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ΠΕΡΙΛΗΨΗ 

Το πρόβλημα του «Περιοδεύοντος Πωλητή» (Travelling Salesman Problem,TSP) είναι ένα από τα 

σημαντικότερα αλγοριθμικά προβλήματα. Οι υπάρχοντες αλγόριθμοι έχουν κακή 

πολυπλοκότητα, μπορούν δηλαδή να λύσουν το TSP σε αποδεκτό χρόνο μόνο για μικρό αριθμό 

πόλεων. Λόγω της δυσκολίας του TSP, έχουν προταθεί προσεγγιστικοί αλγόριθμοι που είναι πιο 

αποτελεσματικοί από τους υπάρχοντες ακριβείς αλγορίθμους, αλλά των οποίων οι λύσεις δεν 

είναι υποχρεωτικά βέλτιστες. Ο πιο γνωστός προσεγγιστικός αλγόριθμος για το TSP είναι ο 

αλγόριθμος του Χριστοφίδη. Ο σκοπός της παρούσης εργασίας  είναι η πειραματική μελέτη του 

αλγορίθμου του Χριστοφίδη σε σχέση με έναν ακριβή αλγόριθμο και εν συνεχεία η διερεύνηση 

της δυνατότητας βελτίωσης της προσέγγισης που επιτυγχάνεται. Υλοποιούμε έναν αλγόριθμο 

που επιστρέφει τη βέλτιστη λύση στο TSP και έχει εκθετική πολυπλοκότητα, καθώς και τον 



 

 

αλγόριθμο του 

Χριστοφίδη, ο οποίος έχει πολύ καλύτερη πολυπλοκότητα αλλά επιστρέφει μια προσεγγιστική 

λύση. Θεωρούμε διαφορετικές τοποθετήσεις πόλεων στο επίπεδο, και  

 

εξετάζουμε την προσέγγιση που επιτυγχάνει ο αλγόριθμος του Χριστοφίδη σε σχέση με τη 

βέλτιστη. Προτείνουμε μια επέκταση στον αλγόριθμο του Χριστοφίδη την οποία εξετάζουμε 

πειραματικά και δείχνουμε ότι οι προσεγγιστικές λύσεις που επιστρέφει είναι κατά μέσο όρο 

καλύτερες από τον πρωτότυπο αλγόριθμο. Αυτή η επέκταση θα μπορούσε  να χρησιμοποιηθεί 

στις περιπτώσεις εκείνες που είναι αναγκαίο να εξασφαλίσουμε μια καλύτερη  προσεγγιστική 

λύση από αυτή που επιτυγχάνει ο αλγόριθμος του Χριστοφίδη.  

 

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ 

Πρόβλημα περιοδεύοντος πωλητή, αλγόριθμος του Χριστοφίδη. 

 

  



 

 

 

 

ΕΙΣΑΓΩΓH 

Το πρόβλημα του «Περιοδεύοντος Πωλητή» (Travelling Salesman Problem, TSP) είναι ένα από 

τα σημαντικότερα αλγοριθμικά και μαθηματικά προβλήματα. Μια διαισθητική διατύπωση του 

προβλήματος είναι η ακόλουθη: «δίνεται ένα σύνολο από πόλεις που συνδέονται όλες μεταξύ 

τους και είναι γνωστές οι μεταξύ τους αποστάσεις. Βρείτε τη συντομότερη κυκλική διαδρομή 

που περνάει μία φορά από κάθε πόλη». Παρά το γεγονός ότι το πρόβλημα έχει μια τόσο απλή 

διατύπωση, η αποτελεσματική επίλυσή του είναι, όπως θα δούμε και παρακάτω, εξαιρετικά 

δύσκολη. Η κατανόηση και περαιτέρω μελέτη του προβλήματος είναι σημαντική, διότι η 

αποτελεσματική επίλυση του TSP, πέρα από το καθαρά μαθηματικό ενδιαφέρον, έχει και 

σημαντικές εφαρμογές, όπως για παράδειγμα στο σχεδιασμό κυκλωμάτων, στη δρομολόγηση 

λεωφορείων, στη δρομολόγηση παράδοσης εμπορευμάτων, κλπ. Το πρόβλημα έχει μια μακρά 

ιστορία η οποία φαίνεται να ξεκινάει γύρω στο 1830, καταρχήν ως μαθηματικό πρόβλημα, μέσα από την 

έρευνα του Ιρλανδού μαθηματικού W. R. Hamilton. Η μαθηματική μορφή του προβλήματος εντάσσεται 

