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The limits of Newtonian Physics

Alex Lagaras

Supervisor: Takis Tsoumakis

HISTORICAL INTRODUCTION

The fundamental principles of Classical Mechanics were first established in the early 17th century by
Galileo Galilei (1564-1642) and later in the same century by Isaac Newton (1642-1727). Until Galileo's
time, however, Aristotle's Physics dominated the fields of philosophy and natural sciences. Aristotle (384—
322 BCE) was the first to attempt to formulate dynamic principles governing the motion of bodies. He
argued that for a body to move at a constant velocity v, a continuous application of a constant force F of
the form:

F=k-v

is required. Aristotle’s view, which aligned with everyday experience, influenced the prevailing cosmology
until the Middle Ages. Nevertheless, this view was significantly challenged by Galileo, who opposed this
dominant perception through thought experiments and simple experiments involving inclined surfaces.
In these experiments, he meticulously reduced friction by smoothing the surfaces himself.

One of Galileo's most famous thought experiments, discussed in his book "Dialogho sopra i due massimi
sistemi del mondo, tolemaico e copernicano” (1632) [Dialogue Concerning the Two Chief World Systems,
Ptolemaic and Copernican], examines the Aristotelian proposition that heavier bodies fall faster than
lighter ones. The formulation is as follows: "If we take two bodies with different natural velocities, it is
obvious that, if tied together, the motion of the faster will be hindered by the slower, while the slower will
be accelerated by the faster. But if this is true, and we assume, for instance, that the larger stone falls with
a velocity of 8, while the smaller one falls with a velocity of 4, then when these two are joined, the system
of the two stones will fall with a velocity less than 8, although the combined system is heavier than either
stone individually. Therefore, a heavier body falls with a velocity less than that of a lighter body, contrary
to our original assumption”. Through this thought experiment, Galileo concluded that all bodies fall at the
same velocity in Earth's gravitational field.

Additionally, through his laboratory experiments with inclined surfaces, Galileo observed that bodies
sliding down an inclined plane and then ascending a second inclined plane tend to reach the same height
from which they started. From this, he deduced that if the second surface had no slope, the body would
continue to move indefinitely, assuming friction and other external forces are negligible. Essentially,
Galileo's observation is equivalent to Newton's First Law, which states that the natural state of a free body
is motion, not rest (as Aristotle had claimed). Galileo further advanced his study of the motion of bodies

o . . . 1
on inclined surfaces, formulating the law of uniformly accelerated motion d = Eatz.
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The Aristotelian framework was further shaken by the work of the German astronomer Johannes Kepler,
who formulated the laws of planetary motion:
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Kepler’s First Law: “Planets move in ellipses with the Sun as one of the two focuses.” (Image 1).

Kepler’s Second Law: “A planet covers the same area of space in the same amount of time no matter where
it is in its orbit.” (Image 2)

Kepler’s Third Law: “The square of a planet's orbital period is proportional to the cube of the semi-major
axis of its elliptical orbit, with the constant of proportionality being the same for all planets.” (Image 3)



NEWTON’S THEORY

In the year of Galileo's death (1642), Isaac Newton was born and lived through the devastating plague
that wiped out nearly half of Europe's population. He studied at the University of Cambridge, where, in
addition to mathematics and the natural sciences, he also engaged in theology and philosophy, as was
customary at the time. Although Newton, at the young age of 22, had already arrived at remarkable
conclusions regarding the force of universal gravitation, he initially refrained from publishing his findings.
His work on universal gravitation became widely known much later, following a question posed to him by
Edmond Halley. Halley inquired about the motion of bodies under the influence of a conservative force

like gravity. Newton's proof that an inverse-square law of force (F o =) leads to elliptical orbits — in
r

agreement with Kepler's observations — was presented in 1684 as a treatise titled “De motu corporum in
gyrum” [On the Motion of Bodies in Orbit] at the Royal Society of London. This became known as the Law
of Universal Gravitation.

