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Abstract. The EU and its member states have agreed to reduce carbon dioxide 

emissions. Building operation and construction are the primary contributors to 

greenhouse gas emissions. Construction products have a huge environmental im-

pact throughout their life cycle and are also the main source of waste generation. 

The construction sector can not embrace sustainability only by reusing and recy-

cling materials. Adaptable multifunctional materials play a critical role towards 

energy-saving and green transition. In particular, adaptable structures can signif-

icantly reduce the time and cost of manufacture, transport, and construction. Me-

chanical metamaterials are artificial systems that can produce desired physical 

and mechanical properties by designing the base cell of which the lattice is com-

posed. A structure that has negative Poisson’s ratio is called auxetic and bistabil-

ity is the property of having two stable equilibrium positions within the range of 

its motion-deformation. The present study develops a planar bistable auxetic me-

chanical metamaterial based on a re-entrant arrowhead auxetic topology and 

analyses the structure’s mechanism and its properties. In the paper, we first give 

the geometric description and then we study the theory for the analysis of the 

metamaterial mechanism. Finally we present an example of the base cell. 

Keywords: Adaptable structure, Mechanical Metamaterial, Mechanism, Bista-

ble Structure, Auxetic Structure, Geometric Nonlinearity. 

 1  Introduction 

 1.1  Overview 

Structural adaptability is an innovative technique that architecture focuses on to address 

energy concerns. One way to implement adaptability in structures is to use materials 

that enables shape transformation. Our structure is focused on eliminating the need for 

constant energy input to maintain transformation. Metamaterial mechanisms are struc-

tures with tailored physical and mechanical properties defined by their architecture ra-

ther than their chemical composition [1]. A bistable mechanism has two stable equilib-

rium positions within its range of motion. It achieves this behaviour by storing energy 

during part of its motion and then releasing it as the mechanism moves toward a second 
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stable state [2]. The two stable states can be programmed by the base cell design. In 

this paper we focus on the re-entrant arrowhead auxetic topology [3] and we use it to 

create a two-dimensional bistable auxetic structure. Materials that have a negative Pois-

son’s ratio when stretched, they become thicker perpendicular to the applied force. Such 

materials or structures are called auxetic [3]. The term auxetic derives from the Greek 

word αυξητικός (auxetikos) which means "that which tends to increase" and has its root 

in the word αύξησις, or auxesis, meaning "increase". Various structures, that present 

auxetic behaviour, have been studied so far [4-7]. Our structure displays auxetic prop-

erties and bistable behaviour as well. If the deformation gradient is large enough then 

the nonlinear terms of strain tensor cannot be overlooked and the structure exhibits 

geometric nonlinearity. 

 1.2  Programmable energy-saving structures 

Shape transformation is crucial in many applications ranging from nanoscale to macro 

scale. There is a need for flexibility in the construction sector. Structures are expensive, 

energy-intensive and their skin will outlast their original use. Some buildings are more 

prone to demolition, while others are better suited to redevelopment. Critical to the 

above is the design and construction of programmable structures that can evolve ac-

cording to different requirements or be erected in a more energy-efficient manner in 

various environments such as outer space or deep sea. 

 2  Base cell 

Our model is a linkage-based periodic structure composed by a system of rigid bodies 

connected with elastic/rotary hinges (revolute joints). The rigid bodies are 1- or 2-di-

mensional polytopes (i.e. links, triangles) (see Fig.1,2). 

Fig.1 Base cell.                                                                           Fig.2 Lattice structure. 

 2.1  Degrees of freedom 

The rigidity of the structure depends on the stiffness of the linear spring. If we consider 

the linear spring as an undeformed edge then the unit cell is a two-dimensional mini-

mally rigid graph i.e. a Laman graph (our base cell with 𝑁vertices has 2N − 3edges 

and no 𝑁′-vertex subgraph has more than 2N′ − 3 edges) [8]. The rigidity can also be 

easily proven by a Henneberg construction (see Fig.3). 
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Fig.3 Henneberg construction. 