στην ερευνητική περιοχή της «Θεωρίας Γραφημάτων». Η υπολογιστική μορφή του  TSP άρχισε να 

μελετάται γύρω στο 1930 από τον Αυστριακό μαθηματικό K. Menger, ο οποίος διατύπωσε τη 

σύγχρονη εκδοχή του προβλήματος (που αναφέραμε στην πρώτη παράγραφο) και διαπίστωσε 

την υπολογιστική δυσκολία στην  επίλυσή του. Πιο συγκεκριμένα, ο K. Menger διαπίστωσε ότι 

δεν υπάρχει προφανής τρόπος να λύσεις το πρόβλημα χωρίς να εξετάσεις όλες τις πιθανές 

κυκλικές διαδρομές που περιλαμβάνουν όλες τις πόλεις. Οι διαδρομές αυτές είναι πάρα πολλές 

ακόμη και αν ο αριθμός των πόλεων που εξετάζουμε είναι μικρός. Μια λεπτομερής περιγραφή 

της αρχικής ιστορίας  του προβλήματος δίνεται στην αναφορά (Schrijver, 2004). 

Στις μέρες μας, το πρόβλημα του «Περιοδεύοντος Πωλητή» αποτελεί κυρίως αντικείμενο της 

Θεωρίας Αλγορίθμων, ενός κλάδου της Πληροφορικής που μελετά την υπολογιστική επίλυση 

προβλημάτων. Δυστυχώς, οι υπάρχοντες αλγόριθμοι για την επίλυση του προβλήματος έχουν 



 

 

εκθετική χρονική 

πολυπλοκότητα, δηλαδή ο χρόνος εκτέλεσης τους ως συνάρτηση του αριθμού των πόλεων, 

αυξάνει εκθετικά. Διαισθητικά, αυτό σημαίνει ότι ακόμη και για ένα σχετικά μικρό  

αριθμό πόλεων, οι καλύτεροι υπάρχοντες αλγόριθμοι, ακόμη και αν εκτελεστούν στους πιο 

σύγχρονους σημερινούς υπολογιστές, μπορεί να χρειαστούν μήνες ή και χρόνια για να 

επιλύσουν το πρόβλημα. Μια καταγραφή της προόδου που έχει γίνει ως προς την επίλυση του 

προβλήματος, δίνεται στην αναφορά (WATERLOO, 2018).  

Λόγω της δυσκολίας του TSP, έχουν προταθεί προσεγγιστικοί αλγόριθμοι για την επίλυσή του, 

οι οποίοι είναι πιο αποτελεσματικοί από τους υπάρχοντες αλγορίθμους, αλλά των οποίων οι 

λύσεις δεν είναι υποχρεωτικά βέλτιστες. Ο πιο γνωστός προσεγγιστικός αλγορίθμος για το TSP 

είναι ο αλγόριθμος του Χριστοφίδη (Christofides’ Algorithm) ο οποίος προτάθηκε στο άρθρο  

(Christofides, 1976). 

Σκοπός της εργασίας αυτής  είναι να μελετήσουμε πειραματικά τον προσεγγιστικό αλγόριθμο 

του Χριστοφίδη. Πιο συγκεκριμένα, υλοποιούμε σε C++ έναν μη προσεγγιστικό αλγόριθμο που 

επιστρέφει τη βέλτιστη λύση στο TSP (και ο οποίος επομένως δεν έχει καλή πολυπλοκότητα), 

καθώς και τον αλγόριθμο του Χριστοφίδη, ο οποίος έχει πολύ καλύτερη πολυπλοκότητα αλλά 

επιστρέφει μια προσεγγιστική λύση. Θεωρούμε διαφορετικές τοποθετήσεις πόλεων στο 

επίπεδο, και εξετάζουμε σε ποιες από αυτές ο αλγόριθμος του Χριστοφίδη επιτυγχάνει την 

καλύτερη προσέγγιση και σε ποιες η προσέγγιση που δίνει δεν είναι ικανοποιητική (σε σχέση με  

τη βέλτιστη λύση που μας δίνει ο ακριβής αλγόριθμος). Προτείνουμε και υλοποιούμε μια 

επέκταση στον αλγόριθμο του Χριστοφίδη που εξασφαλίζει καλύτερη απόδοση σε πολλές 

περιπτώσεις που η προσέγγιση δεν είναι ικανοποιητική.  

