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Abstract

Our work explores the possibilities of using cellular automata to simulate the predator-prey
interaction. A cellular automaton is a discrete model that allows it to be used for various
computational purposes. In recent years, we have observed how important it is to know the
behaviour of various biological and ecological systems. Knowledge of the behaviour and
evolution of different biological and ecological systems will allow us to adapt more quickly to
different possible scenarios. Our work aims to simulate the behaviour of a predator-prey system
using cellular automata and get realistic data from the simulation.
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Predator—prey system

Let’s look at the populations of two species interacting with each other — one as a predator and
the other as prey. Our goal is to describe how the sizes of these populations change over time.
One way to do this is to use the Lotka—Volterra model. A pair of differential equations describe
this model. Their solutions are the sizes of the populations as functions of time. This model is
described in detail and simulated in our previous article (Kunis & Dimitrov, 2020).

In this article, we will take a different approach: we will simulate the predator-prey interactions
with cellular automata.

Cellular automata

A cellular automaton is a model which consists of a rectangular grid of cells where each cell can
have a finite number of states, for example — alive or dead (Shiffman, 2012). For each cell, a
neighbourhood is defined. This can be done in many ways, but usually, the cell’s neighbours are
its adjacent cells.

In the beginning (at time t = 0), each cell is assigned an initial state (usually at random). All the
cells and their states at a particular time t are called the generation at time t. The next
generation (i.e., the one at time t = 1) is created by following a specific set of rules. These rules



determine the new state of each cell according to its current state and the states of its
neighbour cells.

By repeating this process, we can examine how the characteristics of the generations change
over time. For instance, we can trace the number of cells in a particular state or their position.
Let’s now define the cellular automaton we will use to simulate the predator-prey interactions.
First, let the dimensions of our grid be 100 by 100, as this will result in reasonable population
size of 10 000. From a statistical point of view, that is big enough as it provides a good number
of different configurations. This number is also small enough to suit our practical needs.
Second, let the cells have three possible states: predator (for example, a fox), prey (for example,
a rabbit), and an empty cell (the environment). We will use the following colours to visualize
these states: red for the predator (fox), green for the prey (rabbit), and white for the empty cell.
Third, we need to define what a neighbourhood is. There are several ways to do this; for
example, the two most frequently used are the Moore and the von Neumann neighbourhood
(Chen, 2009). For our purposes, the Moore model will be better since the eight cells closest to a
particular cell will have the most significant impact on it. Note that unlike the cells in the grid's
interior, those on the edges have less than eight neighbours.

Finally, we must choose the rules of our model. This is the most challenging part, and there is no
right or wrong way of doing it. We may consider which interactions are biologically logical and
experiment to see which rules will result in a realistic simulation outcome.

Cellular automaton representation of the predator—prey system

Let’s consider the following set of rules for our model.

1. Let there be a fox in a certain cell at time ¢ (i.e., the cell is red).

We will consider hunger as the leading cause of death among the foxes. We assume that there
is enough food for the foxes in a fox’s neighbourhood if there is at least one rabbit. We will
ignore other factors such as age, illness, or competition for a territory to keep our model as
simple as possible.

Following this description, we derive these rules:

Attimet + 1:

1.1) the fox will survive if there are at least as many rabbits as foxes in its neighbourhood (i.e.,
the cell will remain red)

1.2) the fox will die of hunger if there are fewer rabbits than foxes in its neighbourhood (i.e., the
cell will turn white).

2. Let there be a rabbit in a certain cell at time ¢ (i.e., the cell is green).

We will consider the fox—rabbit interactions as the main cause of death among the rabbits and
assume that there is always enough food (grass) for the rabbits. We ignore other factors such as
health and terrain to keep our model as simple as possible.

Now, let us look at the fox—rabbit interactions. If there are no foxes in the rabbit’s
neighbourhood, the rabbit will survive. However, if there is at least one fox, there is a
probability that the rabbit will die because the fox will eat it. Otherwise, it will manage to
escape and survive.



We will assume that being full is the only necessary condition for the fox to reproduce.
Therefore, if the fox manages to eat the rabbit, a new fox will be born in the cell where the
rabbit was.

