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στο λογισμό μεταβολών 

 

Γεώργιος Βεργίνης1, Χρήστος Καρούσης1, Αιμιλία Κρητικίδη1, Χρήστος Λάμπρου1, Μαριάννα Λέου1, 
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14ο Γενικό Λύκειο Αγίας Παρασκευής, Αθήνα, Ελλάδα, 

2Μαθηματικός, 4ο Γενικό Λύκειο Αγίας Αγίας . Παρασκευής, Αθήνα, Ελλάδα 

 

ΠΕΡΙΛΗΨΗ  

Θα ερευνήσουμε με ποιες μεθόδους αντιμετωπίστηκαν ιστορικά προβλήματα ακροτάτων και 

κωνικών τομών και κατά πόσο το αποτύπωμα των μεθόδων αυτών ανιχνεύεται στη θεωρητική 

βάση του διαφορικού λογισμού. 

Η θεμελίωση της θεωρίας λόγων και η εισήγηση της μεθόδου εξάντλησης από τον Εύδοξο (~330 

π.Χ.) αποτέλεσαν ισχυρά εργαλεία στο έργο του Αρχιμήδη (~250 π.Χ.) και τον οδήγησαν στην 

εξαιρετικής ευφυίας μηχανική σύλληψη του τετραγωνισμού τμήματος παραβολής.  

Διερευνούμε το πρόβλημα μέγιστου όγκου του Kepler (1613) και στη συνέχεια της 

βραχυστόχρονης καμπύλης από τον Bernoulli (1696), με το  geogebra ισχυρό ανιχνευτικό 

εργαλείο σε καθένα από τα θέματα. 

Μέσα από τη διαδρομή αυτή παρακολουθούμε πώς μεταβλήθηκαν και διαμορφώθηκαν οι 

έννοιες του απειροστού και  της εφαπτομένης. 

Σκοπός μας είναι να αναδειχθεί η πρωτοποριακή ιδέα που ενυπάρχει σε καθένα από τα θέματα 

αυτά, εστιάζοντας περισσότερο στη διαδικασία επίλυσης  παρά στην ίδια τη λύση. 

 

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ 



 

 

τετραγωνισμός 

παραβολής, μέθοδος εξάντλησης, ακρότατα, βραχυστόχρονη. 

 

 

ΕΙΣΑΓΩΓΗ 

Με τον διαφορικό λογισμό, κλάδος που οικοδομήθηκε από τον 17ο αιώνα,  μελετούμε τον τρόπο 

με τον οποίο ένα μέγεθος μεταβάλλεται.  

Η 20 αιώνων διαδρομή της θεωρητικής συγκρότησης, από την αρχαιότητα μέχρι την εδραίωσή 

του, χαρακτηρίζεται από εμπόδια, συγκρούσεις με δοξασίες, επίμονες αναζητήσεις λύσεων σε 

προβλήματα, και δημιουργικούς τρόπους αντιμετώπισής τους που συνδέθηκαν με ονόματα 

σπουδαίων επιστημόνων. 

 

Η ΘΕΩΡΙΑ ΛΟΓΩΝ ΤΟΥ ΕΥΔΟΞΟΥ (408-350 πΧ) 

Τον 4ο π.Χ. αιώνα ο Εύδοξος δημιουργεί την θεωρία λόγων εξασφαλίζοντας την ύπαρξη λόγου 

α:β μεταξύ δυο ομοειδών μεγεθών α και β, σε περίπτωση που αυτά είναι είτε σύμμετρα είτε 

ασύμμετρα :  

• Ο λόγος δυο μεγεθών, α και β, που συγκρίνονται, για να υπάρχει πρέπει να ορίζεται. 

Αυτό εξασφαλίζεται αν υπάρχουν ακέραιοι μ και ν τέτοιοι, ώστε 

𝜇𝛼 > 𝛽 και 𝜈𝛽 > 𝛼. 

(Στοιχεία, Βιβλίο V, Ορισμός 4 : Λόγον έχειν προς άλληλα μεγέθη λέγεται, ά δύναται 

πολλαπλασιαζόμενα αλλήλων υπερέχειν). 

• Η ισότητα δυο λόγων, 
𝛼

𝛽
=

𝛾

𝛿
, ισχύει αν για κάθε επιλογή φυσικών αριθμών μ και ν μπορεί 

να διαπιστωθεί μια οποιαδήποτε από τις τρείς προτάσεις: 

αν 𝜈𝛼 > 𝜇𝛽, τότε θα είναι και 𝜈𝛾 > 𝜇𝛿 

αν 𝜈𝛼 = 𝜇𝛽, τότε θα είναι και 𝜈𝛾 = 𝜇𝛿 

αν 𝜈𝛼 < 𝜇𝛽, τότε θα είναι και 𝜈𝛾 < 𝜇𝛿. 