 

ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΑΙ ΔΙΑΤΥΠΩΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ 

Στην ενότητα αυτή θα δώσουμε μερικούς εισαγωγικούς ορισμούς της Θεωρίας Γραφημάτων και 

θα περιγράψουμε το Πρόβλημα του Περιοδεύοντος Πωλητή. Περισσότερες πληροφορίες 



 

 

μπορεί να βρει κανείς σε 

βιβλία Θεωρίας Γραφημάτων και Αλγορίθμων (Cormen at al, 2009), (Sedgewick, 2002). 

Ένα γράφημα G αποτελείται από δύο σύνολα V και Ε και συμβολίζεται ως G=(V,E). Το σύνολο V 

είναι οι κορυφές του γραφήματος και το σύνολο Ε οι πλευρές (ή ακμές) του γραφήματος. Κάθε 

ακμή συνδέει δύο κορυφές ενός γραφήματος. Αν σε ένα γράφημα υπάρχουν ανάμεσα σε δύο 

κορυφές περισσότερες από μία ακμές, το γράφημα ονομάζεται πολυγράφημα και οι ακμές 

αυτές ονομάζονται παράλληλες. Ένα γράφημα που δεν έχει παράλληλες ακμές λέγεται απλό. 

Ένα γράφημα ονομάζεται γράφημα με βάρη αν κάθε ακμή του έχει έναν αριθμό ο οποίος 

εκφράζει το κόστος της ακμής. Ο βαθμός μιας κορυφής ενός γραφήματος είναι ο αριθμός των 

κορυφών με τις οποίες συνδέεται.  

Ένας περίπατος σε ένα γράφημα G=(V,E) είναι μια ακολουθία από κορυφές και πλευρές του G 

της μορφής 0 0 1 1 1 1, , , ,..., , ,n n nv e v e v e v− −  . Ένας κυκλικός περίπατος είναι ένας περίπατος στον 

οποίο η αρχική και η τελική κορυφή συμπίπτουν. Ένας κυκλικός περίπατος στον οποίο δεν 

υπάρχουν επαναλαμβανόμενες κορυφές εκτός από την αρχική και την τελική, ονομάζεται 

κύκλος. Ένας κύκλος που περιλαμβάνει όλες τις κορυφές ενός γραφήματος λέγεται κύκλος 

Hamilton. Ένας κυκλικός περίπατος Euler είναι ένας κυκλικός περίπατος στον οποίο 

εμφανίζονται όλες οι κορυφές και όλες οι ακμές του γραφήματος και στον οποίον δεν υπάρχουν   



 

 

αναλαμβανόμενες 

ακμές. Στο Σχήμα 1 απεικονίζεται ένα γράφημα που έχει και κύκλο Hamilton καθώς και κυκλικό 

περίπατο Euler. Πιο συγκεκριμένα, ένας κύκλος Hamilton που  

 

υπάρχει στο γράφημα αυτό είναι αυτός που προκύπτει αν ακολουθήσουμε διαδοχικά τις 

κορυφές 1-2-3-4-5-6-1. Ένας κυκλικός περίπατος Euler είναι αυτός που προκύπτει 

ακολουθώντας τις κορυφές 1-2-6-3-2-5-3-4-5-6-1.  

 

 

 

 

 

Σχήμα 1: Γράφημα με κύκλο Hamilton και κυκλικό περίπατο Euler. 

 

Ένα γράφημα που δεν περιέχει κύκλους και στο οποίο υπάρχει περίπατος από κάθε κορυφή σε 

κάθε άλλη, ονομάζεται δέντρο. Ένα συνδετικό δέντρο ενός γραφήματος G είναι ένα δέντρο που 

περιέχει όλες τις κορυφές του G. Αν το G είναι ένα γράφημα με βάρη, ένα ελάχιστο συνδετικό 

δέντρο του G είναι ένα συνδετικό δέντρο του G που έχει το ελάχιστο άθροισμα βαρών ανάμεσα 

σε όλα τα συνδετικά δέντρα του γραφήματος G. Ένα ταίριασμα σε ένα γράφημα G είναι ένα 

υποσύνολο των πλευρών του στο οποίο δεν υπάρχουν πλευρές που να έχουν κοινές κορυφές. 

Ένα τέλειο ταίριασμα είναι ένα ταίριασμα που περιλαμβάνει όλες τις κορυφές του γραφήματος. 