The deformation mechanism is derived from the elastic rotational joints of the unde-

formed links and from the stiffness of the linear spring. Using the Chebychev–Grübler–

Kutzbach formula (𝑀 = 3(𝑛 − 1 − 𝑗) + ∑ 𝑓𝑖
𝑗
𝑖=1 ) we can calculate the mobility  

𝑀(𝐷𝑂𝐹) of a system formed from 𝑛links and 𝑗joints each with 𝑓𝑖 , (𝑖 = 1, . . . , 𝑗)degrees 

of freedom. For the present mechanical system 𝑛 = 10 , 𝑗 = 13 and 𝑓𝑖 , (𝑖 =
1, . . . ,13)thus the mobility of the system is: 

𝑀 = 3(10 − 1 − 13) +∑𝑓𝑖

13

𝑖=1

= 1 (1) 

The mechanical system has 1DoF in 2D space. So, we need only one independent pa-

rameter to define the configuration of the kinematic chain. The angle 𝜃is the independ-

ent parameter needed. 

 2.2  Geometry 

Fig.4 Base cell dimensions.   Fig.5 Mechanism's movement. 

As illustrated in Fig. 4, the shape and size of this system can be described in terms of 

𝜃through an orthogonal unit cell in 𝑒1𝑒2-plane with side lengths ℎ1, ℎ2given by: 

ℎ1 = 2𝑙𝐵𝑐𝑜𝑠𝜃,  ℎ2 = √𝑙𝐴
2 − (𝑙𝐵𝑐𝑜𝑠𝜃)

2 − 𝑙𝐵𝑠𝑖𝑛𝜃 (2) 

Based on the desired outcome of the bistable state, the user can set the following pa-

rameters: 𝑙𝐴, 𝑙𝐵 , 𝑙𝐶 , �̂�, 𝑘𝑟 , 𝑘𝑙. During the deformation and for physically realistic struc-

tures where the triangles do not overlap (see Fig.5), the range (𝜃𝑚𝑖𝑛 , 𝜃𝑚𝑎𝑥)of the angle 

𝜃is: 
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𝜃𝑚𝑖𝑛 =
𝜋

2
− �̂� − �̂�, 𝜃𝑚𝑎𝑥 = 𝑎𝑟𝑐𝑡𝑎𝑛 (

1

𝑡𝑎𝑛(�̂�)
−

𝑙𝐵

𝑙𝐴𝑠𝑖𝑛(�̂�)
) 

(3) 
�̂� =

{
 
 

 
 𝑎𝑟𝑐𝑠𝑖𝑛 (

𝑙𝐵
𝑙𝐷
𝑠𝑖𝑛�̂�)

𝜋

2

𝜋 − 𝑎𝑟𝑐𝑠𝑖𝑛 (
𝑙𝐵
𝑙𝐷
𝑠𝑖𝑛�̂�)

 𝑖𝑓
𝑙𝐵
𝑙𝐶
𝑐𝑜𝑠�̂� < 1

  𝑖𝑓
𝑙𝐵
𝑙𝐶
𝑐𝑜𝑠�̂� = 1

  𝑖𝑓
𝑙𝐵
𝑙𝐶
𝑐𝑜𝑠�̂� > 1

 

Also, the following manufacturing parameter restrictions must apply: 

𝑙𝐵 ≤ 𝑙𝐴, �̂� ≤ 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑙𝐵
𝑙𝐴
) , 𝑙𝐶 ≤

ℎ𝑦 + 2𝑙𝐵𝑠𝑖𝑛𝜃

2𝑠𝑖𝑛(𝜃 + �̂�)
 (4) 