Έτσι, δυο λόγοι μπορούν να είναι ίσοι, δηλαδή να έχουμε αναλογία, και όταν τα μεγέθη του ενός 

λόγου δεν είναι ομοειδή με τα μεγέθη του άλλου. 



 

 

Θα στηριχτούμε στον 

πιο πάνω ορισμό για να αποδείξουμε, ως παράδειγμα, τη παρακάτω πρόταση: 

«Τα εμβαδά δυο τριγώνων με ίσα ύψη έχουν λόγο ίσο με τον λόγο των βάσεών τους» 

 

 

 

 

 

 

 

Σχήμα 1 

 

Απόδειξη:  Στο σχήμα 1 τα τρίγωνα 𝛢𝛣𝛤 και 𝛢′𝛣′𝛤′ έχουν ίδιο ύψος. Θα συγκριθούν τα εμβαδά 

σε σχέση με τις βάσεις τους. Έστω οι ακέραιοι μ, ν. 

Αν είναι  𝜈𝛾 > 𝜇𝛾′ , τότε υπάρχει 𝛥′′ ανάμεσα στο 𝛢 και 𝛥 με  𝛢𝛥′′ = 𝛢′𝛥′. 

Οπότε 𝜈(𝛢𝛤𝛣) = (𝛢𝛤𝛥) > (𝛢𝛤𝛥′′) = (𝛢′𝛤′𝛥′) = 𝜇(𝛢′𝛣′𝛤′) 

Όμοια, αν 𝜈𝛾 < 𝜇𝛾′ υπάρχει 𝛥′′ ανάμεσα στο 𝛢′ και 𝛥′ώστε 𝛢′𝛥′′ = 𝛢𝛥, απ’όπου προκύπτει 

όπως προηγουμένως ότι  𝜈(𝛢𝛤𝛣) < 𝜇(𝛢′𝛣′𝛤′).  

Τέλος αν 𝜈𝛾 = 𝜇𝛾′ προκύπτει άμεσα ότι 𝜈(𝛢𝛤𝛣) = 𝜇(𝛢′𝛣′𝛤′) 

Αποδείχτηκε λοιπόν η ισότητα των λόγων βάσεων και εμβαδών για τρίγωνα με ίσα ύψη, είτε ο 

λόγος αυτός είναι άρρητος είτε ρητός αριθμός■ 

• Στη συνέχεια ο Εύδοξος εισάγει τη μέθοδο εξάντλησης με την οποία επιτυγχάνεται η 

εύρεση εμβαδών και όγκων  μέσω αλλεπάλληλων προσεγγίσεων. Στηρίζεται στην ιδέα ότι αν από 

κάποιο μέγεθος αφαιρέσουμε περισσότερο από το μισό, από το υπόλοιπο επίσης κ.λπ., τότε 

μετά από πεπερασμένο αριθμό βημάτων παίρνουμε υπόλοιπο μικρότερο από οποιοδήποτε 

δεδομένο μέγεθος (Στοιχεία, Βιβλίο Χ, Πρόταση 1). Με άλλα λόγια, η απόσταση ή η διαφορά που 

υπάρχει ανάμεσα σε μία ποσότητα που μεταβάλλεται τείνοντας σε ένα όριο, και στο όριο αυτό, 

μπορεί να γίνει όσο μικρή θέλουμε με υποδιπλασιασμό της.  

 



 

 

 

ΑΡΧΙΜΗΔΗΣ : ΓΙΑ ΤΟΝ «ΤΕΤΡΑΓΩΝΙΣΜΟ ΤΜΗΜΑΤΟΣ ΠΑΡΑΒΟΛΗΣ»  

Ι. Η δημιουργία της πρότασης  

 

 

 

 

Τα βάρη 𝐹1και 𝐹2 είναι 

αντιστρόφως ανάλογα προς τους 

μοχλοβραχίονές τους α, β 

Σχήμα 2: Για τον υπολογισμό του εμβαδού (Ε) του τμήματος παραβολής ΑΒΝΑ 

 

Στο σχήμα 2 η ΒΓ είναι εφαπτομένη της παραβολής ΑΒΥΑ στο Β. Για τυχόν σημείο X της χορδής 

ΑΒ και με 𝛸𝛺 παράλληλη στον άξονα της παραβολής,  είναι 
𝛢𝛸

𝛢𝛣
=

𝛸𝛶

𝛸𝛺
. Έτσι, για το μέσο Μ είναι:  

𝛢𝛭

𝛢𝛣
=

𝛭𝛮

𝛭𝛭1
=

1

2
 . Άρα Ν είναι μέσο του 𝛭𝛭1, οπότε Ζ μέσο του 𝛸𝛺 και Δ μέσο του ΑΓ, με 𝛢𝛤 ∥

𝛸𝛺 ∥ 𝛭𝛭1. Επομένως, με 𝛥𝛣 = 𝛥𝛦: 