In 1687, Newton finally published his monumental work “Philosophiae Naturalis Principia Mathematica”
[Mathematical Principles of Natural Philosophy], in which he formulated his three famous laws of
dynamics. These laws, along with the Law of Universal Gravitation, are as follows:

Newton’s First Law: Every body remains in a state of rest or steady motion in a straight line unless it is
compelled to change that state by forces applied to it.

L, dp dp -
JF = d_zz - If —ZZ =0 = p = stable = U = stable (Steady Motion or Inertia)

Newton's Second Law: The rate of change of momentum (defined by Newton as the product of mass and
velocity, now known as momentum) is directly proportional to the applied force and occurs in the
direction of the force.

. dp . d(md) N i . .
ZF=—t=>ZF= F=mE=>ZF=ma

Newton's Third Law: For every action, there is always an equal magnitude and opposite reaction; in other
words, the mutual forces between two bodies are always equal in magnitude and opposite in direction.

JF = IPsystem — between two bodies: M= 0> 4P + i =0=> F, =-F,
dt dt dt dt

Newton's Law of Universal Gravitation: The gravitational attraction between two masses is directly
proportional to the product of their masses and inversely proportional to the square of the distance
between them.

mpm;

F=6—5
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Newton applied these laws, along with a set of definitions, to solve problems involving the motion of
mechanical systems under the influence of specific forces. The structure of his book, following a series of
propositions and corollaries, is reminiscent of Euclid's “Elements”. Remarkably, all the proofs presented
in Newton's work are purely geometric, with no use of calculus—a stark contrast to how these same
proofs are presented in modern textbooks.

EXAMPLES OF APPLICATIONS OF NEWTON'’S LAWS
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INTERPRETATION OF KEPLER’S LAWS BASED ON NEWTON’S LAWS

Kepler's 1st Law: Law of Ellipses

Newton's law of universal gravitation states that the force acting on a planet of mass m due to the Sun of
mass M is:

Equating the weight with the centripetal force, we result to:

2

Mm mv
w=F = G Rz = R
Throughout simplifications, we conclude to:
GM
v?=—
R

The principle of conservation of mechanical energy states that if a body or system is subjected only to
conservative forces, the mechanical energy of that body or system remains constant. Thus:

E K4l 1 2+( GMm) 1 GMm E v? GM
= = — —G— ) =— - f—m s =—=—— —
2 R )" 2™ R "m~™ 2 R

E . . .
where € = — s the specific orbital energy.

The formulav? = % applies only to circular orbits where the distance R from the central body is constant.
For a circular orbit, the specific orbital energy &.ircuiar is then given by the formula:

GM

Ecircular = — 2R

However, in an elliptical orbit, the distance between the planet and the Sun changes as the planet moves
along its orbit. Kepler's 1st Law states that the orbits of planets are ellipses, not perfect circles. For
elliptical orbits, the radius R is replaced by the semi-major axis a, showing that elliptical orbits naturally
arise from the inverse-square law of gravity and the equation becomes:

GM

€= ~94



Kepler's 2nd Law: Law of Equal Areas

The area A swept out by the radius vector in a given time with a specific angle is given by the formula:

1
A ==R?0
2

Throughout derivation, we result to:

dA _1,d0 1
ac 2 dar 2%

2

ae . .
where w = s the angular velocity.

The angular momentum is given by the formula:
2 2 _L
L =muvR = mwR* = wR* =

Since no external torque acts on the planet-Sun system, angular momentum is conserved, so L = const.
Therefore, we have:

dA L .
— = — = const.
dt 2m
This proves that the rate at which the area is swept out in equal time intervals is constant, which is Kepler's
2nd Law.

Kepler's 3rd Law: Law of Harmonies

For a planet in orbit, the gravitational force provides the necessary centripetal force for circular motion
(as an approximation for elliptical orbits), which is given by the equation:

Mm mv?
w=h =0 =%
The linear velocity v is given by the formula:
R 2R
v = = —
@ T

Substituting the above equation into our first formula, we have:

Mm  4m?mR?