 3  Geometrically nonlinear strain theory 

 3.1  Strain tensor 

The displacement vector (𝑢)of the mechanism during its deformation without rigid-

body translation is the difference between the deformed (𝑥) and the undeformed 

(𝑋) configuration (𝑢𝑖 = 𝑥𝑖 − 𝑋𝑖) . Thus, the displacement gradient tensor is 𝛻𝑢 =

𝑢𝑖,𝑗 =
𝜕(𝑥𝑖−𝑋𝑖)

𝜕𝑥𝑗
=

𝜕𝑥𝑖

𝜕𝑥𝑗
−

𝜕𝑋𝑖

𝜕𝑥𝑗
= 𝛿𝑖𝑗 −

𝜕𝑋𝑖

𝜕𝑥𝑗
= 𝛿𝑖𝑗 − 𝑋𝑖,𝑗 . If the displacement gradient is 

large enough (𝛻𝑢 > 10−3)to invalidate the assumptions of the infinitesimal strain the-

ory (
𝜕𝑢𝑖

𝜕𝑥𝑗
≠

𝜕𝑢𝑖

𝜕𝑋𝑗
)then the body exhibits geometric nonlinearity. According to the above, 

the finite strain tensor is defined as: 

𝜀𝑖𝑗 =
1

2
(𝛿𝑖𝑗 − 𝑋𝑘,𝑖𝑋𝑘,𝑗) =

1

2
(𝛿𝑖𝑗 −

𝜕𝑋𝑘
𝜕𝑥𝑖

𝜕𝑋𝑘
𝜕𝑥𝑗

) =
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
−
𝜕𝑢𝑘
𝜕𝑥𝑖

𝜕𝑢𝑘
𝜕𝑥𝑗

) (5) 

The lattice of the present model is a planar structure that cannot shear during defor-

mation (
𝜕𝑋1

𝜕𝑥2
=

𝜕𝑋2

𝜕𝑥1
= 0). Thus, the strain tensor has the form: 

𝜀𝑖𝑗 = [
𝜀1
𝜀2
0
] =

[
 
 
 
 
 
1

2
(1 − (

𝜕𝑋1
𝜕𝑥1

)
2

− (
𝜕𝑋2
𝜕𝑥1

)
2

)

1

2
(1 − (

𝜕𝑋1
𝜕𝑥2

)
2

− (
𝜕𝑋2
𝜕𝑥2

)
2

)

0 ]
 
 
 
 
 

=

[
 
 
 
 
 
1

2
(1 − (

𝜕𝑋1
𝜕𝑥1

)
2

)

1

2
(1 − (

𝜕𝑋2
𝜕𝑥2

)
2

)

0 ]
 
 
 
 
 

 (6) 

The domain of 𝜃is a subset of [0,
𝜋

2
] ([𝜃𝑚𝑖𝑛 , 𝜃𝑚𝑎𝑥] ⊆ [0,

𝜋

2
]). Utilizing the strain tensor 

of the continuum body (𝜕𝑋) to our planar (ℎ1𝑥ℎ2) mechanism during 𝜃𝛼 = 0 to 

𝜃𝑚𝑎𝑥deformation we get: 

𝜀1 =
1

2
(1 − (

ℎ1(𝜃𝛼)

ℎ1(𝜃)
)

2

) =
1

2
(1 − (

2𝑙𝐵𝑐𝑜𝑠0

2𝑙𝐵𝑐𝑜𝑠𝜃
)
2

) =
1

2
(1 −

1

𝑐𝑜𝑠2𝜃
)

=
−𝑡𝑎𝑛2𝜃

2
< 0, ∀𝜃 ∈ (0,

𝜋

2
] 

(7) 
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𝜀2 =
1

2
(1 − (

ℎ2(𝜃𝛼)

ℎ2(𝜃)
)

2

) =
1

2

(

 
 
1 −

𝑙𝐴
2 − 𝑙𝐵

2

(√𝑙𝐴
2 − (𝑙𝐵𝑐𝑜𝑠𝜃)