𝛢𝛸

𝛢𝛣
=

𝛥𝛧

𝛥𝛣
=

𝛥𝛧

𝛥𝛦
⟹

𝛸𝛶

𝛸𝛺
=

𝛥𝛧

𝛥𝛦
⇒

𝛸1𝛶1

𝛸𝛺
=

𝛥𝛧

𝛥𝛦
 

Θεωρούμε ότι: 1) Το ΒΕ είναι μοχλός με το Δ υπομόχλιο και 2) Τα 𝛸1𝛶1 = 𝛸𝛶, ΧΩ είναι ράβδοι 

απο ομοιογενές υλικό, οπότε τα βάρη τους εφαρμόζονται στα κέντρα τους, Ε και Ζ. 

Επαναλαμβάνοντας την διαδικασία, με το Χ να διατρέχει τη χορδή ΑΒ, τα ΧΥ θα σαρώνουν το 

τμήμα της παραβολής ΑΒΥΑ, με εμβαδό (Ε), ενώ τα ΧΩ θα σαρώνουν το ΑΒΓ με εμβαδόν (ΑΒΓ). 

Άρα, συνολικά, το (Ε) στο σημείο Ε ισορροπεί το ΑΒΓ στη θέση του. Με μοχλοβραχίονες του (Ε) 

το ΔΕ και το ΔΚ =
ΒΔ

3
=

ΔΕ

3
 του (ΑΒΓ), έπεται ότι: 

(Ε)

(ΑΒΓ)
=⏞
(𝛴) ΔΕ

3

ΔΕ
⇒ (𝚬) =

(𝚨𝚩𝚪)

𝟑
 .  

Όμως (ΑΒΓ) = 2(ΑΒΔ) = 4(ΑΒΝ) . Συνεπώς (𝚬) =
𝟒

𝟑
(𝚨𝚩𝚴) 

  



 

 

 

 

ΙΙ. Η απόδειξη 

Με βάση το σχήμα 3, θεωρούμε  τα  εμβαδά Ε1 = (ΗΠΦ1Μ) + (ΜΝΤ1Θ) + (ΘΤΒ) και Ε2 =

(ΑΡΠΗ) + (ΗΣΝΜ) + (ΜΦΤΘ) + (ΘΘ1Β). Προφανώς ισχύει η σχέση: Ε1 < 𝛦 < Ε2. Η πρόθεση 

του Αρχιμήδη είναι να αποδείξει ότι  Ε =
(ΑΒΓ)

3
 . Για το σκοπό αυτόν απέδειξε πρώτα τις σχέσεις: 

Ε1 <
(ΑΒΓ)

3
< Ε2 (1) 

Η απόδειξη στηρίχτηκε στη συνθήκη (Σ) του σχήματος 2, με μοχλό το ΒΛ και υπομόχλιο το Α. Στο 

σχήμα 3, το (α) ισορροπεί το (ΑΓΗ1Η), το (β) το (ΗΗ1Μ1Μ), το (γ) το (ΜΜ1Θ1Θ) και το (δ) το 

(ΘΘ1Β), καθένα στη θέση όπου βρίσκεται. 

Επομένως το (α+β+γ+δ), με μοχλοβραχίονα ΑΛ, ισορροπεί το (ΑΒΓ) στη θέση του, με 

μοχλοβραχίονα 𝛢𝛫1 =
𝛢𝛣

3
=

𝛢𝛬

3
.  Οπότε, από τη (Σ) προκύπτει: 

(ΑΒΓ)

α+β+γ+δ
=

ΑΛ
ΑΛ

3

⇒
(𝚨𝚩𝚪)

𝟑
= 𝛂 + 𝛃 + 𝛄 + 𝛅.  Αντί της (1) αρκεί τώρα να δειχθεί η: 

Ε1 < 𝛼 + 𝛽 + 𝛾 + 𝛿 < Ε2 (2) 

Τα τραπέζια ΑΓΗ1Η, ΗΗ1Μ1Μ έχουν ίσα ύψη, επομένως:  

(ΑΓΗ1Η)

(ΗΗ1Μ1Μ)
=

ΑΓ + Η1Η

Η1Η + Μ1Μ
 (3) 

 

Σχήμα 3 

  



 

 

 

Επιπλέον, από το Θεώρημα Θαλή, ισχύουν οι αναλογίες:  

ΑΓ

ΗΗ1
=

ΑΒ

ΗΒ
=

ΑΡ

ΗΠ
⇒

ΑΓ + ΗΗ1

ΗΗ1
=

ΑΡ + ΗΠ

ΗΠ
 (4) 

