνύμων βαθμού 1 ή βαθμού 2 με αρνητική 

διακρίνουσα,  έκαστο με συντελεστή μεγιστοβαθμίου όρου ίσο με 1. Η παράσταση αυτή είναι 

μοναδική, εκτός από τη σειρά των παραγόντων. 

Δηλαδή, αν 〖P(x)=α〗_ν x^ν+⋯+α_1 x+α_0 είναι ένα μη-σταθερό πολυώνυμο με α_ν≠0, τότε  

〖P(x)=α〗_ν x^ν+⋯+α_1 x+α_0= 

〖=α〗_ν∙(x-ρ_1 )∙…∙(x-ρ_κ )∙(x^2+β_1 x+γ_1  )∙…∙(x^2+β_λ x+γ_λ ) 

όπου τα ρ, τα β και τα γ είναι κατάλληλοι πραγματικοί αριθμοί,  〖β_i〗^2-4γ_i<0 (i=0,1,…,λ) 

και κ+λ=ν. 

Αν κ=ν, τότε το πολυώνυμο έχει τόσες πραγματικές ρίζες όσες ο βαθμός του. 

Αν κ=0, τότε το πολυώνυμο δεν έχει καμία πραγματική ρίζα. Στη περίπτωση αυτή, αναλύεται σε 

γινόμενο τριωνύμων με αρνητική διακρίνουσα.  

Παρατηρούμε ότι από τη διατύπωση και μόνο του Θεμελιώδους Θεωρήματος της Άλγεβρας 

γίνεται απόλυτα σαφές πότε ένα πολυώνυμο είναι πλήρως παραγοντοποιημένο: όταν έχει  
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μετατραπεί σε γινόμενο γραμμικών παραγόντων και πολυωνύμων δευτέρου βαθμού με 

αρνητική διακρίνουσα. 

Το θεώρημα εξασφαλίζει τη δυνατότητα της ανάλυσης αυτής, δεν πληροφορεί όμως τον τρόπο 

με τον οποίο γίνεται. Το θεώρημα δηλαδή είναι υπαρξιακό αλλά όχι κατασκευαστικό. 

Παρατηρούμε επίσης, ότι το Θεμελιώδες Θεώρημα της Άλγεβρας είναι ανάλογο με το 

Θεμελιώδες Θεώρημα της Αριθμητικής, σύμφωνα με το οποίο: «κάθε φυσικός αριθμός 

γράφεται  ως γινόμενο πρώτων αριθμών κατά μοναδικό τρόπο, εκτός από τη σειρά των 

παραγόντων». 

 

Παραδείγματα 
 

1. x^3+1=(x+1)∙(x^2-x+1), πλήρης παραγοντοποίηση. 

 

2. Η παραγοντοποίηση x^4-1=(x^2-1)∙(x^2+1) δεν είναι πλήρης, ενώ η 

 παραγοντοποίηση x^4-1=(x-1)∙(x+1)∙(x^2+1) είναι. 

 

3. Παραγοντοποίηση πολυωνύμου που δεν έχει πραγματικές ρίζες: x^4+1=x^4+2x^2+1-

2x^2=(x^2+1)^2 〖-(√2 x)〗^2=(x^2+√2 x+1)∙(x^2-√2 x+1). 

 

Ανάλυση ρητής παράστασης σε απλά κλάσματα 
 

Στην ενότητα αυτή χρησιμοποιούμε την πλήρη παραγοντοποίηση πολυωνύμου για να 

εξηγήσουμε πως μια ρητή παράσταση (λόγος πολυωνύμων) μπορεί να αναλυθεί σε απλά 

κλάσματα.  

Ορισμός (απλά κλάσματα) 

Απλά κλάσματα ονομάζονται τα κλάσματα της μορφής: 
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Α/(x-ρ)^(κ )         ή          (Βx+Γ)/(x^2+βx+γ)^λ  

 

όπου όλοι οι συντελεστές είναι πραγματικοί αριθμοί, το τριώνυμο έχει αρνητική διακρίνουσα 

και οι εκθέτες είναι φυσικοί αριθμοί.  