2 − 𝑙𝐵𝑠𝑖𝑛𝜃)

2

)

 
 

 (8) 

𝜀2 < 0 ⇒
1

2

(

 
 
1 −

𝑙𝐴
2 − 𝑙𝐵

2

(√𝑙𝐴
2 − (𝑙𝐵𝑐𝑜𝑠𝜃)

2 − 𝑙𝐵𝑠𝑖𝑛𝜃)

2

)

 
 
< 0 ⇒ 𝑙𝐵 < 𝑙𝐴 (9) 

This inequality is a manufacturing parameter restriction of the structure (Eq.4). When 

we deform the mechanism from 𝜃𝑎 = 0 to 𝜃𝑚𝑎𝑥 the strain tensor becomes 𝜀1 < 0 and 

𝜀2 < 0. Respectively it turns out that by deforming the mechanism from 𝜃𝑏 =
𝜋

2
towards 

𝜃𝑚𝑖𝑛we get 𝜀1 > 0and 𝜀2 > 0. Therefore: 
𝜀1

𝜀2
> 0, 

𝜀2

𝜀1
> 0 ∀𝜃 ∈ [𝜃𝑚𝑖𝑛 , 𝜃𝑚𝑎𝑥] (10) 

 3.2  Poisson's ratio 

The Poisson’s ratio (𝑣)for a stable, isotropic, linear elastic material must be between 

−1.0and +0.5due to the requirement that the modulus of elasticity (𝐸)the shear mod-

ulus (𝐺)and the bulk modulus (𝐵), have positive values, but this is not binding for 

anisotropic elastic materials [9,10]. In the small strain regime the Poisson's ratio is con-

stant, in large strain this ratio is a scalar function that varies with strain [11, 12]. For 

our structure according to Eq. 10 the Poisson's ratio is defined as: 

𝑣12 =
−𝜀2

𝜀1
< 0, 𝑣21 =

−𝜀1

𝜀2
< 0,  ∀𝜃 ∈ [𝜃𝑚𝑖𝑛 , 𝜃𝑚𝑎𝑥] (11) 

 4  Mechanism analysis 

 

Fig.6 2D pseudo rigid body model. 
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 4.1  Potential energy 

According to the first law of thermodynamics, in an isolated system where no losses 

are created in the form of heat (𝑄)and assuming that there is no conversion into kinetic 

energy (𝐾)the total potential energy (𝛱)is defined as: 

𝛱 = 𝑈 −𝑊 (12) 

Where (𝑈)is the internal strain energy and 𝑊is the work done by the external forces. 

 4.2  Strain energy 

To design the bistable structure we construct a planar system of six rigid bodies con-

nected with seven elastic/rotary hinges (revolute joints), as well as one elastic link (i.e. 

linear spring). According to the 2D pseudo rigid body model (see Fig.6) the strain en-

ergy of the base cell consists of the sum of the energy stored in each spring (torsional 

𝑈𝑟and linear 𝑈𝑙). 

𝑈 = 𝑈𝑙 + 𝑈𝑟  (13) 

Strain energy of linear spring. 𝑈𝑙is the strain energy from the linear spring, 𝑘𝑙 [
𝑁

𝑚
]is 

the stiffness constant of the linear spring and 𝛥𝜓[𝑚]is the deformation of the spring. 

𝑈𝑙 =
1

2
𝑘𝑙(𝛥𝜓)

2 
(14) 

 

𝛥𝜓 = 𝜓(𝜃) − 𝜓(𝜃0),  𝜓 = √𝑙𝐴
2 − (𝑙𝐵𝑐𝑜𝑠𝜃)

2 + 𝑙𝐵𝑠𝑖𝑛𝜃 − 2𝑙𝐶𝑠𝑖𝑛(𝜃 + �̂�) (15) 

Strain energy of torsional springs. The strain energy from the torsional springs is the 

sum of the energy of each individual torsional spring. 𝑘𝑙 [
𝑁∗𝑚

𝑟𝑎𝑑
]is the stiffness constant 

of the torsional spring and 𝛥𝜑is the deflection angle of each spring based on the initial 

undeformed place 𝜑(𝜃0). 