ενώ:  
ΗΗ1

ΗΠ
=

ιδιότητα

παραβολής ΡΒ

ΡΠ
=

ΑΒ

ΑΗ
 , οπότε, απο τις (3) και (4) παίρνουμε: 

ΑΓ+Η1Η

ΑΡ+ΗΠ
=

𝛢𝛣

𝛢𝛨
=

𝛢𝛬

𝛢𝛨
⇒

(ΑΓΗ1Η)

(ΑΡΠΗ)
=

𝛢𝛬

𝛢𝛨
. Δηλαδή: το (ΑΡΠΗ) τοποθετημένο στο Λ ισορροπεί το (ΑΓΗ1Η) τοποθετημένο 

στο Η δηλαδή με μοχλοβραχίονα ΑΗ μεγαλύτερο απο αν ήταν στη θέση του. Άρα 𝛼 < (ΑΡΠΗ). 

Όμοια 𝛽 < (ΗΗ1Μ1Μ), 𝛾 < (ΜΜ1Θ1Θ) και 𝛿 < (ΒΘ1Θ). Οπότε α + β + γ + δ < Ε2 

Όμοια, για την αριστερή ανισότητα της (2): 

(ΗΗ1Μ1Μ)

(ΗΠΦ1Μ)
=

Μ1Μ

Φ1Μ
=

ΗΗ1

ΗΠ
=

ΑΒ

ΑΗ
=

𝛢𝛬

𝛢𝛨
 

Άρα το ΗΗ1Μ1Μ ισορροπεί στο Η το ΗΠΦ1Μ στο Λ. Ο μοχλοβραχίονας ΑΗ είναι μικρότερος απο 

αν ήταν στη θέση του, οπότε 𝛽 > (ΗΠΦ1Μ). Όμοια 𝛾 > (ΜΝΤ1Θ) και 𝛿 > (ΘΤΒ). Άρα 

αποδείχτηκε η (2), επομένως και η (1). 

 

ΙΙΙ. Και ολοκληρώνεται η απόδειξη με απαγωγή σε άτοπο: 

Επιπλέον, είναι εύκολο να συμπεράνουμε ότι Ε2 − Ε1 = (ΑΒΡ), αν λάβουμε υπόψη ότι 𝛩𝛪 =

𝛪𝛵1 = 𝛵1𝛵 = 𝛵𝛩1, ισότητα που ισχύει επειδή έχουμε παραβολή. Αν τώρα στο τμήμα ΑΒ 

αυξήσουμε τις ν=4 υποδιαιρέσεις, παρατηρούμε ότι το ΑΒΡ γίνεται  μικρότερο. Άρα η διαφορά 

𝛦2 − 𝛦1 μικραίνει όσο αυξάνουμε το ν. 

Έστω, τέλος 𝛦 >
(𝛢𝛣𝛤)

3
⟹ 𝛦 −

(𝛢𝛣𝛤)

3
> 0. Θα υπάρχει κατάλληλος φυσικός ν (Εύδοξος, ορισμός 

προηγούμενης ενότητας) ώστε : 

𝛦 −
(𝛢𝛣𝛤)

3
> Ε2 − Ε1 ⇒ 𝛦 > Ε2 − Ε1 +

(𝛢𝛣𝛤)

3
>⏞

𝜎𝜒έ𝜎𝜂 1

Ε2 − Ε1 + Ε1 ⇒ 𝛦 > Ε2, άτοπο.  

 

  



 

 

 

Αν τώρα 𝛦 <
(𝛢𝛣𝛤)

3
⇒

(𝛢𝛣𝛤)

3
− 𝛦 > 0 , όπως πριν, θα υπάρχει κατάλληλο πλήθος ν 

υποδιαιρέσεων του ΑΒ ώστε  
(𝛢𝛣𝛤)

3
− 𝛦 > Ε2 − Ε1 ⇒ 𝛦 <

(𝛢𝛣𝛤)

3
+ Ε1 − Ε2 <⏞

𝜎𝜒έ𝜎𝜂 1

Ε2 + Ε1 −

Ε2 ⇒ 𝛦 < Ε1, άτοπο. Υποχρεωτικά λοιπόν 𝛦 =
(𝛢𝛣𝛤)

3
. 

 

ΤΟ ΠΡΟΒΛΗΜΑ ΤΟΥ KEPLER (1571-1642) 

Στο βιβλίο του  Nova  Stereometria doliorum vinorum, ο Kepler περιγράφει πώς η μέτρηση του 

όγκου του βαρελιού έγινε αντικείμενο έρευνάς του. 