Τα απλά κλάσματα δηλαδή, είναι ρητές παραστάσεις ειδικής (απλής) μορφής: έχουν ως 

παρονομαστή δύναμη πολυωνύμου 1ου βαθμού ή 2ου με αρνητική διακρίνουσα και αριθμητή 

πολυώνυμο κατά ένα βαθμό μικρότερο από τη βάση του παρονομαστή,   π.χ.     1/(x+3),   3/(x-

5)^3 ,   (3x-4)/(x^2+x+6),    x/(〖2x〗^2+3x+5)^4 . 

Αυτό το οποίο ισχύει και είναι ενδιαφέρον είναι ότι «κάθε ρητή παράσταση  που ο βαθμός του 

αριθμητή είναι μικρότερος του βαθμού του παρονομαστή, γράφεται ως άθροισμα απλών 

κλασμάτων». Ο τρόπος με τον οποίο γίνεται αυτή η ανάλυση είναι ο εξής:  

 οι παρονομαστές των απλών κλασμάτων της ανάλυσης αυτής καθορίζονται από τους 

γραμμικούς παράγοντες και τα τριώνυμα αρνητικής διακρίνουσας που εμφανίζονται στην 

πλήρη παραγοντοποίηση του παρονομαστή της ρητής παράστασης (λαμβάνοντας υπόψη την 

πολλαπλότητά τους ενώ  

 οι συντελεστές των αριθμητών των απλών κλασμάτων προσδιορίζονται μονοσήμαντα 

από την  μοναδική λύση ενός συστήματος γραμμικών εξισώσεων. 

Τα παρακάτω δύο παραδείγματα είναι διαφωτιστικά 

Παραδείγματα 
 Να γραφεί η ρητή παράσταση 1/(x^2+x) ως άθροισμα απλών κλασμάτων. 

Καταρχήν, x^2+x=x(x+1). Οπότε, 1/(x^2+x)=1/x(x+1) =A/x+B/(x+1), για κατάλληλες σταθερές Α, 

Β (που θα προσδιορίσουμε).  

Κάνοντας απαλοιφή παρονομαστών, έχουμε 1=Α(x+1)+Bx, επομένως 

(A+B)x+A=0x+1 

Εξισώνοντας τους συντελεστές, προκύπτει το ακόλουθο σύστημα 2 γραμμικών εξισώσεων με 2 

αγνώστους: 

■(Α+Β&=&0@Α         &=&1) 

το οποίο έχει λύση  A=1 και B=-1. 

 Άρα, 
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1/x(x+1) =1/x+(-1)/(x+1) 

 

Να γραφεί η ρητή παράσταση 1/(x^7 〖+4x〗^5+4x^3 ) ως άθροισμα απλών κλασμάτων. 

Καταρχήν  x^7 〖+4x〗^5+4x^3=〖x^3 (x〗^4 〖+4x〗^2+4)=x^3 (x^2+2)^2.  

 

Οπότε έχουμε,  

1/(x^7 〖+4x〗^5+4x^3 )=1/(x^3 (x^2+2)^2 )=A/x+B/x^2 +Γ/x^3 

+(Δx+Ε)/(x^2+2)+(Ζx+Η)/(x^2+2)^2  

Κάνοντας απαλοιφή παρονομαστών και εξισώνοντας τους συντελεστές, προκύπτει το ακόλουθο 

σύστημα 7 γραμμικών εξισώσεων με 7 αγνώστους: 

Α+Δ = 0 

Ε+Β = 0 

4Α+2Δ+Γ+Ζ = 0 

4Β+2Ε+Η = 0 

4Α+4Γ = 0 

4Β = 0 

4Γ = 1 

Το οποίο έχει λύση: A=-1/4, B=0, Γ=1/4, Δ=1/4 , Ε=0, Ζ=1/4, Η=0 

Αρα 

1/(x^3 (x^2+2)^2 )=-1/4x+1/〖4x〗^3 +x/(〖4(x〗^2+2))+x/〖4(x^2+2)〗^2  

 

Τα επιχειρήματα που εφαρμόσαμε στα παραπάνω δύο παραδείγματα έχουν γενική ισχύ στη 

περίπτωση που ο βαθμός του αριθμητή είναι μικρότερος από το βαθμό του παρονομαστή. 

