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Abstract. The EU and its member states have agreed to reduce carbon dioxide
emissions. Building operation and construction are the primary contributors to
greenhouse gas emissions. Construction products have a huge environmental im-
pact throughout their life cycle and are also the main source of waste generation.
The construction sector can not embrace sustainability only by reusing and recy-
cling materials. Adaptable multifunctional materials play a critical role towards
energy-saving and green transition. In particular, adaptable structures can signif-
icantly reduce the time and cost of manufacture, transport, and construction. Me-
chanical metamaterials are artificial systems that can produce desired physical
and mechanical properties by designing the base cell of which the lattice is com-
posed. A structure that has negative Poisson’s ratio is called auxetic and bistabil-
ity is the property of having two stable equilibrium positions within the range of
its motion-deformation. The present study develops a planar bistable auxetic me-
chanical metamaterial based on a re-entrant arrowhead auxetic topology and
analyses the structure’s mechanism and its properties. In the paper, we first give
the geometric description and then we study the theory for the analysis of the
metamaterial mechanism. Finally we present an example of the base cell.

Keywords: Adaptable structure, Mechanical Metamaterial, Mechanism, Bista-
ble Structure, Auxetic Structure, Geometric Nonlinearity.

1 Introduction

1.1  Overview

Structural adaptability is an innovative technique that architecture focuses on to address
energy concerns. One way to implement adaptability in structures is to use materials
that enables shape transformation. Our structure is focused on eliminating the need for
constant energy input to maintain transformation. Metamaterial mechanisms are struc-
tures with tailored physical and mechanical properties defined by their architecture ra-
ther than their chemical composition [1]. A bistable mechanism has two stable equilib-
rium positions within its range of motion. It achieves this behaviour by storing energy
during part of its motion and then releasing it as the mechanism moves toward a second
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stable state [2]. The two stable states can be programmed by the base cell design. In
this paper we focus on the re-entrant arrowhead auxetic topology [3] and we use it to
create a two-dimensional bistable auxetic structure. Materials that have a negative Pois-
son’s ratio when stretched, they become thicker perpendicular to the applied force. Such
materials or structures are called auxetic [3]. The term auxetic derives from the Greek
word avénricdg (auxetikos) which means "that which tends to increase" and has its root
in the word adénctig, or auxesis, meaning "increase". Various structures, that present
auxetic behaviour, have been studied so far [4-7]. Our structure displays auxetic prop-
erties and bistable behaviour as well. If the deformation gradient is large enough then
the nonlinear terms of strain tensor cannot be overlooked and the structure exhibits
geometric nonlinearity.

1.2 Programmable energy-saving structures

Shape transformation is crucial in many applications ranging from nanoscale to macro
scale. There is a need for flexibility in the construction sector. Structures are expensive,
energy-intensive and their skin will outlast their original use. Some buildings are more
prone to demolition, while others are better suited to redevelopment. Critical to the
above is the design and construction of programmable structures that can evolve ac-
cording to different requirements or be erected in a more energy-efficient manner in
various environments such as outer space or deep sea.

2 Base cell

Our model is a linkage-based periodic structure composed by a system of rigid bodies
connected with elastic/rotary hinges (revolute joints). The rigid bodies are 1- or 2-di-
mensional polytopes (i.e. links, triangles) (see Fig.1,2).

Vi

Fig.1 Base cell. Fig.2 Lattice structure.

2.1 Degrees of freedom

The rigidity of the structure depends on the stiffness of the linear spring. If we consider
the linear spring as an undeformed edge then the unit cell is a two-dimensional mini-
mally rigid graph i.e. a Laman graph (our base cell with Nvertices has 2N — 3edges
and no N'-vertex subgraph has more than 2N’ — 3 edges) [8]. The rigidity can also be
easily proven by a Henneberg construction (see Fig.3).
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Fig.3 Henneberg construction.

The deformation mechanism is derived from the elastic rotational joints of the unde-
formed links and from the stiffness of the linear spring. Using the Chebychev—Griibler—
Kutzbach formula (M =3(n—1—j) + Z{zl fi) we can calculate the mobility
M (DOF) of a system formed from nlinks and jjoints each with f;, (i = 1,..., j)degrees
of freedom. For the present mechanical system n =10, j=13 and f;, (i =
1,...,13)thus the mobility of the system is:

13
M=3(10—1—13)+Zﬁ-=1 )
i=1
The mechanical system has 1DoF in 2D space. So, we need only one independent pa-
rameter to define the configuration of the kinematic chain. The angle 8is the independ-
ent parameter needed.

2.2 Geometry

hr

Fig.4 Base cell dimensions. Fig.5 Mechanism's movement.