«...ο πωλητής ογκομέτρησε με ακρίβεια όλα τα βαρέλια, χωρίς να τα διακρίνει, αδιαφορώντας 

για το σχήμα τους, χωρίς σκέψη ή κάποιον υπολογισμό… 

Θεώρησα, λοιπόν, πρέπον να διερευνήσω τους γεωμετρικούς νόμους μιας μέτρησης τόσο 

χρήσιμης..., με σκοπό να διασαφήσω τη βάση της, αν υπάρχει τέτοια.» 

Ας ακολουθήσουμε τον συλλογισμό του: 

«Πότε ένα βαρέλι έχει τη μέγιστη χωρητικότητα;» Αλλά εύκολα μπορούμε να φανταστούμε έναν 

κύλινδρο εγγεγραμμένο στο βαρέλι, ώστε να έχουν ίδιες βάσεις. Έτσι το πρόβλημα 

μετασχηματίζεται στο απλούστερο: 

«Απ’ όλους τους κυλίνδρους με την ίδια διαγώνιο ποιος έχει την μέγιστη χωρητικότητα;» Αφού 

το μήκος της διαγωνίου είναι σταθερό μπορούμε να θεωρήσουμε τους προς σύγκριση 

κυλίνδρους εγγεγραμμένους σε σφαίρα διαμέτρου όση η διαγώνιος. Έτσι το πρόβλημα 

διατυπώνεται ως εξής: 

«Σε δεδομένη σφαίρα να εγγράψετε κύλινδρο μέγιστου όγκου.» Προφανώς, στον μέγιστο 

κύλινδρο εγγράφεται η μέγιστη δοκός. Άρα τελικά το αρχικό πρόβλημα ανάγεται στο ακόλουθο: 

«Έστω ορθογώνιο παραλληλεπίπεδο με τετράγωνη βάση εγγεγραμμένο σε σφαίρα. Πότε έχει τον 

μεγαλύτερο όγκο;» 

 



 

 

 

Σχήμα 5: Παραλληλεπίπεδο 

εγγεγραμμένο σε κύλινδρο 

 

Παρατήρηση 

Όμως σε κάθε κύλινδρο μπορούμε να 

εγγράψουμε μια δοκό, δηλαδή το 

παραλληλεπίπεδο με τετράγωνη βάση, όπως 

στο σχήμα 5. Μάλιστα ο λόγος των όγκων τους, 

με την σειρά που αναφέρθηκαν, είναι 

σταθερός,  
𝝅

𝟐
 , γιατί είναι:  

 
ό𝛾𝜅𝜊𝜍 𝜅𝜐𝜆ί𝜈𝛿𝜌𝜊𝜐

ό𝛾𝜅𝜊𝜍 𝛿𝜊𝜅𝜊ύ
=

𝑉𝜅

𝑉𝛿
=

𝜋𝜌2𝜐

𝛼2𝜐
=⏞

𝛼2=2𝜌2

𝜋𝜌2𝜐

2𝜌2𝜐
=

𝜋

2
 

 

Απόδειξη: Σε σφαίρα διαμέτρου δ εγγράφουμε κύβο και δοκό με ύψος είτε μεγαλύτερο, όπως 

στο σχήμα 6  (περίπτωση α) είτε μικρότερο (περίπτωση β) απο το ύψος του  κύβου  και 

συγκρίνουμε τους όγκους τους: α) τα 2 παραλληλεπίπεδα τμήματα της δοκού που προεξέχουν 

από τον κύβο έχουν όγκο: 𝑉𝛿 = 2(𝛢′′𝛣′′)2. (𝛢′′𝛢′) επειδή είναι ίσα και οι βάσεις είναι 

τετράγωνες. 

Θεωρούμε τα 4 παραλληλεπίπεδα τμήματα του κύβου που εφάπτονται στη δοκό, ένα για κάθε 

πλευρά του 𝛢′′𝛣′′𝛤′′𝛥′′, με βάση τετράγωνο πλευράς ίσης με 𝛢′′𝛣′′ και με ύψος ίσο με 𝛢′′𝛦. 

Αυτά  έχουν όγκο: 𝑉𝜅 = 4(𝛢′′𝛣′′)2. (𝛢′′𝛦). Θα συγκρίνουμε αυτούς τους δυο όγκους: 
𝑉𝜅

𝑉𝛿
=

2(𝛢′′𝛦)

(𝛢′′𝛢′)
=

2
(𝛢′′𝛢)

√2

(𝛢′′𝛢′)
=⏞

𝛴𝜒ή𝜇𝛼 7
√2

𝜀𝜑𝜃
>

√2

𝜀𝜑𝜔
=

√2

√2
= 1 ⟹ 𝑉𝜅 > 𝑉𝛿 , 

εφόσον οι ω και θ, όπως φαίνονται στο σχήμα 7, είναι εγγεγραμμένες γωνίες που βαίνουν στα 

τόξα 𝛢′𝛤 και 𝛢𝛤, όπου προφανώς 𝛢′𝛤 <  𝛢𝛤 ⇒ 𝜃 < 𝜔 ⇒ 𝜀𝜑𝜃 < 𝜀𝜑𝜔 . 