𝑈𝑟 =
1

2
∑ 𝑘𝑟(𝛥𝜑𝑖)

27
𝑖=1 , 𝛥𝜑𝑖 = 𝜑𝑖 − 𝜑𝑖0, 𝑖: {1,2, . |. 7},   

𝜑1 = 𝜑3 = 𝜃,

𝜑2 = 𝑎𝑟𝑐𝑠𝑖𝑛 (
𝑙𝐵

𝑙𝐴
𝑐𝑜𝑠𝜃)

𝜑4 = 𝜋 − 2𝜃,

𝜑5 = 𝜑7 = 2(�̂� − 𝜃)

 
(16) 

 4.3  Mechanism’s equilibrium 

Bistable structure. The storage and release of energy defines the structure’s stable 

equilibrium positions. Equilibrium is established at a point in configuration space when 

no external forces 𝑃are required to maintain the structure’s position (the work done by 

the external forces 𝑊is equal to zero). In these positions the total potential energy of 

the system has an extrema. 
𝜕𝛱

𝜕𝜃
∣𝜃=𝜃0= 0 

The equilibrium position is characterized as stable if for every possible small displace-

ment from the equilibrium position the system tends to return to the same position, i.e. 
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the total potential energy is at a local minimum and thus increases during the displace-

ment. 
𝜕𝛱

𝜕𝜃
∣𝜃=𝜃0> 0 

The equilibrium position is characterized as unstable if for every possible small dis-

placement from the equilibrium position the system tends to move even further away 

from the initial position, i.e. the total potential energy is at a local maximum and thus 

decreases during the displacement. 
𝜕𝛱

𝜕𝜃
∣𝜃=𝜃0< 0 

There are also mechanisms where if the system shifts to a new position, it will remain 

in that position, that is, each position is an equilibrium position. This balance is char-

acterized as neutral. The potential energy of such a system does not change.  To inves-

tigate the precise stability of this system, higher order derivatives must be examined. 
The above is the energy method and it is based on the Lagrange-Dirichlet theorem, 

which states that “when the potential energy has a minimum for an equilibrium position, 

the equilibrium position is stable” [13]. For a structure to be bistable in a given config-

uration, it must meet three criteria: (α) The function of the potential energy must have 

three critical points (extrema). (β) The second derivative of potential energy must be 

positive in two of these solutions, indicating two stable states, while it must be negative 

in all other solutions, indicating unstable positions. (γ) The two stable positions as well 

as at least one of the unstable positions must be viable positions (inside the range of its 

defined motion) [14]. 
Strain energy of torsional springs. If we remove the linear spring from the structure 

(𝑼𝒍 = 𝟎)and 𝒌𝒓is chosen to be the only non-zero spring constant, then the internal 

strain energy consists only of the energy stored in the torsional springs. So, the equilib-

rium position where the potential energy of the system has an extrema is: 

𝜕𝛱

𝜕𝜃
= 0 ⇒

𝜕𝑈𝑟
𝜕𝜃

= 0 ⇒∑𝑘𝑟(𝜑𝑖 − 𝜑𝑖0)
𝜕𝜑𝑖
𝜕𝜃

7

𝑖=1

= 0 ⇒ 𝜑𝑖 = 𝜑𝑖0 (17) 

Therefore, for this type of configuration (if we remove the linear spring) the initial un-

deformed state is the only equilibrium position the mechanism has. The structure does 

not have a bistable behaviour. 

Strain energy of linear spring. If 𝒌𝒍is chosen to be the only non-zero spring constant, 

then the total strain energy results from the strain energy of the linear spring (𝑼 = 𝑼𝒍). 