Ισχύει το ακόλουθο αποτέλεσμα. 
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Θεώρημα 
 

Αν P(x), Q(x) είναι πολυώνυμα με   βαθP(x)<βαθQ(x)  και 

 

〖Q(x)=(x-ρ_1 )〗^(ν_1 )∙… ∙(x-ρ_κ )^(ν_κ ) 〖∙(x^2+β_1 x+γ_1 )〗^(μ_1 ) 〖∙… ∙(x^2+β_λ x+γ_λ )

〗^(μ_λ ) 

Η πλήρης παραγοντοποίηση του Q(x), τότε υπάρχουν κατάλληλες σταθερές Α…, Β…, Γ… ώστε 

P(x)/Q(x) =[Α_1/(x-ρ_1 )+⋯+Α_(ν_1 )/(x-ρ_1 )^(ν_1 ) ]+⋯+[Α_κ/(x-ρ_κ )+⋯+Α_(ν_κ )/(x-ρ_κ 

)^(ν_κ ) ]+⋯+ 

+[(Β_1 x+Γ_1)/(x^2+β_1 x+γ_1 )+...+(Β_(μ_1 ) x+Γ_(μ_1 ))/(x^2+β_1 x+γ_1 )^(μ_1 ) ]+...+[(Β_λ 

x+Γ_λ)/(x^2+β_λ x+γ_λ )+...+(Β_(μ_λ ) x+Γ_(μ_λ ))/(x^2+β_λ x+γ_λ )^(μ_λ ) ]. 

Μια προφανής ερώτηση που προκύπτει είναι: τί γίνεται στη περίπτωση που ο βαθμός του 

αριθμητή είναι μεγαλύτερος ή ίσος από το βαθμό του παρονομαστή; 

Ας υποθέσουμε ότι έχουμε τη ρητή παράσταση P(x)/Q(x) , με βαθP(x)≥βαθQ(x). Τότε, σύμφωνα 

με την Ευκλείδεια διαίρεση, υπάρχουν πολυώνυμα π(x) και υ(x), με βαθυ(x)<βαθQ(x), τέτοια 

ώστε P(x)= Q(x)∙π(x)+υ(x). Οπότε, 

P(x)/Q(x) =(Q(x)∙π(x)+υ(x))/Q(x) =π(x)+υ(x)/Q(x)    

Όμως, το   υ(x)/Q(x)  , σύμφωνα με το παραπάνω θεώρημα,  μπορεί να γραφεί ως  άθροισμα 

απλών κλασμάτων, αφού βαθυ(x)<βαθQ(x). Καταλήγουμε συνεπώς στο ακόλουθο αποτέλεσμα. 

Θεώρημα 
 

Κάθε ρητή παράσταση μπορεί να γραφεί ως άθροισμα ενός πολυωνύμου και απλών κλασμάτων. 

Το πολυώνυμο-προσθετέος στην παραπάνω ανάλυση είναι το μηδενικό πολυώνυμο αν και μόνο 

αν ο βαθμός του αριθμητή (της ρητής παράστασης) είναι μικρότερος από το βαθμό του 

παρονομαστή. 

Κλείνουμε την ενότητα αυτή με ένα παράδειγμα. 

Παράδειγμα 
Να γραφεί η ρητή παράσταση (x^4+1)/(x^3+x^2 ) ως άθροισμα ενός πολυωνύμου και απλών 

κλασμάτων.  
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Έχουμε διαδοχικά, 

 

 

 (x^4+1)/(x^3+x^2 )=(x^4+1)/(x^2 (x+1) )=x^4/(x^2 (x+1) )+1/(x^2 (x+1) )=x^2/(x+1)+[A/x+B/x^2 

+Γ/(x+1)]=((x+1)(x-1)+1)/(x+1)+A/x+B/x^2 +Γ/(x+1)=x-1+1/(x+1)+A/x+B/x^2 +Γ/(x+1)=x-

1+A/x+B/x^2 +(Γ+1)/(x+1). 

Άρα, 

(x^4+1)/(x^3+x^2 )=x-1+A/x+B/x^2 +(Γ+1)/(x+1). 

 

Κάνοντας απαλοιφή παρονομαστών και εξισώνοντας τους συντελεστές, προκύπτει το ακόλουθο 

γραμμικό σύστημα 3 εξισώσεων με  3 αγνώστους: 

■(Α+Γ&=&0@Α+Β&=&0@Β&=&1) 

το οποίο έχει λύση Α=-1,  Β=1,  Γ=1.  