As illustrated in Fig. 4, the shape and size of this system can be described in terms of
Othrough an orthogonal unit cell in e, e,-plane with side lengths h4, h,given by:

h, = 2lgcosH, h, = /IAZ — (lgcos0)? — lgsinf (2)

Based on the desired outcome of the bistable state, the user can set the following pa-
rameters: Iy, lg, I, D, k.., k;. During the deformation and for physically realistic struc-
tures where the triangles do not overlap (see Fig.5), the range (6,,,in, Omax)of the angle
Ois:
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Also, the following manufacturing parameter restrictions must apply:
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3 Geometrically nonlinear strain theory

3.1 Strain tensor

The displacement vector (u)of the mechanism during its deformation without rigid-
body translation is the difference between the deformed (x)and the undeformed
(X) configuration (u; = x; — X;). Thus, the displacement gradient tensor is Vu =
C_0GiX) _ 0xi_0Xi _ g _0Xi_ s
L an BX]' BX]' Y ij Y

large enough (Vu > 1073)to invalidate the assumptions of the infinitesimal strain the-

— X; ;. If the displacement gradient is

ou; ou;

ory (— * —)then the body exhibits geometric nonlinearity. According to the above,

the finite strain tensor is defined as:
1 1
&ij =5 (8 = XieiXiej) =5 8y =

The lattice of the present model is a planar structure that cannot shear during defor-

X, 6Xk) (E)ul oy duy E)uk> )

0x; 0x; 2\0x; 0x; axia—x]-

mation (ZX: Z—j: = 0). Thus, the strain tensor has the form:
6X1 6X 2 6X1
( <6x1 6x1 6x1 )
[Ez] =[1 (1 ax1 axz ax2 ) (6)
axz axz sz
The domain of fis a subset of [0 [61mins Omax] € [0 tlllzmg the strain tensor

of the continuum body (0X)to our planar (h;xh,) mechanism during 6, = 0to
O maxdeformation we get:
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This inequality is a manufacturing parameter restriction of the structure (Eq.4). When
we deform the mechanism from 6, = Oto 6,,,,the strain tensor becomes &; < Oand
&, < 0. Respectively it turns out that by deforming the mechanism from 8, = gtowards

Ominwe get &, > 0and &, > 0. Therefore:
j—: > O'E_f > 0V € [Bmin, Omax] (10)

3.2 Poisson's ratio

The Poisson’s ratio (v)for a stable, isotropic, linear elastic material must be between
—1.0and +0.5due to the requirement that the modulus of elasticity (E)the shear mod-
ulus (G)and the bulk modulus (B), have positive values, but this is not binding for
anisotropic elastic materials [9,10]. In the small strain regime the Poisson's ratio is con-
stant, in large strain this ratio is a scalar function that varies with strain [11, 12]. For
our structure according to Eq. 10 the Poisson's ratio is defined as:

Vg = _5_812 <0,vy = _3_821 <0, VO € [0, Omax] an

4 Mechanism analysis

Fig.6 2D pseudo rigid body model.
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4.1 Potential energy

According to the first law of thermodynamics, in an isolated system where no losses
are created in the form of heat (Q)and assuming that there is no conversion into kinetic
energy (K)the total potential energy (/1)is defined as:

n=u-w (12)
Where (U)is the internal strain energy and Wis the work done by the external forces.

4.2  Strain energy

To design the bistable structure we construct a planar system of six rigid bodies con-
nected with seven elastic/rotary hinges (revolute joints), as well as one elastic link (i.e.
linear spring). According to the 2D pseudo rigid body model (see Fig.6) the strain en-
ergy of the base cell consists of the sum of the energy stored in each spring (torsional
U,and linear U)).

U=U,+U, (13)
Strain energy of linear spring. U,is the strain energy from the linear spring, k; [%]is
the stiffness constant of the linear spring and Ay [m]is the deformation of the spring.
(14)

1
U= Ekz(m/))z

AP =P(6) —P(6y), Y = /IAZ — (lgcos0)? + lgsin@ — 21.sin(@ + D)  (15)

Strain energy of torsional springs. The strain energy from the torsional springs is the
sum of the energy of each individual torsional spring. k; [%]is the stiffness constant
of the torsional spring and Agis the deflection angle of each spring based on the initial
undeformed place ¢ (6,).