Also, we will consider that four rabbits in the rabbit’s neighbourhood are too many. Therefore,
the rabbit will die. This rule is introduced so that the population of rabbits can be limited. It is
unrealistic that a population can increase unlimitedly.

This description translates to the following rules:

Attimet + 1:

2.1) if there are more than or equal to four rabbits in the rabbit’s neighbourhood, the rabbit will
die (i.e., the cell will turn white)

2.2) if there are no foxes in the rabbit’s neighbourhood, it will survive (i.e., the cell will remain
green)

2.3) if there is at least one fox in the rabbit’s neighbourhood, there is a probability p that the
rabbit will be eaten by a fox and a new fox will be born in its place (i.e., the cell will turn red)
2.4) there is a probability 1 — p that the rabbit will escape and survive (i.e., the cell will remain
green).

During the simulation of the model, we will consider different values for p.

3. Let a certain cell be empty at time t (i.e., the cell is white).

We consider the following set of rules:

Attimet + 1:

3.1) a rabbit will be born if there are more rabbits than foxes in the cell’s neighbourhood (the
cell will turn green)

3.2) a fox will be born if there are more foxes than rabbits in the cell’s neighbourhood and if
there is at least one rabbit (the cell will turn red)

3.3) the cell will remain empty if there are just as many rabbits as foxes or if there are no rabbits
(the cell will remain white).

Simulation of the predator—prey system

We will simulate the predator-prey system using a program that implements cellular automata.
The program will track the sizes of the two populations over time and display the system's state
at regular intervals.

The program code is written in the programming language Java, and it’s shown in the pictures
below (Figure 1 and Figure 2).



24 // Rules for prey
85 else if (grid[i][j] == 1) {

56 [/ Start simulation :'_j int Rand = rand.nextInt(100);
57 for (int gen = 1; gen <= genCount; gen++) { W i
58 int [J[] nextGrid = new int[n][n]; 89 LF(D:IZ;T::?:??;E;{'B;?
59 ' 7
60 // Calculate next generation L:T 11"{
61 for (int 1 43 ‘_aj 1« "‘; ‘H"")_{ 92 if(predatorlleighbours > 0 && Rand ¢ 100){
b for (int j = 0; j < n; j++) { 93 nextGrid[1][3] = 2;
63 c
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64 int preylleighbours = countFPreylleighbours(i,i); ot ¥ preSitoroTaRILoNn 1S
65 int predatorileighbours = countPredatorfleighbours(i,j); .. wlset
66 . 97 nextGrid[i][j] = 1;
67 // Rules for empty cell g8 preyStats[gen]++;
62 if (grid[i][i] == @) { 99 }
69 100 }
70 if (preylleighbours > @) { 101
71 if (predatorlleighbours > preylleighbours) { 102
72 nextGrid[i][j] = 2; 103 // Rules for predator
73 predatoritats[gen]++; 104 else if (grid[il[§] == 2) {
74 } 108
75 else if (preylleighbours > predatorlleighbours) { 106 if(preylleighbours ¢ predatorleighbours + 1){
76 nextorid[i][j] = 1; 107 nextorid[i][j] = 0;
77 preystats[gen]++; 108 }
78 } 109 else{
79 } 110 nextorid[i][j] = 2;
20 else { 111 predatorStats[gen]++;
81 nextorid[i][j] = 0; 112 }
82 } 113
23 } 114 )

Figure 1. Rules for empty cells. Figure 2. Rules for prey and predator.

We obtain the following results shown in Figure 3 using p = 80%.
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Figure 3. The states of the predator—prey system displayed at times t = 0, 20,40, 60,80, 100
where p = 80%.



At time t = 20, the foxes have reproduced themselves and occupy the regions close to the
initial location of the foxes, and the rabbits occupy all the other regions. At time t = 40, we
observe a uniform diffuse distribution over the whole grid of the rabbits’ and the foxes’
populations. The exact location of the animals varies, but the type of distribution remains the
same over time — the system reaches a stable state.