Αν το G είναι γράφημα με βάρη, ένα τέλειο ταίριασμα ελάχιστου βάρους είναι ένα τέλειο 

ταίριασμα στο οποίο το άθροισμα βαρών όλων των ακμών που συμμετέχουν είναι το ελάχιστο 

δυνατό.  

Έστω G ένα γράφημα με βάρη στο οποίο όλες οι κορυφές συνδέονται ανά δύο με πλευρές. Το 

Πρόβλημα του Περιοδεύοντος Πωλητή (Travelling Salesman Problem ή TSP) είναι το πρόβλημα 

της εύρεσης στο G ενός κύκλου Hamilton που έχει το ελάχιστο δυνατό άθροισμα βαρών. Όταν 

οι κορυφές του γραφήματος είναι σημεία στο επίπεδο και το βάρος σε κάθε ακμή είναι ίσο με 

την Ευκλείδεια απόσταση ανάμεσα στις δύο κορυφές της ακμής, τότε έχουμε το Ευκλείδειο 

Πρόβλημα του Περιοδεύοντος Πωλητή 



 

 

(Euclidean Travelling 

Salesman Problem ή ETSP). Είναι γνωστό ότι το TSP και το ETSP είναι NP-πλήρη προβλήματα 

(Cormen at al, 2009), το οποίο  

σημαίνει ότι αυτή τη στιγμή οι καλύτεροι γνωστοί αλγόριθμοι χρειάζονται εκθετικό χρόνο σε 

σχέση με τον αριθμό των κορυφών του γραφήματος για να υπολογίσουν τη λύση. Με άλλα 

λόγια, ακόμη και για πολύ μικρά γραφήματα, είναι πρακτικά αδύνατο να υπολογίσουμε τη λύση 

των προβλημάτων αυτών σε αποδεκτό χρόνο. Λόγω της δυσκολίας του TSP και του ETSP, έχουν 

προταθεί προσεγγιστικοί αλγόριθμοι για την επίλυσή τους, οι οποίοι είναι πολύ πιο γρήγοροι 

από τους υπάρχοντες εκθετικούς αλγορίθμους, αλλά των οποίων οι λύσεις δεν είναι 

υποχρεωτικά βέλτιστες. Ο πιο γνωστός  προσεγγιστικός αλγορίθμος για τα δύο παραπάνω 

προβλήματα είναι ο αλγόριθμος του Χριστοφίδη (Christofides, 1976). 

 

Ο ΠΡΟΣΕΓΓΙΣΤΙΚΟΣ ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ ΧΡΙΣΤΟΦΙΔΗ ΓΙΑ ΤΟ TSP 

Ο αλγόριθμος του Χριστοφίδη παίρνει ως είσοδο ένα γράφημα G=(V,E) στο οποίο όλες οι 

κορυφές συνδέονται μεταξύ τους με ακμές και κάθε ακμή έχει βάρος, και επιστρέφει ένα κύκλο 

Hamilton του G. Τα βήματα του αλγορίθμου περιγράφονται παρακάτω: 

1. Δημιούργησε ένα ελάχιστο συνδετικό δέντρο T του G. Έστω Ο το σύνολο των κορυφών 

του Τ που έχουν περιττό βαθμό. Μπορεί να αποδειχτεί ότι το σύνολο Ο περιέχει άρτιο 

αριθμό από κορυφές. 

2. Βρες ένα τέλειο ταίριασμα ελάχιστου βάρους Μ στο γράφημα που δημιουργείται από 

τις κορυφές του Ο και από τις πλευρές που τις συνδέουν στο γράφημα G. 

3. Συνδύασε τις πλευρές του Μ και του Τ έτσι ώστε να σχηματιστεί ένα πολυγράφημα Η στο 

οποίο κάθε κορυφή έχει άρτιο βαθμό. 

4. Σχημάτισε ένα κυκλικό περίπατο Euler P στο Η. Μπορεί να αποδειχτεί ότι το H θα περιέχει 

πάντα ένα τέτοιο κυκλικό περίπατο. 

5. Μετάτρεψε τον κυκλικό περίπατο P σε κύκλο Hamilton σβήνοντας τις 

επαναλαμβανόμενες κορυφές. 

 

 



 

 

 

 

 

Έστω το γράφημα G=(V,E) με 10 κορυφές που εμφανίζεται στο Σχήμα 2. Στο Σχήμα 3 δίνουμε 

ένα παράδειγμα εφαρμογής του αλγορίθμου του Χριστοφίδη. Υποθέτουμε ότι οι κορυφές του 

γραφήματος είναι σημεία στο Ευκλείδιο επίπεδο και τα βάρη των ακμών είναι οι Ευκλείδιες 

αποστάσεις τους. 