So, the potential energy of the system presents critical points where 
𝝏𝜫

𝝏𝜽
 becomes zero 

or is not defined. 

𝜕𝛱

𝜕𝜃
= 0 ⇒

𝜕𝑈𝑙
𝜕𝜃

= 0 ⇒ 𝑘𝑙(𝜓 − 𝜓0)
𝜕𝜓

𝜕𝜃
= 0 ⇒ |

𝜓 − 𝜓0 = 0
𝜕𝜓

𝜕𝜃
= 0

 
(18) 

𝜓 − 𝜓0 = 0 ⇒ 𝜃 = 𝜃0: initial undeformed state. (19) 
𝜕𝜓

𝜕𝜃
= 0 ⇒

𝑙𝐵
2𝑠𝑖𝑛(2𝜃)

2√𝑙𝐴
2−(𝑙𝐵𝑐𝑜𝑠𝜃)

2
+ 𝑙𝐵𝑐𝑜𝑠𝜃 − 2𝑙𝐶𝑐𝑜𝑠(𝜃 + �̂�) = 0 ⇒∣

𝜃 = 𝜃1
𝜃 = 𝜃2

  (20) 

The three critical points of the function are at 𝜃0,𝜃1,𝜃2. Then with the second derivative 

of the potential energy 
𝜕2𝛱

𝜕𝜃2
we find the maxima and minima and thus the stable and un-

stable equilibrium as stated before. 
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Total strain energy 𝒌𝒓, 𝒌𝒍 > 𝟎. In a third case where the stiffness constants of both the 

torsional and the linear spring are different from zero, the internal strain energy of the 

mechanism is obtained according to Eq.13. Therefore, for the structure to present bi-

stable behaviour the ratio 𝒌𝒓 𝒌𝒍⁄ is: 

𝜕

𝜕𝜃
𝑈 = 0 ⇒

𝑘𝑟
𝑘𝑙
= −𝛥𝜓

𝜕𝜓

𝜕𝜃
(∑𝛥𝜑𝑖

𝜕𝜑𝑖
𝜕𝜃

7

𝑖=1

)

−1

 (21) 

 4.4  Deformation load 

In our structure the strain energy and the complementary strain energy are equal. Thus, 

from Castigliano's first theorem will get: 

𝑃 =
𝜕𝑈

𝜕(𝑥 − 𝑋)
⇒ 𝑃𝑖 =

𝜕𝑈

𝜕(ℎ𝑖(𝜃) − ℎ𝑖(𝜃0))
=

𝜕𝑈
𝜕𝜃

𝜕ℎ𝑖(𝜃)
𝜕𝜃

 (22) 

 5  Material properties 

 5.1  Density 

Our structure is defined by geometric topological principles without being limited by 

the length scale of the mechanism. So, we can analyse our structure as a porous medium 

with the mechanical metamaterial part considered as the skeletal portion of the contin-

uum body and the space in between as the pore network. We will set our base cell as 

the representative elementary volume of the material which includes the volume of both 

"phases": 

 𝑉𝛼: volume of the mechanism 
 𝑉𝛽: volume of the ''empty'' space 

 𝑉𝛼 + 𝑉𝛽 = 𝑉: bulk volume of the continuum body 

For our structure the volume (𝑉)is given by: 𝑉 = ℎ1 ∗ ℎ2 ∗ 1. Thus, from Eq.2 the ex-

pression of the volume becomes: 

𝑉 = 2𝑙𝐵𝑐𝑜𝑠𝜃√𝑙𝐴
2 − (𝑙𝐵𝑐𝑜𝑠𝜃)

2 − 𝑙𝐵
2𝑠𝑖𝑛(2𝜃) (23) 

A particularly important property of materials is the percentage of the volume occupied 

by their matter. This is the relative density and is the percentage of the mechanism’s 

volume to the bulk volume (𝜌 = 𝑉𝛼 𝑉⁄ ). In our structure the volume of the mechanism 