Συνεπώς, 

(x^4+1)/(x^3+x^2 )=x-1-1/x+1/x^2 +2/(x+1) 

Η ανάλυση ρητής παράστασης σε απλά κλάσματα χρησιμοποιείται στα ανώτερα μαθηματικά 

για τον υπολογισμό του ολοκληρώματος των ρητών συναρτήσεων και επομένως για τον 

υπολογισμό του εμβαδού επίπεδων καμπυλόγραμμων χωρίων. 

 

Το θεώρημα του Bolzano 

Η παραγοντοποίηση ενός πολυωνύμου, όπως αναφέραμε και στην εισαγωγή, σχετίζεται με τις 

ρίζες του, με την έννοια ότι:  «αν ο πραγματικός αριθμός  ρ  είναι ρίζα του πολυωνύμου P(x) τότε 

και μόνο τότε το  x-ρ  είναι παράγοντας του P(x)», το οποίο, ως γνωστό, είναι άμεση συνέπεια 

της Ευκλείδειας ταυτότητας. Στην ενότητα αυτή θα αποδείξουμε το θεώρημα του Τσέχου 

μαθηματικού Bernard Bolzano (1781-1848) - που εγγυάται ύπαρξη ριζών - στην ειδική 

περίπτωση των πολυωνύμων, ως άμεση συνέπεια του Θεμελιώδους Θεωρήματος της Άλγεβρας.  
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Θεώρημα (του Bolzano) 
Αν μια πολυωνυμική συνάρτηση  f  δεν έχει σταθερό πρόσημο, τότε έχει τουλάχιστον μία 

(πραγματική) ρίζα. 

Απόδειξη 

 

Θα αποδείξουμε το θεώρημα με την αρχή της αντιθετοαντιστροφής. Υπενθυμίζουμε ότι αν p, q 

είναι δύο προτάσεις, τότε έχουμε αποδείξει ότι p⇒q αν αποδείξουμε ότι (όχι q)⇒(όχι p). 

Στη συγκεκριμένη περίπτωση η πρόταση p είναι η: «η συνάρτηση  f  δεν έχει σταθερό πρόσημο» 

και η πρόταση q είναι: «η συνάρτηση  f  έχει τουλάχιστον μία ρίζα».  

Αντιθετοαντιστρέφοντας λοιπόν, αρκεί να αποδείξουμε ότι: αν η συνάρτηση  f  δεν έχει καμία 

(πραγματική) ρίζα, τότε η  f έχει σταθερό πρόσημο.  

Όμως, κάθε πολυωνυμική συνάρτηση, από το Θεμελιώδες Θεώρημα της Άλγεβρας, γράφεται 

στη μορφή  

〖f(x)=α〗_ν x^ν+⋯+α_1 x+α_0= 

〖=α〗_ν∙(x-ρ_1 )∙…∙(x-ρ_κ )∙(x^2+β_1 x+γ_1  )∙…∙(x^2+β_λ x+γ_λ ) 

όπου: α_ν≠0, ρ, β και γ είναι πραγματικοί αριθμοί, 〖β_i〗^2-4γ_i<0 (i=0,1,…,λ) και κ+λ=ν. 

Η υπόθεση που έχουμε κάνει, ότι η συνάρτηση  f  δεν έχει καμία (πραγματική) ρίζα, σημαίνει 

ότι στην παραπάνω γραφή δεν υπάρχουν γραμμικοί παράγοντες. Άρα, 

〖f(x)=α〗_ν∙(x^2+β_1 x+γ_1  )∙…∙(x^2+β_λ x+γ_λ ) 

όπου, α_ν≠0 και 〖β_i〗^2-4γ_i<0 (i=0,1,…,λ). Επομένως, η  f  έχει σταθερό πρόσημο, το 

πρόσημο του συντελεστή του μεγιστοβαθμίου όρου, καθώς όλα τα παραπάνω τριώνυμα είναι 

μόνιμα θετικά. Ο.Ε.Δ. 