Σχήμα 2: Γράφημα 10 κορυφών. 

 

Στο πρώτο του βήμα, ο αλγόριθμος του Χριστοφίδη βρίσκει ένα ελάχιστο συνδετικό δέντρο Τ 

του γραφήματος G και κατόπιν εντοπίζει τις κορυφές με περιττό βαθμό στο Τ (κορυφές 1, 2, 6, 

7, 8 και 10 στο σχήμα). Στο δεύτερο βήμα βρίσκει ένα τέλειο ταίριασμα Μ ελάχιστου βάρους 

ανάμεσα στις κορυφές αυτές. Στο γράφημά μας, το ταίριασμα αυτό αποτελείται από τις πλευρές 

(1,2), (6,8) και (7,10). Στο τρίτο του βήμα ο αλγόριθμος συνδυάζει το δέντρο Τ μαζί με το 

ταίριασμα Μ και κατασκευάζει ένα πολυγράφημα H. Το πρώτο από τα παρακάτω σχήματα μας 

δείχνει το δέντρο Τ στο οποίο με έντονο χρώμα φαίνονται οι κορυφές περιττού βαθμού, και το 

δεύτερο σχήμα μας δείχνει το συνδυασμό του Τ με το ταίριασμα Μ (δηλαδή το πολυγράφημα 

Η). 

  



 

 

 

 

Σχήμα 3: Το ελάχιστο συνδετικό δέντρο Τ και το πολυγράφημα Η. 

 

Στο τέταρτο του βήμα ο αλγόριθμος βρίσκει ένα κυκλικό περίπατο Euler στο πολυγράφημα H. 

Ένας τέτοιος περίπατος είναι ο 2-3-4-7-10-7-6-9-8-6-5-1-2. Στο πέμπτο και τελευταίο του βήμα 

ο αλγόριθμος σβήνει τις επαναλαμβανόμενες κορυφές από τον περίπατο (όπου χρειάζεται 

μπορεί να προσθέσει πλευρές από το αρχικό  γράφημα). Με τον τρόπο αυτό παίρνουμε ένα 

κύκλο Hamilton. Ο κύκλος αυτός φαίνεται στο Σχήμα 4. 

 

 

 

 

 

 

 

 

Σχήμα 4: Ο τελικός κύκλος Hamilton που προκύπτει από τον αλγόριθμο. 

  



 

 

 

 

Έχει αποδειχτεί ότι ο κύκλος Hamilton που υπολογίζει ο αλγόριθμος του Χριστοφίδη έχει 

άθροισμα βαρών μικρότερο ή ίσο από τα 3/2 του βέλτιστου κύκλου Hamilton που υπάρχει στο 

γράφημα (Christofides, 1976). Για παράδειγμα, αν ο βέλτιστος κύκλος Hamilton στο G έχει 

άθροισμα βαρών ίσο με 1000, ο αλγόριθμος του Χριστοφίδη είναι εγγυημένο ότι θα βρει κύκλο 

Hamilton με άθροισμα βαρών μικρότερο ή ίσο του (3/2)*1000 = 1500. Με άλλα λόγια, ο 

αλγόριθμος του Χριστοφίδη εξασφαλίζει την εύρεση μιας λύσης στο πρόβλημα του 

περιοδεύοντος πωλητή, η οποία μπορεί να μην είναι βέλτιστη στη γενική περίπτωση, αλλά είναι 

αρκετά κοντά στη βέλτιστη λύση. Το πιο σημαντικό είναι ότι ο αλγόριθμος του Χριστοφίδη 

μπορεί να εκτελεστεί σε πολυωνυμικό αριθμό βημάτων, δηλαδή πολύ πιο αποτελεσματικά από 

όλους τους υπάρχοντες ακριβείς αλγορίθμους που επιχειρούν να υπολογίσουν τη βέλτιστη 

λύση.  