 



 

 

 

Σχήμα 6: Κύβος και δοκός εγγεγραμμένοι 

σε σφαίρα 

 

 

 

Σχήμα 7: Τομή του σχήματος 4.2 κατά το 

κατακόρυφο επίπεδο των 𝛢′𝛢 και της 

διαγωνίου ΑΓ 

 

 

Στη περίπτωση (β) όπου το ύψος της δοκού είναι μικρότερο του κύβου, με μια αντίστοιχη 

σύγκριση των τμημάτων που «προεξέχουν» μεταξύ των δύο στερεών, προκύπτει πάλι ότι ο όγκος 

του κύβου είναι μεγαλύτερος του όγκου της δοκού. 

Σε κάθε περίπτωση λοιπόν, κατά τη μετατροπή του σε δοκό ο κύβος χάνει περισσότερο όγκο απ’ 

όσο κερδίζει. Αυτό αποτελεί το Θεώρημα IV (στο β μέρος του ίδιου βιβλίου):  Από τα ορθογώνια 

παραλληλεπίπεδα με τετράγωνη βάση που είναι εγγεγραμμένα σε μια σφαίρα, εκείνο που έχει 

τον μέγιστο όγκο είναι ο κύβος. 

Αξιοποιώντας την παρατήρηση που συνοδεύει το σχήμα 5, μπορούμε να συμπεράνουμε ότι ο 

εγγεγραμμένος σε μια σφαίρα κύλινδρος μέγιστου όγκου είναι εκείνος στον οποίο εγγράφεται 

κύβος. Σε έναν τέτοιο κύλινδρο ο λόγος διαμέτρου βάσης προς το ύψος ισούται με  √2. Αυτό 

αποτελεί το Θεώρημα V (στο ίδιο βιβλίο).  

Μια λιγότερο δυσχερής προσέγγιση θα μπορούσε να είναι ως εξής: Ο όγκος της δοκού 𝑉𝛿 =

𝑎2𝜐 =
(2𝜌)2

2
𝜐 =

(2𝑅)2−𝜐2

2
𝜐, (σχήμα 5), με την ακτίνα R της σφαίρας σταθερή και υ<2R, να 

μελετηθεί ως προς τα ακρότατα. Με διαδικασία παραγώγου βρίσκουμε τελικά υ=α, που δηλώνει  

 



 

 

 

ότι η δοκός είναι κύβος. Αλλά δεν είχε εδραιωθεί ακόμη ένας ενιαίος τρόπος αντιμετώπισης 

τέτοιων προβλημάτων. 

Οι βαρελοποιοί, γράφει ο Kepler, λες και καθοδηγούνται από τη κοινή και τη γεωμετρική λογική 

και κατασκευάζουν τα βαρέλια ώστε το ύψος τους να είναι τριπλάσιο της ακτίνας βάσης 

(
𝜐

𝛿
=

1

√2
⟹

2𝜐

2𝜌
=

2

√2
⟹

2𝜐

𝜌
=

4

√2
≅ 3). Έτσι ο νοητά εγγεγραμμένος κύλινδρος αποτελείται από 

δυο μισά, που το καθένα ικανοποιεί τις συνθήκες του προβλήματος. Μικρές παρεκκλίσεις δεν 

ενοχλούν γιατί:  

«κοντά σε ένα μέγιστο, οι μειώσεις εκατέρωθέν του είναι ανεπαίσθητες»! 

 

Η ΒΡΑΧΥΣΤΟΧΡΟΝΗ  

Η διατύπωση προβλήματος  

Το 1696 στο επιστημονικό περιοδικό Acta Eruditorum ο Johann Bernoulli έθεσε ένα νέο 

πρόβλημα μαθηματικών:  

Σε κατακόρυφο επίπεδο δίνονται δύο σημεία Α και Β. Να βρεθεί η καμπύλη που θα διαγράψει 

ένα σημείο Μ που κινείται, υπό την επίδραση του βάρους του μόνο, στη διαδρομή ΑΜΒ έτσι, 

ώστε, ξεκινώντας από το Α, να φτάσει στο Β στον ελάχιστο χρόνο.  

Σπουδαίοι μαθηματικοί ασχολήθηκαν με το πρόβλημα και κατέληξαν στο ίδιο συμπέρασμα: Η 

βραχυστόχρονη είναι η κυκλοειδής καμπύλη. 

Δηλαδή η τροχιά που διαγράφει κάποιο συγκεκριμένο σημείο ενός κύκλου όταν αυτός κυλίεται, 

χωρίς να ολισθαίνει, πάνω σε μια ευθεία γραμμή. 