Παράδειγμα 
Έστω η συνάρτηση f  με τύπο 

f(x)=2(x-ρ_1 )(x-ρ_2 )(x-ρ_3 )(x^2+β_1 x+γ_1 )(x^2+β_2 x+γ_2 ), 

όπου ρ_1<ρ_1<ρ_3 ,  〖β_1〗^2-4γ_1<0  και  〖β_2〗^2-4γ_2<0.  

Αν για δύο πραγματικούς αριθμούς α, β με α<β είναι f(α)∙f(β)<0, τότε υπάρχει μια τουλάχιστον 

ρίζα της εξίσωσης f(x)=0 μεταξύ των α, β. 



                                                                                                                    
 
 
                                                                                                                      Volume 1 
 
 
 

  

OPEN SCHOOLS JOURNAL FOR OPEN SCIENCE 193 

 

Πράγματι, αφού η διακρίνουσα των x^2+β_1 x+γ_1 και x^2+β_2 x+γ_2 

είναι αρνητική, τα δύο αυτά τριώνυμα θα είναι μόνιμα θετικά και επομένως ο πίνακας 

προσήμων της f(x) είναι ο εξής: 

x -∞             ρ1                 ρ2                ρ3               +∞ 

f(x) - + - + 

 

Από τον πίνακα προσήμων παρατηρούμε ότι ανάμεσα σε οποιαδήποτε αρνητική και θετική τιμή 

της  f  υπάρχει πάντοτε μία τουλάχιστον ρίζα. 

Η παραπάνω παρατήρηση μπορεί να γενικευτεί για κάθε πολυώνυμο, ανεξαρτήτως βαθμού, 

που πληρεί ανάλογες συνθήκες, καθώς σύμφωνα με το Θεμελιώδες θεώρημα της Άλγεβρας 

κάθε πολυώνυμο γράφεται ως γινόμενο γραμμικών παραγόντων και πολυωνύμων δευτέρου  

 

βαθμού με αρνητική διακρίνουσα. Λαμβάνουμε έτσι την ακόλουθη αναδιατύπωση του 

θεωρήματος του Bolzano: 

 

Θεώρημα (του Bolzano - αναδιατύπωση) 

Αν για δύο πραγματικούς αριθμούς α, β με α<β οι τιμές f(α) και f(β) μιας πολυωνυμικής 

συνάρτησης f  είναι ετερόσημες, τότε υπάρχει μια τουλάχιστον ρίζα της εξίσωσης f(x)=0 μεταξύ 

των α, β. 
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Σχήμα 1:  Γεωμετρική αναπαράσταση του θεωρήματος του Bolzano 

 

 

 

Γραφική παράσταση πολυωνυμικής συνάρτησης 3oυ βαθμού 

Στην ενότητα αυτή θα προσδιορίσουμε τις δυνατές μορφές που μπορεί να έχει η γραφική 

παράσταση μιας πολυωνυμικής συνάρτησης τρίτου βαθμού 

αx^3+βx^2+γx+δ, 

εφαρμόζοντας κατάλληλους αλγεβρικούς μετασχηματισμούς, επιχειρήματα πλήρους 

παραγοντοποίησης και χρησιμοποιώντας το λογισμικό Geogebra. Παράλληλα, ερμηνεύουμε 

βασικές διαφορές ανάμεσα στις γραφικές παραστάσεις δευτέρου και τρίτου βαθμού. 

Η γραφική παράσταση κάθε πολυωνυμικής συνάρτησης δευτέρου βαθμού είναι, ως γνωστό,  

παραβολή που «ανοίγει πάνω» ή «κάτω» ανάλογα με το πρόσημο του συντελεστή του  

μεγιστοβαθμίου όρου. Στην πραγματικότητα είναι η γραφική παράσταση της συνάρτησης με 

τύπο f(x)=αx^2 (a≠0), μετατοπισμένη οριζόντια ή/και κατακόρυφα, καθώς ισχύει η ακόλουθη 

ταυτότητα (συμπλήρωση σε τέλειο τετράγωνο) 

αx^2+βx+γ=α(x+β/2α)^2-(β^2-4αγ)/4α. 

Το πόσο «ανοικτή» ή «κλειστή» είναι η παραβολή εξαρτάται από την απόλυτη τιμή του α. 