 

ΠΕΙΡΑΜΑΤΙΚΗ ΜΕΛΕΤΗ ΤΟΥ ΑΛΓΟΡΙΘΜΟΥ ΤΟΥ ΧΡΙΣΤΟΦΙΔΗ 

Στα πλαίσια της εργασίας αυτής υλοποιήσαμε τον αλγόριθμο του Χριστοφίδη για σημεία που 

βρίσκονται στο Ευκλείδειο επίπεδο, τον μελετήσαμε πειραματικά, και προτείνουμε μια 

επέκτασή του η οποία, με βάση τα πειραματικά μας δεδομένα, επιτυγχάνει στη γενική 

περίπτωση μια σαφώς καλύτερη προσέγγιση της βέλτιστης λύσης. Για να μπορέσουμε να 

ελέγξουμε την ποιότητα των λύσεων που μας δίνει ο αλγόριθμος του Χριστοφίδη καθώς και η 

επέκταση που προτείνουμε, υλοποίησαμε επίσης και ένα «εξαντλητικό» ακριβή αλγόριθμο ο 

οποίος έχει εκθετική πολυπλοκότητα αλλά επιστρέφει πάντα τη βέλτιστη λύση Οι υλοποιήσεις 

μας έγιναν στη γλώσσα C++ και όλος ο σχετικός κώδικας βρίσκεται στη σελίδα: 

https://github.com/rondojim/Travelling-Salesman-Problem. 

Για τους αλγορίθμους που υλοποιήσαμε, θεωρήσαμε σημεία στον διδιάστατο Ευκλείδιο χώρο, 

και πιο συγκεκριμένα στο διάστημα [0,3] x [0,3], δηλαδή μέσα στο τετράγωνο που ορίζεται από 

τα σημεία του επιπέδου με συντατεγμένες (0,0), (0,3), (3,3) και (3,0). Μέσα στο τετράγωνο αυτό  

  



 

 

 

επιλέξαμε 10 σημεία τα οποία είναι οι κορυφές του γραφήματος μας. Για το σκοπό της εργασίας 

αυτής, περιοριστήκαμε σε σημεία με συντεταγμένες που είναι φυσικοί αριθμοί. Δεδομένων δύο 

σημείων, το βάρος της πλευράς που τα ενώνει είναι η Ευκλείδια απόσταση των σημείων. 

Θεωρήσαμε όλες τις πιθανές διατάξεις των 10 σημείων μέσα στο τετράγωνο [0,3] x [0,3]. Μπορεί 

να αποδειχτεί ότι υπάρχουν συνολικά 8008 διαφορετικές τοποθετήσεις των σημείων μέσα στο 

τετραγωνο αυτό: το τετράγωνο έχει 16 σημεία με ακέραιες συντεταγμένες, και εμείς θέλουμε 

να πάρουμε 10 από αυτά. Οι τρόποι για να γίνει αυτό είναι οι συνδυασμοί 16 πραγμάτων ανά 

10 που είναι 16!/(10!*6!) = 8008. 

Για κάθε μία διαφορετική τοποθέτηση των 10 σημείων, υπολογίσαμε τον βέλτιστο κύκλο 

Hamilton χρησιμοποιώντας ένα «εξαντλητικό» εκθετικό αλγόριθμο ο οποίος βασίζεται σε 

δυναμικό προγραμματισμό (Cormen at al, 2009). Επίσης, για κάθε διαφορετική τοποθέτηση 

τρέξαμε και τον προσεγγιστικό αλγόριθμο του Χριστοφίδη. Έστω OptL  το βέλτιστο μήκος του 

κύκλου Hamilton για μια δεδομένη τοποθέτηση των σημείων, και έστω ChrL το μήκος του κύκλου 

Hamilton που υπολογίζει ο αλγόριθμος του Χριστοφίδη. Ο λόγος /Chr Optratio L L= μας δείχνει 

πόσο καλή προσέγγιση έχει επιτύχει ο αλγόριθμος του Χριστοφίδη για τη συγκεκριμένη 

τοποθέτηση. Ο λόγος αυτός είναι μεγαλύτερος ή ίσος του 1 και μικρότερος ή ίσος από 3/2. Αν ο 

λόγος είναι κοντά στο 1, σημαίνει ότι ο αλγόριθμος του Χριστοφίδη μας έδωσε μια καλή λύση, 

ενώ αν είναι κοντά στο 3/2 σημαίνει ότι ο αλγόριθμος έδωσε μια όχι και τόσο καλή προσέγγιση. 

Το  διάγραμμα στο Σχήμα 5 δείχνει με τη μορφή ιστογράμματος την κατανομή της μεταβλητής 

ratio , δηλαδή του λόγου προσέγγισης, για όλες τις 8008 διαφορετικές πιθανές τοποθετήσεις 

σημείων, δηλαδή τα 8008 γραφήματα που εξετάσαμε. 