R? T?R

Throughout simplifications, we get:



Thus, we conclude that the square of the period T is proportional to the semi-major axis R of the ellipse,
(T? < R?), which holds true.

The interpretation of Kepler's planetary laws through Newton's laws of motion and universal gravitation
is pivotal in the history of science for several reasons. Newton's work provided a unifying framework that
linked the motion of celestial bodies with Classical Mechanics, demonstrating that the same physical laws
apply universally. This unification was revolutionary, fundamentally altering our understanding of the
universe and laying the groundwork for Classical Mechanics. Furthermore, Newton not only validated
Kepler's observations but also reinforced the credibility of the law of universal gravitation. He showed
that the gravitational force between two bodies is proportional to the product of their masses and
inversely proportional to the square of the distance between them, offering a precise quantitative
explanation for planetary motion. The impact of this interpretation extends beyond astronomy into fields
such as mechanics and geology. For example, principles derived from Newtonian mechanics are essential
for satellite development and understanding gravitational effects on Earth. In summary, the
interpretation of Kepler's laws through Newtonian mechanics not only confirmed the universality of
physical laws but also established a robust theoretical foundation for Classical Mechanics, illustrating the
profound influence of these principles on science and technology.

SPECIALIZED RESEARCH OF THE NOTIONS OF NEWTONIAN PHYSICS
INERTIAL FRAMES OF REFERENCE

An inertial frame of reference is a system in which Newton's First and Second Laws of Motion hold true.
Consequently, in an inertial frame of reference, a body accelerates only when a force is applied to it, and
(according to Newton's First Law of Motion) if no force is applied, a body with zero velocity will remain at
rest, while a body in motion will continue to move at a constant velocity in a straight line. Classical
Mechanics acknowledges the equivalence of all inertial frames of reference and makes an additional
assumption: that time progresses at the same rate in all reference frames. This corresponds to Newton's
theory of absolute space and time, which posits that absolute time exists independently of any observer
and proceeds at a constant rate throughout the universe. With these two assumptions, the coordinates
of the same event (a point in space and time) are described in two inertial frames of reference by the
Galilean transformations:

r=r—r1y—ut

t=t—tg

Where 1y and t, represent the displacement from the origin of space and time, and v is the relative
velocity of the two inertial reference frames. With Galilean transformations, the time interval t, — t;
between two events is the same for all inertial reference frames, and the distance between two
simultaneous events |r, — 1| is also the same.



DIFFERENTIATION OF NEWTON'’S FIRST AND SECOND LAWS

Newton's First and Second Laws of Motion address different aspects of an object's behavior under forces,
and understanding their distinctions is fundamental to Classical Mechanics.

Newton's First Law, often referred to as the Law of Inertia, states that an object will remain at rest or
continue to move in a straight line at constant velocity unless acted upon by an external force. This law
introduces the concept of inertia, which describes an object's resistance to changes in its state of motion.
Essentially, it provides insight into the natural state of motion when no net external force is applied. The
First Law emphasizes that in the absence of external influences, an object's motion is predictable and
uniform, laying the groundwork for the concepts of equilibrium and resistance to changes in motion.

In contrast, Newton's Second Law provides a quantitative relationship between force, mass, and
acceleration. It asserts that the acceleration of an object is directly proportional to the net force applied
to it and inversely proportional to its mass, as expressed by the equation Zﬁ = md. This law offers a
means to calculate how an object's velocity changes when a force is applied, providing a precise method
for determining the resulting acceleration. Unlike the First Law, which describes motion in the absence of
force, the Second Law explains how motion changes when forces come into play.