(𝑉𝛼)remains constant throughout its deformation. However, the same is not true for 

bulk volume. So, the relative density fraction in our two stable equilibrium states is: 

𝜌(𝜃2)

𝜌(𝜃0)
=
𝑉(𝜃0)

𝑉(𝜃2)
 (24) 

Density and porosity affects properties of materials related to transport phenomena (wa-

ter absorption, air permeability, thermal and electrical conductivity), mechanical prop-

erties and more. 
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 5.2  Stiffness 

During the movement of the mechanism the forces acting on it are in equilibrium. 

𝜕𝑈 = 𝜕𝑊 ⇒ 𝜕𝑈 = 𝑃𝜕𝑢 ⇒
𝜕𝑈

𝑉
= 𝜎𝜕𝜀 (25) 

The mechanical properties of the metamaterial that are necessary to create the transition 

from one stable position to the second are defined as: 

𝜕𝑈

𝑉
= 𝜎𝜕𝜀 ⇒ 𝜎𝑖𝑗 =

𝜕𝑈

𝑉𝜕𝜀𝑖𝑗
⇒ 𝜕𝜎𝑖𝑗 =

𝜕2𝑈

𝑉𝜕𝜀𝑖𝑗
⇒ 𝐶𝑖𝑗𝑘𝑙𝜕𝜀𝑘𝑙 =

𝜕2𝑈

𝑉𝜕𝜀𝑖𝑗
⇒ 𝐶𝑖𝑗𝑘𝑙

=
𝜕2𝑈

𝑉𝜕𝜀𝑖𝑗𝜕𝜀𝑘𝑙
⇒ 𝐶𝑖𝑗𝑘𝑙 =

𝜕2𝑈
𝜕𝜃2

𝑉
𝜕𝜀𝑖𝑗𝜕𝜀𝑘𝑙
𝜕𝜃𝜕𝜃

 

 

(26) 

 6  Application 

 6.1  Geometry 

The parameters that define the geometry are: 

𝑙𝐴 = 15 ∗ 10
−3𝑚, 𝑙𝐵 = 3 ∗ 10

−3𝑚, 𝑙𝐶 = 5 ∗ 10
−3𝑚, �̂� =

𝜋

6,
𝑘𝑟 = 0 (27) 

Under the restrictions of the manufacturing parameters (Eq.4) we can state that this is 

a valid configuration. Based on the above parameters (Eq.27) and Eq.3 we derive that 

the domain of deformation is: 

𝜃 ∈ [0.49,0.92](𝑟𝑎𝑑) (28) 

The side lengths (Eq.2) of the base cell at the two extreme positions are: 

ℎ1 = 2𝑙𝐵𝑐𝑜𝑠𝜃 ⇒∣
ℎ1(𝜃𝑚𝑖𝑛) = 5.29𝑚𝑚
ℎ1(𝜃𝑚𝑎𝑥) = 3.60𝑚𝑚

 

ℎ2 = √𝑙𝐴
2 − (𝑙𝐵𝑐𝑜𝑠𝜃)

2 − 𝑙𝐵𝑠𝑖𝑛𝜃 ⇒∣
ℎ2(𝜃𝑚𝑖𝑛) = 13.35𝑚𝑚
ℎ2(𝜃𝑚𝑎𝑥) = 12.50𝑚𝑚

 

 

(29) 

∣
∣
∣𝛥ℎ1
ℎ1 ∣
∣
∣
=
∣
∣
∣ℎ1(𝜃𝑚𝑖𝑛) − ℎ1(𝜃𝑚𝑎𝑥)

ℎ1(𝜃𝑚𝑎𝑥) ∣
∣
∣
= 0.32 > 10−3 

∣
∣
∣𝛥ℎ2
ℎ2 ∣
∣
∣
=
∣
∣
∣ℎ2(𝜃𝑚𝑖𝑛) − ℎ2(𝜃𝑚𝑎𝑥)