 

  



 

 

 

 

 

 

 

 

 

 

 

Σχήμα 5: Κατανομή των λόγων προσέγγισης που επιτυγχάνει ο αλγόριθμος του Χριστοφίδη. 

 

Παρατηρούμε ότι ο αλγόριθμος του Χριστοφίδη έχει πολύ καλή συμπεριφορά για τα δεδομένα 

που εξετάσαμε. Για παράδειγμα, για περίπου 2000 διαφορετικές τοποθετήσεις (σε σύνολο 

8008), ο αλγόριθμος του Χριστοφίδη δίνει τη βέλτιστη λύση. Επίσης, η χειρότερη προσέγγιση 

που επιτυγχάνει ο αλγόριθμος του Χριστοφίδη για τα δεδομένα μας είναι 1.33, το οποίο είναι 

αρκετά μικρότερο από το θεωρητικό φράγμα του 1.50. Τα παραπάνω στατιστικά αποτελέσματα 

επιβεβαιώνουν ότι όντως ο αλγόριθμος του Χριστοφίδη δίνει μια πολύ καλή προσέγγιση στην 

πράξη. Το ερώτημα που μας απασχόλησε είναι αν μπορούμε να βελτιώσουμε ακόμη 

περισσότερο τη συμπεριφορά του αλγορίθμου. Το ερώτημα αυτό το εξετάζουμε ακολούθως. 

 

ΜΙΑ ΕΥΡΙΣΤΙΚΗ ΕΠΕΚΤΑΣΗ ΣΤΟΝ ΑΛΓΟΡΙΘΜΟ ΤΟΥ ΧΡΙΣΤΟΦΙΔΗ 

Παρατηρήσαμε ότι ένα βασικό βήμα στον αλγόριθμο του Χριστοφίδη είναι η εύρεση ενός 

ελάχιστου συνδετικού δέντρου του αρχικού μας γραφήματος G. Είναι όμως πιθανό σε ένα 

γράφημα να υπάρχουν πολλά ελάχιστα συνδετικά δέντρα. Ειδικά στις τοποθετήσεις που 

εξετάσαμε, η ύπαρξη πολλών ελάχιστων συνδετικών δέντρων είναι ο κανόνας και όχι η εξαίρεση. 

Για το λόγο αυτό, τροποποιήσαμε τον αλγόριθμο του Χριστοφίδη ως ακολούθως: 

1. Βρες ένα σύνολο από ελάχιστα συνδετικά δέντρα του γραφήματος G. 

2. Για κάθε ελάχιστο συνδετικό δέντρο, τρέξε τον αλγόριθμο του Χριστοφίδη. 

 



 

 

 

 

3. Επίστρεψε τον ελάχιστο κύκλο Hamilton που προκύπτει από όλα τα ελάχιστα συνδετικά 

δέντρα που εξέτασες. 

Στο διάγραμμα του Σχήματος 6 φαίνεται η συμπεριφορά του τροποποιημένου αλγορίθμου για 

τις ίδιες τοποθετήσεις όπως και στην προγούμενη ενότητα του άρθρου. Για τα παρακάτω 

αποτελέσματα, περιορίσαμε τον αριθμό των ελάχιστων συνδετικών δέντρων που εξετάζαμε σε 

κάθε βήμα του αλγορίθμου, σε 10. 

 

 

 

 

 

 

 

Σχήμα 6: Κατανομή των λόγων προσέγγισης που επιτυγχάνει η επέκτασή μας. 

 

Όπως φαίνεται από το παραπάνω διάγραμμα, σε περισσότερες από 4700 τοποθετήσεις (σε 

σύνολο 8008), ο τροποποιημένος αλγόριθμος δίνει το βέλτιστο κύκλο Hamilton. Επιπλέον, η 

χειρότερη προσέγγιση που επιτυγχάνει ο τροποποιημένος αλγόριθμος του Χριστοφίδη για τα 

δεδομένα μας είναι 1.24, το οποίο είναι πολύ μικρότερο από το θεωρητικό φράγμα του 1.50 και 

αρκετά μικρότερο από το πειραματικό αποτέλεσμα του 1.33 που βρήκαμε στην προηγούμενη 

ενότητα του άρθρου.  