Note that even though the sizes of the two populations change over time, that is not evident in
the pictures. That is because the difference between the maximum and the minimum size of the
populations is just 2% of the number of cells in the grid. The change is too small to be viewed
with a naked eye.

Next, we investigate the system when varying the parameter p.

1. Case:p = 0%

The results from the simulation when p = 0% are shown in Figure 4.
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Figure 4. The states of the predator—prey system displayed at times t = 0,20,100, 150 where
p = 0%.

When p = 0%, the foxes cannot reproduce by Rule 2.3 and in the general case, there aren’t
enough foxes close to each other in the beginning (initially, they are distributed randomly), so



Rule 3.2 also doesn’t apply. In this case, the foxes’ population decreases over time until it
disappears.

By time t = 20, about half of the initial foxes have died. There are only four foxes at time t =
100. And attime t = 150, there are no foxes left.

There is usually enough food for the foxes, so they survive by Rule 1.1. However, as the location
of the rabbits varies, there is a probability that at some time, all the neighbours of a certain fox
will be empty cells (for example, the fox in the bottom right corner at time t = 100). In this
case, the fox dies (Rule 1.2).

After time t = 150, the system reaches a stable state where rabbits are distributed over the
whole grid, and the change in their position is determined by Rule 2.1 and Rule 3.1.

2.Case:p =10%
The results from the simulation when p = 10% are shown in Figure 5.

- % el P - »

d) t = 150

Figure 5. The states of the predator—prey system displayed at times t = 0,20,100, 150 where
p = 10%.

When p = 10%, the foxes can reproduce by both Rule 2.3 and Rule 3.2. In this case, the foxes’
population increases over time until the foxes are distributed over the whole grid.



The foxes begin to reproduce themselves and form clusters of foxes around their initial
locations. By time t = 150, many of the groups have merged, and after enough time, they will
cover the whole grid, and the system will reach a stable state, where the rabbits and foxes
occupy the entire grid.

3.Case:p = 20%
The results from the simulation when p = 30% are shown in Figure 6.
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Figure 6. The states of the predator—prey system displayed at times t = 0,20,100, 150 where

p = 20%.

Increasing p by 10% the rate of expansion of the clusters increases and by t = 150 the system
has almost reached the stable state.

4. Case:p = 30%
The results from the simulation when p = 30% are shown in Figure 7.
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Figure 7. The states of the predator—prey system displayed at times t = 0,20,100, 150 where
p = 30%.

In this case, the system has almost reached the stable state by ¢ = 100.
We observe that as we increase p, the time the system reaches a stable position decreases.

5. Case: p = 90%; 95%; 97%; 99%; 99,9%; 99,99%

The results from the simulation when p = 90%; 95%; 97%; 99%; 99,9%;
99,99% are shown in Figure 8.
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Figure 8. The states of the predator—prey system for p = 90%; 95%; 97%; 99%; 99,9%;
99,99% displayed at t = 100.

When p = 90%, we observe the formation of spiral-like patterns that become more and more
visible as we increase p. The formation of such spirals in a host-parasite system is also observed
and further investigated in Spiral formation in cellular automata of predator-prey systems by
Menno Rubingh (Rubingh, 2001).

5. Case: p = 99,99%

The results from the simulation when p = 99,99% are shown in Figure 9.
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Figure 9. The states of the predator—prey system displayed at times t = 1000, 2500, 2700,
3000,3300,3500,4000 where p = 99,99%.

When p = 99,99%, the system tends to behave almost perfectly when forming spiral-like
patterns. However, that 0,01% probability induces randomness and makes the system
extremely sensitive to even minor fluctuations in its state.



At time t = 1000, we observe a spiral forming in the top left corner of the grid. This spiral
grows; by time t = 2500, it has almost covered the whole grid. However, due to the 0,01%
probability, at some time after that, Rule 2.4 is applied in the region of the spiral instead of Rule
2.3, which leads to turbulence in the stable state. At time t = 2700, the geometry of the spiral
is disturbed, and at time t = 3000, there is almost no such pattern.

Then, the system continues to strive to form spirals, and at time ¢ = 3300, there is a new spiral
starting in the top right quarter of the grid. However, this spiral is similarly disrupted, and at t =
3500, it is gone. Again, at time t = 4000, a new spiral is formed.