ℎ2(𝜃𝑚𝑎𝑥) ∣
∣
∣
= 0.064 > 10−3 

 

(30) 

As can be seen, the structure during tension (from the initial undeformed position 𝜃0 ≡
𝜃𝑚𝑎𝑥we go to 𝜃𝑚𝑖𝑛) undergoes large deformations. 
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 6.2  Equilibrium positions 

Since only the linear spring contributes to the strain energy, then according to Eq.18 the 

equilibrium positions of the mechanism are: 

𝜕𝛱

𝜕𝜃
= 0 ⇒

𝜕𝑈𝑙
𝜕𝜃

= 0 ⇒ 𝑘𝑙(𝜓 − 𝜓0)
𝜕𝜓

𝜕𝜃
= 0 ⇒ |

𝜃0 = 0.92
𝜃1 = 0.79
𝜃2 = 0.69

 (31) 

 
𝜕2𝛱

𝜕𝜃2
|
𝜃=𝜃0

> 0,      
𝜕2𝛱

𝜕𝜃2
|
𝜃=𝜃1

< 0,       
𝜕2𝛱

𝜕𝜃2
|
𝜃=𝜃2

> 0 (32) 

In this case our structure will have two stable positions (𝜃0, 𝜃2)and one unstable 

(𝜃1)within its range of motion. It stores energy during part of its motion 𝜃 ∈
[0.92,0.79]and then releasing it as the mechanism moves toward a second stable state 

𝜃 ∈ [0.79,0,69]. 

 6.3  Poisson's ratio 

During the deformation at the bistable domain the strain tensor from Eq.6 becomes: 

Fig.7 Strain tenso 

Therefore the function of Poisson’s ratio is: 

Fig.8 Poisson's ratio 
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 6.4  Deformation load 

𝑃𝑖 =

𝜕𝑈
𝜕𝜃

𝜕ℎ𝑖(𝜃)
𝜕𝜃

=
𝑘𝑙𝛥𝜓

𝜕𝜓
𝜕𝜃

𝜕ℎ𝑖(𝜃)
𝜕𝜃

⇒

|

|
𝑃1
𝑘𝑙
=

𝛥𝜓
𝜕𝜓
𝜕𝜃

𝜕(ℎ1(𝜃))
𝜕𝜃

𝑃2
𝑘𝑙
=

𝛥𝜓
𝜕𝜓
𝜕𝜃

𝜕(ℎ2(𝜃))
𝜕𝜃

 (33) 

The ratio of force by the stiffness of the linear spring as a function of normalized dis-

placement is shown in the graph below (Fig.9). The force does not monotonically in-

crease with displacement. The saw-tooth serrations are caused by snap-through buck-

ling, from which the metamaterial bistability originates. 

Fig.9 Deformation load. 

 6.5  Relative density 

From Eq. 23 we get the bulk volume in the three equilibrium positions: 

𝑉(𝜃0) = 59.74𝑚𝑚
3𝑉(𝜃1) = 53.71𝑚𝑚3𝑉(𝜃2) = 45.45𝑚𝑚3 (34) 

So, the relative density fraction in our two stable states is: 

𝜌(𝜃2)

𝜌(𝜃0)
=
𝑉(𝜃0)

𝑉(𝜃2)
= 1.31 

(35) 

 6.6  Stiffness 

The stiffness is negative between the maximum and minimum points of force. 
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Fig.10 Stiffness tensor 

 7  Conclusion 

In this paper, we presented a novel planar mechanical metamaterial that exhibits bista-

ble and auxetic behaviour. The combined structural bistability and negative Poisson's 

ratio has not been previously observed in the re-entrant arrowhead topology. We believe 

the proposed mechanism enable the design of new programmable structures across 

scales and the reduction of energy consumption in various sectors. 
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