Στο Σχήμα 7 φαίνεται ο αριθμός των τοποθετήσεων για τις οποίες ο τροποποιημένος αλγόριθμος 

δίνει το βέλτιστο κύκλο Hamilton, σαν συνάρτηση του k. Παρατηρούμε ότι όσο το k αυξάνει, 

τόσο ο αλγόριθμος μας επιτυγχάνει να επιστρέψει για περισσότερες τοποθετήσεις το βέλτιστο 

κύκλο Hamilton. 

  



 

 

 

 

 

 

 

 

 

 

 

Σχήμα 7: Τοποθετήσεις για τις οποίες ο αλγόριθμος μας επιτυγχάνει βέλτιστο κύκλο Hamilton. 

 

Συμπερασματικά, η ευριστική επέκταση την οποία προτείνουμε παραπάνω, έχει το πλεονέκτημα 

ότι δίνει, στη γενική περίπτωση, ένα καλύτερο λόγο προσέγγισης από τον αρχικό αλγόριθμο του 

Χριστοφίδη. Για να το επιτύχει αυτό, εκτελεί τον αρχικό αλγόριθμο για έναν αριθμό από 

ελάχιστα συνδετικά δέντρα ενός γραφήματος, και στο τέλος επιλέγει το καλύτερο αποτέλεσμα. 

Κατά συνέπεια, ο χρόνος εκτέλεσης της προτεινόμενης τεχνικής είναι ανάλογος του αριθμού των 

ελάχιστων συνδετικών δέντρων που εξετάζουμε. Για παράδειγμα, στα πειράματα που 

παρουσιάσαμε στο Σχήμα 6, επιτυγχάνουμε πολύ καλύτερους λόγους προσέγγισης αλλά ο 

αλγόριθμος μας εκτελείται σε περίπου δεκαπλάσιο χρόνο σε σχέση με τον αρχικό αλγόριθμο 

του Χριστοφίδη (γιατί για κάθε γράφημα εξετάζουμε δέκα ελάχιστα συνδετικά δέντρα).  

 

ΜΕΛΛΟΝΤΙΚΗ ΕΡΕΥΝΑ 

Στα πειράματα τα οποία παρουσιάσαμε στις προηγούμενες παραγράφους, εξετάσαμε 

γραφήματα τα οποία αποτελούνταν από 10 κορυφές. Ο λόγος που επιλέξαμε ένα σχετικά μικρό 

αριθμό κορυφών ήταν γιατί θέλαμε να εξετάσουμε την αποτελεσματικότητα του αλγορίθμου 

του Χριστοφίδη και της επέκτασης που προτείναμε σε όλα τα πιθανά γραφήματα 10 κορυφών 

που βρίσκονται στο διάστημα [0,3] x [0,3]. Αν διαλέγαμε ένα μεγαλύτερο αριθμό κορυφών και 

ένα μεγαλύτερο διάστημα, τότε ο συνολικός χρόνος που θα χρειαζόμασταν για να  

  



 

 

 

διερευνήσουμε όλα τα πιθανά γραφήματα, θα ήταν πολύ μεγαλύτερος. Επίσης, ο χρόνος 

εκτέλεσης του «εξαντλητικού» εκθετικού αλγορίθμου για μεγαλύτερα γραφήματα, αυξάνει 

πολύ γρήγορα. Για τους παραπάνω λόγους δεν μελετήσαμε στην εργασία αυτή γραφήματα με 

περισσότερες κορυφές. Στο μέλλον σκοπεύουμε πάντως να εφαρμόσουμε την προτεινόμενη 

τεχνική σε μεγαλύτερα γραφήματα, και να εξετάσουμε τις βελτιώσεις που προσφέρει.  

Είναι ενδιαφέρον επίσης να επεκτείνουμε την τεχνική που προτείναμε σε σημεία με μη ακέραιες 

συντεταγμένες τα οποία επιλέγονται με τυχαίο τρόπο στο επίπεδο. Στην περίπτωση αυτή, η 

πιθανότητα να βρεθούν πολλά ελάχιστα συνδετικά δέντρα μοιάζει να είναι μικρότερη από την 

περίπτωση που εξετάσαμε. Θα μπορούσαμε όμως να εξετάζουμε το σύνολο των k μικρότερων 

συνδετικών δέντρων του γραφήματος, όπου k μια σταθερά, όπως για παράδειγμα ο αλγόριθμος 

του Eppstein (Eppstein, 1992). Επίσης, θα ήταν ενδιαφέρον να μελετήσουμε τις συνέπειες που 

έχει η επιλογή διαφορετικών ελάχιστων τέλειων ταιριασμάτων στην κατασκευή του κύκλου 

Hamilton. 
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