The distinction between the two laws lies in their focus and application. The First Law is descriptive,
dealing with the behavior of objects in the absence of net forces and establishing the principle of inertia.
It describes an idealized scenario where objects move uniformly at constant (or zero) velocity unless
influenced by a force. On the other hand, the Second Law is quantitative and mathematical, providing a
formula that relates force to acceleration and mass. It is used to predict how objects will behave when
subjected to various forces. Both laws are essential for a comprehensive understanding of Classical
Mechanics, with the First Law setting the principles of motion and inertia and the Second Law offering the
tools for detailed analysis.

NEWTON’S THIRD LAW

At first glance, the Third Law may seem like an observation that does not have substantial value for
determining the motion of mechanical systems, since the two opposing forces act on different bodies.
However, Newton recognized the immense significance of introducing such a law to extend the
application of the fundamental equation of mechanics (his Second Law) from zero-dimensional particles
to extended solid bodies. The presence of opposing forces negates any force we might otherwise attribute
to a body due to its own nature, because it is composed of numerous interacting particles.

Nevertheless, there are cases where the Third Law appears not to hold. In these instances, field forces
come into play, as illustrated by the following example:



In the figure, there are two straight current-carrying conductors that are not parallel. It is clear that the
forces developed between them are not opposite. Based on the vector relationship that arises from

Newton's third law F,; = —F;,, this case seems to be incorrect. To explain this paradox, let us examine
the total momentum of the system p.. If we assume that the bodies are in equilibrium, we have:

aps _ 5

dt
Let's separate the total resultant force per body:

dp; dp; dpfleld

a T @ T a0

From the beginning, there is a hidden force that imparts momentum to the emerging magnetic fields.

Thus, while the forces a and E do not cancel each other out, the resultant forces under the influence

__ ADPfield

of Frieta = ";t are neutralized.

STRONG AND WEAK FORMS OF NEWTON’S THIRD LAW

Newton's Third Law of Motion states that for every action, there is an equal in magnitude and opposite
reaction. However, this fundamental principle in physics can be interpreted in two ways: the strong form
and the weak form. The strong form asserts that these forces are equal in magnitude, opposite in
direction, and act along the same line, which holds true in Classical Mechanics involving direct contact or
direct field interactions. The weak form acknowledges more complex scenarios where forces may not act
along the same line or may involve intermediate effects, such as deformation or delays in field
propagation. This distinction is crucial for the accurate application of the law across various physical
contexts, with the strong form applicable to basic mechanics and the weak form relevant for complex
interactions in advanced physics.



DIFFERENCE BETWEEN INERTIAL AND GRAVITATIONAL MASS

In physics, mass is associated with two concepts: inertia in translational motion and gravity. It is a defined
qguantity used to describe a system. The intrinsic mass cannot be explained independently of the system
(body) it characterizes.

In Classical Mechanics, mass is both the subject and source of the gravitational field; that is, gravity on a
body is proportional to its mass. In the same gravitational field, a body with a smaller gravitational mass
experiences a smaller gravitational force compared to a body with a larger gravitational mass.
Correspondingly, inertial mass is defined as the property of matter to resist changes in its motion, or
equivalently, as the measure of an object's inertia. The larger the inertial mass of a body, the smaller the
acceleration it experiences from a given force applied to it. Although it qualitatively seems reasonable for
the inertial mass of a body appearing in Newton's Second Law to be identical to the corresponding
gravitational mass in the law of universal gravitation, there is, in fact, no reason why these two quantities
should be equal. Nevertheless, precise experiments have repeatedly shown that these quantities can be
considered identical for all practical purposes. As a result of this equivalence, when the only force that
acts in a body is gravity:

G Mgravitational ' mgravitational
>F w R2 Mgrap Mgrav
Minertial Min Min R Min R

M grav

=g
This proves the free fall of all bodies with constant acceleration g despite their (inertial or gravitational)

mass. Within the framework of Einstein’s General Relativity, it is accepted axiomatically that inertial mass
is identical to gravitational mass.