Αφού ο κύκλος κυλίσει κατά γωνία α = ΒΚΗ̂ rad, το σημείο Β θα βρεθεί στη νέα του θέση Β1, 

ενώ το κέντρο Κ θα μετακινηθεί όσο είναι το μήκος του τόξου ΒΗ, δηλαδή  κατά Rα. Οπότε: 

ΒΗ1 = ΚK1 = Rα και θα έχουμε κύκλο με κέντρο Κ(Rα, R), επομένως η εξίσωσή του είναι:  

(𝐱 − 𝐑𝛂)𝟐 + (𝐲 − 𝐑)𝟐 = 𝐑𝟐 

 

  



 

 

 

 

 

 

 

 

 

 

Σχήμα 8: Η τροχιά του σημείου Β καθώς ο κύκλος κυλίεται 

 

Από το σχήμα προκύπτουν: 

ΔΗ1 = ΑΚ1 = Rσυν (α −
π

2
) = Rημα και ΑΒ1 = Rημ (α −

π

2
) = −Rσυνα 

Για τις συντεταγμένες λοιπόν του Β1 βρίσκουμε: 

Τετμημένη του 𝚩𝟏:  𝑥𝐵1
= ΒΔ = ΒΗ1 − ΔΗ1 = 𝐑𝛂 − 𝐑𝛈𝛍𝛂         (1) 

Τεταγμένη του 𝚩𝟏: 𝑦𝐵1
= ΔΒ1 = ΔΑ + ΑΒ1 = 𝐑 − 𝐑𝛔𝛖𝛎𝛂           (2) 

 

Πώς όμως έφτασαν σ’ αυτό το συμπέρασμα;  

Θα παρακολουθήσουμε τον συλλογισμό του Bernoulli που τον οδήγησε στη λύση. Σύμφωνα με 

τον Νόμο του Γαλιλαίου, όταν σώμα κινείται χωρίς τριβές υπό την επίδραση του βάρους του, η 

ταχύτητα v σε σημείο (x, f(x)) δεν εξαρτάται από τη μορφή της καμπύλης που συνδέει το Α με 

το (x, f(x))  αλλά αποκλειστικά μόνο από την τεταγμένη f(x). Συγκεκριμένα, αναφέρει ο 

Bernoulli, οι ταχύτητες βαρέων σωμάτων που εκτελούν πτώση είναι ανάλογες προς τις 

τετραγωνικές ρίζες των διανυόμενων υψών. Πράγματι: Στο (x, f(x)) είναι:  

𝛫𝜄𝜈𝜂𝜏𝜄𝜅ή 𝛦𝜈έ𝜌𝛾𝜀𝜄𝛼 =
1

2
. 𝑚𝑣2 = 𝑚𝑔𝑓(𝑥) = 𝛿𝜄𝛼𝜑𝜊𝜌ά 𝜏𝜔𝜈 𝛥𝜐𝜈𝛼𝜇𝜄𝜅ώ𝜈 𝛦𝜈𝜀𝜌𝛾𝜀𝜄ώ𝜈. Άρα 𝐯 =

√𝟐𝐠𝐟(𝐱). Με Α(0,0) και Β(α, β), διαιρούμε το  [0, β] σε n ίσα μέρη.  

Έστω τα σημεία (xi,  yi = f(xi)). Έτσι παίρνουμε μια τεθλασμένη L. Από σημείο σε σημείο 

μπορούμε να θεωρήσουμε τη ταχύτητα σταθερή και τον αντίστοιχο χρόνο: 𝚫𝐭 =
𝚫𝐬

𝐯
. Έτσι, το  

 



 

 

 

αρχικό πρόβλημα ισοδυναμεί με την ελαχιστοποίηση του συνολικού χρόνου της κίνησης: 

Τn =
√y1

2 + x1
2

√2gy1

+
√(y2 − y1)2 + (x2 − x1)2

√2gy2

+ ⋯ +
√(yn − yn−1)2 + (xn − xn−1)2

√2gyn

 

Αλλαγή πλαισίου ή, αλλιώς, πώς ο Bernoulli οδηγήθηκε στη λύση εφαρμόζοντας την 

οπτικομηχανική αναλογία, όπως αυτή αναφέρεται στη βιβλιογραφία: Αν υποθέσουμε ότι αυτό 

που έχουμε μπροστά μας είναι ένα ανομοιογενές οπτικό μέσο που αποτελείται από n ομογενή 

στρώματα, επειδή ξέρουμε ότι, σύμφωνα με την 

 