Αυτή η γεωμετρική ιδιότητα που έχουν οι συναρτήσεις δευτέρου βαθμού δεν ισχύει για τις 

πολυωνυμικές συναρτήσεις τρίτου βαθμού, δηλαδή η γραφική τους παράσταση δεν είναι 

αναγκαστικά μετατόπιση οριζόντια ή κατακόρυφη της συνάρτησης με τύπο f(x)=αx^3, a≠0. Για 

παράδειγμα, δεν υπάρχουν αριθμοί κ, λ ώστε x^3+x=(x+κ)^3+λ, για κάθε πραγματικό αριθμό x. 

Πράγματι, αν υπήρχαν, τότε θα έπρεπε οι συντελεστές της ταυτότητας (ως προς x) x^3+x=〖

x^3+〖3κx〗^2+3κ^2 x+(κ〗^3+λ) να είναι ίσοι ένας προς ένας, δηλαδή κ=0=1, άτοπο. 

Για τις πολυωνυμικές συναρτήσεις τρίτου βαθμού ισχύει η ακόλουθη ταυτότητα (συμπλήρωση 

σε τέλειο κύβο – απαλοιφή δευτεροβάθμιου όρου) 

αx^3+βx^2+γx+δ=α(x+β/3α)^3+(γ-β^2/3α)(x+β/3α)+[β/3α ((2β^2)/9α-γ)+δ]. 

Αυτό σημαίνει ότι η γραφική παράσταση κάθε πολυωνυμικής συνάρτησης τρίτου βαθμού 

προκύπτει από οριζόντια και κατακόρυφη μετατόπιση της συνάρτησης με τύπο 
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αx^3+λx, 

με a≠0. 

 

 

Χάριν απλότητας, θα περιοριστούμε στη περίπτωση που ο συντελεστής του μεγιστοβαθμίου 

όρου είναι μοναδιαίος, δηλαδή της μορφής   

x^3+λx. 

Η γραφική παράσταση της συνάρτησης αυτής: α) είναι συμμετρική ως προς την αρχή των 

αξόνων για όλες τις τιμές του λ, καθώς η συνάρτηση είναι περιττή, και β) εξαρτάται από την 

πλήρη παραγοντοποίηση του τύπου της. Συγκεκριμένα, για τις διάφορες τιμές του λ, ο τύπος της 

συνάρτησης παραγοντοποιείται πλήρως ως εξής: 

f(x)=x^3+λx={■(x(x^2+λ)&αν λ>0@x^3&αν λ=0@x(x+√(-λ))(x-√(-λ))&αν λ<0)┤ 

Η γραφική παράσταση της f, για τις διάφορες τιμές του λ, φαίνεται στα σχήματα 2, 3 και 4, 

αποτυπωμένη μέσω του λογισμικού  Geogebra. 

 

Σχήμα 2: Η γραφική παράσταση της συνάρτησης με τύπο  𝑓1(𝑥) = 𝑥(𝑥 + √−𝜆)(𝑥 − √−𝜆), με 𝜆 < 0. 
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Σχήμα 3: Η γραφική παράσταση της συνάρτησης με τύπο 𝑓2(𝑥) = 𝑥3. 

 

 

Σχήμα 4: Η γραφική παράσταση της συνάρτησης με τύπο  𝑓3(𝑥) = 𝑥(𝑥2 + 𝜆), με 𝜆 > 0. 

Η γραφική παράσταση της συνάρτησης με τύπο αx^3+λx (a≠0) είναι: i) παρόμοια με αυτή της 

x^3+λx, αν α>0, καθώς η τιμή του α επηρεάζει  το πόσο «ανοικτή» ή «κλειστή» είναι η καμπύλη 

στο σχήμα 3 και 4 και στα τμήματα της καμπύλης του σχήματος 2 που αντιστοιχούν στις περιοχές 

εκτός των ριζών, ενώ επηρεάζει το πόσο «επίμηκες» ή όχι είναι το τμήμα της καμπύλης του 

σχήματος 2 που αντιστοιχεί στη περιοχή εντός των ριζών και  ii) συμμετρική της περίπτωσης (i), 

ως προς τον x΄x άξονα, αν α<0. 
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Επομένως, η γραφική παράσταση κάθε πολυωνυμικής συνάρτησης τρίτου βαθμού προκύπτει 

από α) οριζόντια μετατόπιση, β) κατακόρυφη μετατόπιση και γ) ανάκλαση ως προς τον x΄x άξονα 

(μόνο στη περίπτωση αρνητικού συντελεστή μεγιστοβαθμίου όρου), των τριών μοτίβων που 

φαίνονται στα σχήματα 2, 3 και 4. 