1 .
Ur =3 T k(A2 Ay = @; — 010,i:{1,2,.]. 7},

p1=¢3=10,
. ([l
@, = arcsin (— 0059) (16)
la
@, =1 — 20,

Ps =7 =2(C—0)
4.3 Mechanism’s equilibrium

Bistable structure. The storage and release of energy defines the structure’s stable
equilibrium positions. Equilibrium is established at a point in configuration space when
no external forces Pare required to maintain the structure’s position (the work done by

the external forces Wis equal to zero). In these positions the total potential energy of
the system has an extrema. Z—Z lo=6,= O
The equilibrium position is characterized as stable if for every possible small displace-

ment from the equilibrium position the system tends to return to the same position, i.e.
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the total potential energy is at a local minimum and thus increases during the displace-

an
ment. — |g=g.> 0
ent. 55 lo=0,

The equilibrium position is characterized as unstable if for every possible small dis-
placement from the equilibrium position the system tends to move even further away

from the initial position, i.e. the total potential energy is at a local maximum and thus

. . on
decreases during the displacement. Py lo=6,< 0

There are also mechanisms where if the system shifts to a new position, it will remain
in that position, that is, each position is an equilibrium position. This balance is char-
acterized as neutral. The potential energy of such a system does not change. To inves-
tigate the precise stability of this system, higher order derivatives must be examined.
The above is the energy method and it is based on the Lagrange-Dirichlet theorem,
which states that “when the potential energy has a minimum for an equilibrium position,
the equilibrium position is stable” [13]. For a structure to be bistable in a given config-
uration, it must meet three criteria: (o) The function of the potential energy must have
three critical points (extrema). (§) The second derivative of potential energy must be
positive in two of these solutions, indicating two stable states, while it must be negative
in all other solutions, indicating unstable positions. (y) The two stable positions as well
as at least one of the unstable positions must be viable positions (inside the range of its
defined motion) [14].

Strain energy of torsional springs. If we remove the linear spring from the structure
(U; = 0)and k,is chosen to be the only non-zero spring constant, then the internal
strain energy consists only of the energy stored in the torsional springs. So, the equilib-
rium position where the potential energy of the system has an extrema is:

on _ . _ U,

7
dp;
30 -2 % =0:Zkr(<ﬂi—¢io)a—gl=0:<ﬂi=§0io 17)
i=
Therefore, for this type of configuration (if we remove the linear spring) the initial un-
deformed state is the only equilibrium position the mechanism has. The structure does

not have a bistable behaviour.

Strain energy of linear spring. If k;is chosen to be the only non-zero spring constant,
then the total strain energy results from the strain energy of the linear spring (U = U,).

So, the potential energy of the system presents critical points where Z—Z becomes zero
or is not defined.

on U, oY Y ; Po =0 (18)
%—Oﬁﬁ—ozkl(@l’_lpo)%—()ﬁ %=0
Y — 1Py =0 =0 = 6, initial undeformed state. (19)

W _ 0= 1g%sin(26)

a6 2 [14%—(lgcos6)?

The three critical points of the function are at 6, 6, 8,. Then with the second derivative

2
of the potential energy ';TZwe find the maxima and minima and thus the stable and un-

stable equilibrium as stated before.

+ lgcos® — 2lccos(6 + D) = 0 =| z _ zl (20)
- Y2
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Total strain energy k.., k; > 0. In a third case where the stiffness constants of both the
torsional and the linear spring are different from zero, the internal strain energy of the
mechanism is obtained according to Eq.13. Therefore, for the structure to present bi-
stable behaviour the ratio k,./k;is:

7 -1
d k. P a9;
9ok _ %% 0% 21
0V =07y, Awae(,zﬂ"’l ae> 1)

i=1
4.4  Deformation load

In our structure the strain energy and the complementary strain energy are equal. Thus,
from Castigliano's first theorem will get:

ou
ou ou 90

F " 9(h(8) — hi(6)  9m(6)
a0

5  Material properties

5.1 Density

Our structure is defined by geometric topological principles without being limited by
the length scale of the mechanism. So, we can analyse our structure as a porous medium
with the mechanical metamaterial part considered as the skeletal portion of the contin-
uum body and the space in between as the pore network. We will set our base cell as
the representative elementary volume of the material which includes the volume of both
"phases":

V. volume of the mechanism

Vg volume of the "empty" space

V, + Vg = V: bulk volume of the continuum body

For our structure the volume (V)is given by: V = h; * h, = 1. Thus, from Eq.2 the ex-
pression of the volume becomes:

V = 2lgzcosh /lAZ — (lgcosB)? — 1%sin(26) (23)

A particularly important property of materials is the percentage of the volume occupied
by their matter. This is the relative density and is the percentage of the mechanism’s
volume to the bulk volume (p = V,,/V). In our structure the volume of the mechanism
(V) remains constant throughout its deformation. However, the same is not true for
bulk volume. So, the relative density fraction in our two stable equilibrium states is:

p(62) _ V(6o)
p(By) V(62)
Density and porosity affects properties of materials related to transport phenomena (wa-

ter absorption, air permeability, thermal and electrical conductivity), mechanical prop-
erties and more.