LIMITS OF NEWTONIAN PHYSICS
Newtonian physics, while extremely important and useful in certain situations, has limitations and

calculation failures under extreme conditions. These limitations arise from the assumptions and
approximations inherent in Newtonian mechanics.

Large Speed (Relativistic Speed)

Formula of kinetic energy in Classical Mechanics:

1

K= —mu?
zmu

Formula of kinetic energy in relativistic physics:

Kiet = (¥ — 1)mC2
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1

where c the speed of lightand y =

% = 52%

u2
1=z
Let’s assume a speed u = 0,8c:
= —= = : = = 2 i = 2
y - 1 (0,8c)2 => y - 1-0.64 1667 ’ K—rel = 0667mC Wh|le K 032mC
o5 v
Obviously, K,.o; > K.
1% deviation = =K 1000 = 234700y
= — X = —_— =
o deviation Ko A 0 ETme? A

The deviation of the calculation is 52%.

Large Masses (Strong Gravitational Fields)

Newtonian physics fails to predict the precession of Mercury's perihelion. For Mercury's orbit around the

Sun, general relativity predicts a precession of the perihelion of Mercury's orbit:

24m3a?

Ap % —————=
¢ T?c%2(1 —e?)

where o is the semi-major axis, T is the orbital period, and € is the eccentricity of the orbit.

Therefore, since classical physics cannot provide us with results, it is not possible to define a percentage

deviation in the calculation.
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In even larger masses, such as in a black hole, the classical formula for gravitational force

GMm

is replaced by the Schwarzschild metric for a non-rotating black hole:

-1

2GM 2GM
ds? = — (1 - — ) cdt? + (1 - — ) dr? + r?dn?
rc rC

The above metric system can predict phenomena such as gravitational time dilation and the bending of
light, which Newtonian physics cannot account for.

Microworld (Quantum dimensions)

Newtonian Mechanics describes particles with definite positions and velocities. Quantum Mechanics
describes particles by respect of their wave function ¥ and the uncertainty principle. The Schrodinger
equation governs the behavior of quantum systems:

L d e
ih— 1¥(0) = HI¥(®)

Heisenberg's uncertainty principle states:

NS

AxAp >

In classical physics, uncertainty does not exist, thus:

I
o

AxAp

Since the classical assumption for the uncertainty in position and momentum is zero, Newtonian physics
fails to describe quantum phenomena.

RESULTS

e 1st occasion: In the case of relativistic speeds, with the specific example where the chosen speed
was v = 0.8c¢, the deviation is 52%.

e 2" occasion: In the case of strong gravitational fields, Newtonian physics fails to provide an
answer, so no percentage deviation can be defined.

e 3™ occasion: In the case of quantum dimensions, Newtonian physics fails to provide an answer,
so no percentage deviation can be defined.

12



CONCLUSION

The scientific discoveries of the 20th century have undeniably revealed significant limitations of
Newtonian physics, demonstrating that Newton's principles cannot be applied in extreme conditions such
as very high speeds, strong gravitational fields, or subatomic scales. Nevertheless, the importance of
Newtonian physics in scientific history and its practical applications cannot be overlooked. Newtonian
physics, with its three laws of motion and the law of universal gravitation, laid the foundations of Classical
Mechanics and enabled the understanding and description of a wide range of physical phenomena in the
everyday world. The accuracy and simplicity of Newton's laws allow for successful prediction and
explanation of the motion of objects under low speeds and weak gravitational forces, making Newtonian
physics an essential tool in everyday engineering and technology. Moreover, the principles of Newtonian
physics remain fundamental in the teaching of physical sciences, providing a solid foundation upon which
students and scientists can develop further understanding and explore more complex theories.
Newtonian physics continues to play a vital role not only in education but also in technology. Thus, the
limitations of Newtonian physics do not diminish its value but instead highlight the ongoing evolution of
scientific knowledge. Newtonian physics continues to guide and serve us, representing one of the most
fundamental and enduring contributions to our understanding of the physical world.
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