Κάθε ομογενές μέσο S στο οποίο 

μπορεί να μεταδοθεί το φώς, 

χαρακτηρίζεται 

απο τον δείκτη 

διάθλασης n: 

n =
c

v
=

ταχ.φωτός  στο κενό

ταχ.φωτός στο μέσο
 

Νόμος του Snell 

ημθ1

ημθ2
=

n2

n1
=

v1

v2
    

αρχή Fermat, το φως προτιμά τον οπτικά συντομότερο δρόμο, το προηγούμενο πρόβλημα 

μετασχηματίζεται στο: Πόσος χρόνος θα απαιτηθεί για τη διάδοση του φωτός αν το 

εξαναγκάσουμε να κινηθεί κατά μήκος της τεθλασμένης L; 

Αν 𝛼𝜄 η γωνία πρόσπτωσης στο i − στό στρώμα, με εφαρμογή του νόμου του Snell, προκύπτει: 

ημα1

√2gy1
=

ημα2

√2gy2
= ⋯ =

ημαn

√2gyn
= σταθερά (σ) 

Αν επιτρέψουμε στα στρώματα να γίνονται διαρκώς λεπτότερα, τότε οριακά ισχύει: 
𝛈𝛍𝛂(𝐱)

√𝟐𝐠𝐟(𝐱)
= 𝛔,

𝐱 ∈ (𝟎, 𝛂) ΄(*), όπου, τότε, α(x) είναι προφανώς η γωνία του άξονα y με την εφαπτομένη της f 

στο (x, f(x)). Άρα f ′(x) = σφα(x) ⇒ ημα(x) =  
1

√1+(f′(x))
2
. Αντικαθιστώντας στην (*) και για  

 

 



 

 

 

y=f(x), βρίσκουμε 𝑦′ = √
𝑐−𝑦

𝑦
, η οποία εξίσωση, όπως διαπιστώνεται εύκολα, λύνεται από τις 

παραμετρικές εξισώσεις (1) και (2). Δηλαδή τις εξισώσεις της κυκλοειδούς. Άρα η βραχυστόχρονη 

είναι η κυκλοειδής, όπως αυτό επαληθεύουμε και πειραματικά. 

 

ΕΠΙΛΟΓΟΣ - ΣΥΜΠΕΡΑΣΜΑΤΑ 

•  Κοινό χαρακτηριστικό στα έργα που μελετήσαμε είναι η διαίρεση μιας γεωμετρικής ποσότητας 

σε όλο και λεπτότερα ομοειδή τμήματα. Η διαδικασία αυτή εμπεριέχει την έννοια της 

απειροελάχιστης διαφοράς που είναι θεμελιακή στον λογισμό μεταβολών, όπου η γεωμετρική 

ποσότητα που μεταβάλλεται έχει μετατραπεί σε συνάρτηση. 

•  Επίσης, προκύπτουν σχέσεις που αντιστοιχούν σε νόμους της φυσικής (νόμος ισορροπίας, 

νόμος διάθλασης κ.λπ.). Αυτό επιτρέπει τον μετασχηματισμό των αρχικών προβλημάτων σε 

ισοδύναμα με σκοπό την επίλυση μέσα από την εποπτεία. 

•  Ο Αρχιμήδης επινόησε μια ισχυρή αποδεικτική μέθοδο συνδυάζοντας την σε άτοπο απαγωγή 

με το λήμμα: «είναι δυνατόν να βρίσκεται ένα πολλαπλάσιο της διαφοράς δυο δοθέντων 

άνισων μεγεθών, το οποίο να είναι μεγαλύτερο οποιασδήποτε δοθείσης 

επιφάνειας..»,.(ΑΡΧΙΜΗΔΟΥΣ ΤΕΤΡΑΓΩΝΙΣΜΟΣ ΠΑΡΑΒΟΛΗΣ, επιστολή προς Δοσίθεον 

(ΑΘΗΝΑ 1946, Ε.Σ.ΣΤΑΜΑΤΗ), Η διαδικασία αυτή σήμερα γίνεται και με υπολογισμό ορίου. 

•  Την εποχή του Αρχιμήδη, εφαπτομένη καμπύλης είναι η ευθεία που όλα της τα σημεία, εκτός 

από το κοινό, είναι «έξω» από τη καμπύλη και έχει ορισμένες γεωμετρικές ιδιότητες που 

πηγάζουν από τον ορισμό και το είδος της καμπύλης.  

•  Την εποχή του Bernoulli η καμπύλη Y=f(x) βρίσκεται πλέον σε ένα σύστημα αξόνων. Η 

εφαπτομένη είναι η ευθεία που διέρχεται από ένα σημείο (x0, y0) και η κλίση της στο σημείο 

αυτό είναι ο ρυθμός μεταβολής του Y ως προς X, όταν X= x0 

•  Μέχρι και τον Bernoulli η έννοια του ορίου είναι ακαθόριστη, παρ’ ότι σε αυτόν βλέπουμε τη 

χρήση διαφορικών εξισώσεων. 
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