(24)
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5.2  Stiffness
During the movement of the mechanism the forces acting on it are in equilibrium.
ou
6U=6W=>6U=Pau=>7=aas (25)

The mechanical properties of the metamaterial that are necessary to create the transition
from one stable position to the second are defined as:

ou au 92U %U
7 =gde > O'ij = Wg” = aO'ij = Wg” = Cijklaekl = ng] = Cijkl
d%Uu
0%U 002 (26)
=Ta. a. Cijkl =T 3. A
Vog;j0ey Vagijagkl
0600

6  Application

6.1 Geometry

The parameters that define the geometry are:
s T
L =15+10m,ls =3+ 107 m, [ =5+ 10m,D = —k, = 0 @7)

Under the restrictions of the manufacturing parameters (Eq.4) we can state that this is
a valid configuration. Based on the above parameters (Eq.27) and Eq.3 we derive that
the domain of deformation is:

0 € [0.49,0.92](rad) (28)
The side lengths (Eq.2) of the base cell at the two extreme positions are:
hy(Gmin) = 5.29mm
hi(0nax) = 3.60mm

, hy(Omin) = 13.35mm (29)
_ 2 2 _ 2\Ymin
h, = [, (lgcosh) lgsing =| Ry (Bmey) = 12.50mm

|Ah1| _ |h1(9min) B hl(gmax)|

hy = 2lgcosO =]

= =0.32>103
Lhy |1 Ry (Omax) |
% — |h2 (gmin) - hz(gmax) = 0.064 > 1073 (30)
hz | hz(gmax)

As can be seen, the structure during tension (from the initial undeformed position 6, =
OmaxWe go to 6,,;,,) undergoes large deformations.
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6.2 Equilibrium positions

Since only the linear spring contributes to the strain energy, then according to Eq.18 the
equilibrium positions of the mechanism are:

- ou, - 6, = 0.92
6, = 0.69
0% 0 0211 0 0% 50 32)
Ty ] Py ) YTy 32
067, _, 06%|,._,. 06%|,_,

In this case our structure will have two stable positions (6,,68,)and one unstable
(6,) within its range of motion. It stores energy during part of its motion 8 €
[0.92,0.79]and then releasing it as the mechanism moves toward a second stable state
6 € [0.79,0,69].

6.3 Poisson's ratio

During the deformation at the bistable domain the strain tensor from Eq.6 becomes:

0.016 1
0.104
0.014 |
0.08 0.012 |
0.010 1
0.06
- % 0.008
0.04 4 0.006 1
0.004 4
0.02
0.002 1
0.00 4 0.000 1
0.0 0.2 0.4 0.6 08 1.0 0o 02 04 06 08 10

normalized displacement normalized displacement

Fig.7 Strain tenso

Therefore the function of Poisson’s ratio is:

0.3
0.2
0.1 -l

0.0
-8
-0.1 \ =10

0.0 0.2 04 06 08 1.0
normalized displacement

viz

0.0 0.2 0.4 0.6 0.8 1.0
normalized displacement

Fig.8 Poisson's ratio
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6.4 Deformation load
d
P _ 5y
g_g kzﬂll)g—lg ky a(’gé(ﬂ))
Y 0hi(6) dh;(6) A ayPp
99 99 P, _ Mo
ki, 0(hy(0))
a0

The ratio of force by the stiffness of the linear spring as a function of normalized dis-
placement is shown in the graph below (Fig.9). The force does not monotonically in-
crease with displacement. The saw-tooth serrations are caused by snap-through buck-
ling, from which the metamaterial bistability originates.

1e—5
1.00 4
— P
0.75 P2
0.50 -
0.25 4
H]
a 4
0.00 1~ €, & 8
~0.25 1
-0.50
—0.75 4
0.0 0.2 0.4 0.6 0.8 1.0

normalized displacement

Fig.9 Deformation load.

6.5 Relative density

From Eqg. 23 we get the bulk volume in the three equilibrium positions:
V(8y) = 59.74mm3V (8,) = 53.71mm3V (6,) = 45.45mm3 (34)
So, the relative density fraction in our two stable states is:
p(62) _V(6o) _
p(8o)  V(62)

(35)

1.31

6.6  Stiffness

The stiffness is negative between the maximum and minimum points of force.
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Fig.10 Stiffness tensor
Conclusion

In this paper, we presented a novel planar mechanical metamaterial that exhibits bista-
ble and auxetic behaviour. The combined structural bistability and negative Poisson's
ratio has not been previously observed in the re-entrant arrowhead topology. We believe
the proposed mechanism enable the design of new programmable structures across
scales and the reduction of energy consumption in various sectors.
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