 

Συμπεράσματα 

Επιλέξαμε ως κύριο μεθοδολογικό εργαλείο το Θεμελιώδες Θεώρημα της Άλγεβρας, σε μορφή 

προσαρμοσμένη  στους πραγματικούς αριθμούς (χωρίς χρήση μιγαδικών αριθμών) για να 

διερευνήσουμε και να απαντήσουμε  τα τέσσερα ερωτήματα που θέσαμε:  α) πότε ένα 

πολυώνυμο θεωρείται ότι είναι πλήρως παραγοντοποιημένο; β) πώς αναλύεται μια ρητή 

συνάρτηση σε απλά κλάσματα; γ) μπορεί το θεώρημα του Bolzano να αποδειχθεί με στοιχειώδη 

τρόπο στην περίπτωση των πολυωνύμων; δ) τί μορφή έχει η γραφική παράσταση μιας 

πολυωνυμικής συνάρτησης τρίτου βαθμού; 

Ως άμεση συνέπεια του Θεμελιώδους Θεωρήματος της Άλγεβρας, διαπιστώσαμε ότι ένα 

πολυώνυμο είναι πλήρως παραγοντοποιημένο όταν έχει μετατραπεί σε γινόμενο γραμμικών 

παραγόντων και πολυωνύμων δευτέρου βαθμού με αρνητική διακρίνουσα. Έτσι, απαντήσαμε 

ρητά κάτι που συνήθως αποσιωπείται στα σχολικά εγχειρίδια. 

Στη συνέχεια χρησιμοποιήσαμε κατά ουσιαστικό τρόπο τη μορφή της πλήρους 

παραγοντοποίησης και δείξαμε ότι κάθε ρητή παράσταση μπορεί να γραφεί ως άθροισμα ενός 

πολυωνύμου και απλών κλασμάτων. Οι συντελεστές που εμπλέκονται στην ανάλυση αυτή 

προσδιορίζονται από την λύση ενός (απλού) συστήματος γραμμικών εξισώσεων. 

Αποδείξαμε το θεώρημα του Bolzano στη περίπτωση των πολυωνύμων, ως άμεση συνέπεια του 

Θεμελιώδους Θεωρήματος της Άλγεβρας, χρησιμοποιώντας απλά ένα επιχείρημα 

αντιθετοαντιστροφής. Με την στοιχειώδη απόδειξη που παρουσιάσαμε λύσαμε την απορία που 

μας είχε γεννηθεί «πώς αποδεικνύεται το θεώρημα του Bolzano;» καθώς στο σχολικό βιβλίο της  

 

Άλγεβρας Β΄ Λυκείου στη ενότητα «πολυώνυμα» το εν λόγω θεώρημα παρουσιάζεται χωρίς 

απόδειξη. 

Όσο αφορά τις πολυωνυμικές συναρτήσεις τρίτου βαθμού, με ένα επιχείρημα πλήρους 

παραγοντοποίησης σε κατάλληλη συνάρτηση, δείξαμε ότι η γραφική παράστασή τους  
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αντιστοιχεί σε ένα από τα τρία μοτίβα των σχημάτων 2, 3, 4 μετά από ορι-ζόντια/κατακόρυφη 

μετατόπιση και ανάκλαση ως προς τον x΄x άξονα (στη περίπτωση αρνητικού συντελεστή 

μεγιστοβαθμίου όρου). Το ότι η γραφική παράσταση των τριτοβάθμιων ακολουθεί 3 μοτίβα, 

ενώ των δευτεροβάθμιων 1 μοτίβο (παραβολή), αυτό αποτελεί μια από τις βασικές τους 

διαφορές. Παρά ταύτα, σε κάθε περίπτωση παρουσιάζεται κάποιο είδος συμμετρίας: οι 

τριτοβάθμιες έχουν σημείο συμμετρίας, ενώ οι δευτεροβάθμιες άξονα συμμετρίας. 
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