This cycle of formation and disruption of the spirals continues to infinity.

6. Case:p = 100%
The results from the simulation when p = 100% are shown in Figure 10.
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Figure 10. The states of the predator—prey system displayed at times t = 1000, 2500,2700,
3000,3300,3500 where p = 100%.

When p = 100%, Rule 2.4 is never applied instead of Rule 2.3, and the system’s behaviour
depends on fixed rules. Thus, the only induced randomness in the system is the initialization of
the stateatt = 0.



The spiral formed at time t = 1000 is never disrupted; by time t = 3500, it has covered the
whole grid. Then, the system enters a stable spiral state and remains in it over time.

Analysing this stable state, we observe the following pattern of outward motion of the spiral:
- the white line next to the green one becomes green in the following generation by Rule 3.1
- the green line becomes red in the following generation by Rule 2.3

- the red line next to the green one remains red in the following generation by Rule 1.1

- the second red line (if there is one) becomes white in the following generation by Rule 1.2.

Results

This program fills two files with data — Prey.dat and Predator.dat. Each one of them has two
columns — one with the values of t and one with the size of the population at this point. We use
the app Gnuplot to plot graphs that show the sizes of the two populations over time shown in
Figure 11. Note that because there is too much fluctuation in the sizes, at time t, we display the

mean value of the population size over the next five generations (t,t + 1,t + 2,t + 3,and t +
4).
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Figure 11. Graph of predator and prey populations over time.

Let us analyse the graph in Figure 11.

At time t = 450, there is a small number of foxes compared to the number of rabbits.
Consequently, a significant portion of the rabbits will survive (Rule 2.2), and many new rabbits
will be born (Rule 3.1), so we observe a nearly exponential growth of the rabbits’ population
over the next few generations. Because there is enough food for the foxes, almost all of them

will survive (Rule 1.1), and there will be enough newborn foxes (Rule 2.3), so the foxes’
population also grows exponentially.



At time t = 454, the rabbits’ population size peaks because it is limited by Rule 2.1. Also, the
population starts to decrease exponentially because of the large number of foxes (Rule 2.3).
Att = 455, the foxes’ population also peaks and starts to decrease exponentially because of
the insufficient number of rabbits (Rule 1.2).

At t = 460, the rabbits’ population hits a low and starts increasing again because of the small
number of foxes (Rule 2.2 and Rule 3.1). The foxes’ population continues to decrease because
the number of rabbits remains insufficient.

At t = 466, the foxes’ population reaches a low and starts to increase because of the recovery
of the rabbits’ population.

Then, the state of the predator-prey system returns to the one in the beginning (t = 450), and
the process begins again. We observe a repeating cycle of increasing and decreasing the two
populations.

Discussion

Cellular automata represent a very simplified model of the complex interactions between
species. However, they manage to reflect reality quite well. For example, Figure 12 shows data
from the Hudson's Bay Company about the sizes of the populations of hares and lynxes over the
period 1900-1920 (Mahaffy, 2010). Comparing the real-world data in Figure 12 with the result
in Figure 11 that we obtained with the cellular automata model, we can see that they match
very well — they both show the cycles of growth and shrinking of the populations.
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Figure 12. Graph of hares and lynxes’ populations over time.

This model relies on several unrealistic assumptions. We ignore factors such as age, health,
illness, and competition for territory and outside factors such as interactions with other species,
especially humans. Also, the assumption that the food for the rabbits is unlimited doesn’t reflect
reality. Despite all these weaknesses, the model gives a realistic representation of the
interaction between predators and prey.



Conclusion

Cellular automata are a powerful tool for representing a variety of discrete structures. Cellular
automata allow simulating many processes, phenomena, and interactions in nature. In our
work, we presented a set of rules for the behaviour of the cellular automaton. These rules
allowed us to simulate a predator-prey system interaction. By studying the parameters of the
cellular automaton, we were able to obtain data from the simulations that were very close to
actual data. Therefore, cellular automata allowed us to simulate the predator-prey interaction
in a simple yet reliable way.
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