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Abstract. The development of a reliable method for the rapid assessment of the 

expected level of seismic damage of buildings constructed in countries with high 

seismicity areas is one of the crucial issues of current research, so that the author-

ities can take the necessary decisions for their rehabilitation or retrofit. A new 

approach to the problem is the application of methods that fall within the field of 

Artificial Neural Networks (ANNs). In this paper, an application of ANNs is at-

tempted to predict the level of seismic damage in reinforced concrete frames. For 

this purpose, 27 frames with different structural characteristics were selected, de-

signed and analyzed by nonlinear dynamic analysis. Then, ANNs were used to 

test their ability to reliably predict the level of seismic damage. The parameters 

that configure the networks were also investigated and their performance was 

evaluated using a number of metrics. The results showed that the optimal network 

can estimate the seismic damage level with significant reliability, provided that 

the training sample and the network modeling parameters are properly selected 

through a testing procedure. 

Keywords: Seismic Damage Assessment, Artificial Neural Networks, Machine 

Learning, Reinforced Concrete Buildings. 

1 Introduction 

One of the most important and topical scientific issues in the field of seismic engi-

neering is the assessment of the structural response of buildings subjected to seismic 

excitations. To date, a large number of researchers have addressed this issue and several 

different methods have been proposed for the seismic assessment of structures. Many 

of these methods focus on the rapid estimation of seismic damage and seismic vulner-

ability of buildings without the requirement of performing time-consuming nonlinear 

analyses (e.g. [1-4]). These methods, which use practices based on the application of 

statistical theory, have two main drawbacks: they cannot always reliably account for 

complex nonlinear relationships between the parameters describing the problem and 

they are unable to adequately solve complex problems involving a large number of 
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variables. In recent decades, the increase in computer power has led to the development 

of modern statistical methods based on the adoption of artificial intelligence and ma-

chine learning algorithms. These algorithms achieve seismic response estimation by 

extracting patterns from data collected or generated through measurements or analyses. 

Modern research on these methods has revealed that they can provide a fast, reliable 

and computationally easy way to evaluate buildings' seismic damage and that they can 

be used as an effective alternative to conducting demanding and time-consuming anal-

yses (e.g. [5-6]). 

A significant number of published research papers have focused on predicting the 

level of seismic damage of buildings by applying machine learning methods, especially 

Artificial Neural Networks (ANNs). A detailed literature review of the most important 

works in the field of applying machine learning methods for structural damage assess-

ment was carried out by Harirchian et. al [7], Xie et. al [8] and Sun et. al [9]. In the 

following, a brief review of some of the most important related research works is given. 

Molas and Yamazaki [10] were among the first researchers to study the ability of ANNs 

to accurately predict the seismic damage of wooden structures. Stephens and 

VanLuchene [11] trained ANNs to use them to estimate the damage level of reinforced 

concrete buildings expressed through Park and Ang's damage index. Latour and Omen-

zetter [12] investigated the ability of ANNs to reliably estimate the seismic damage of 

planar reinforced concrete frames using the results of nonlinear dynamic analyses. 

Rofooei et al. [13] used data from nonlinear dynamic analyses of reinforced concrete 

frames to investigate the effect of structural and seismic characteristics on the predic-

tive ability of the ANNs. Kostinakis, Morfidis et al., in a series of research papers [14-

20], attempted to assess the reliability of the ANNs in terms of estimating the seismic 

response of reinforced concrete buildings. In addition, they examined the optimal num-

ber and combination of input parameters through which the most accurate seismic dam-

age prediction can be achieved, the influence of the parameters used for the design and 

training of the networks on the effectiveness of their predictions, and the effect of the 

presence of masonry infills on the results. From this work, it was generally concluded 

that ANNs have the potential for relatively reliable real-time predictions of the level of 

seismic damage of buildings, as long as a sufficiently large database is available to train 

them. 

Thus, in the context of the present study, a pilot application of ANNs for the assess-

ment of the seismic damage level of reinforced concrete (r/c) frames designed accord-

ing to the provisions of EC2 [21] and EC8 [22] was attempted. For this purpose, 27 r/c 

frame buildings with different structural characteristics, such as the number of storeys 

and number and length of openings, are selected, designed and analysed using Nonlin-

ear Time History Analysis (NTHA). These buildings were analysed for 65 seismic ex-

citations obtained from relevant international databases. From the analyses, their global 

damage index in terms of Maximum Interstorey Drift Ratio (MIDR) was calculated. 

This created a large training database with 1755 records. Subsequently, based on the 

above training sample, perceptron-type ANNs were used to investigate their ability to 

reliably estimate the seismic damage levels. The problem was formulated as a pattern 

recognition problem, which means that the aim is to predict the classification of frame 

to pre-defined seismic damage categories on the basis of the value of the MIDR. The 
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parameters that configure the networks were also investigated and their performance 

was evaluated using a number of metrics. The results of the investigation showed that 

the optimal network can estimate the seismic damage level with significant reliability 

provided that the training sample, as well as the network configuration parameters, are 

properly selected through a process of testing and optimization. 

2 Artificial Neural Networks (ANNs) 

The Artificial Neural Networks (ANNs) are complex computational tools which are 

capable to handle problems using the general rules of the human brain functions. Thus, 

using ANNs it is possible to approximate the solution of problems such as the pattern 

recognition and the function approximation problem. The ANNs’ function is based on 

the combined action of interconnected processing units that are called artificial neurons 

(Fig. 1(a)). The artificial neuron receives input signals (x1, x2,…., xm) and transform 

them to an output signal (yk) through the use of an adder (which adds the products of 

the input signals by the respective synaptic weights (wk1, wk2,…., wkm) of neuron’s syn-

apses) and the use of an activation function (which has as argument the uk that results 

from the adder and transforms it to the output signal yk). For details about the inputs 

and outputs of the present investigation see Section 3. Note that the problem was for-

mulated as a pattern recognition problem, which means that the aim is to predict the 

classification of frames to pre-defined seismic damage categories on the basis of the 

value of the MIDR. In this case, the output is the classification of a r/c frame which is 

subjected to a seismic excitation into pre-defined seismic damage classes. Thus, the 

unknown function (which the ANNs have to approach) has as output a vector which is 

used for the mapping between the values of the global damage index in terms of MIDR 

and the predefined damage classes (see for example Fig. 2). Synaptic weights are nu-

merical values that determine the strength and direction of the impact of one neuron on 

another. The activation function is a function that calculates the output of the network 

based on its individual inputs and their weights. Fig. 1(b) presents the typical configu-

ration of a MFP type ANN with four layers of neurons (input layer, two hidden layers 

and output layer). The hidden layer is a series of artificial neurons that processes the 

inputs received from the input layers before passing them to the output layer. The so-

lution of problems using ANNs is accomplished if they have been trained using the 

training algorithms. These algorithms are procedures which require a set of n input 

vectors x and the corresponding to them n output vectors d that called target vectors. 

The n pairs of vectors x and vectors d constitute the training dataset. During the training 

procedure the values of the synaptic weights (w) are successively altered until the error 

vector that is produced by the ANN is minimized. 
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Fig. 1. The typical artificial neuron (a) and typical configuration of a Multilayer Feedforward 

Perceptron (MFP) network (b) 

 

Fig. 2. General form of output vectors o (three damage classes) 

3 Formulation of the Problem 

3.1 Steps of the Methodology 

The procedure adopted in order to formulate the problem in terms compatible with 

ANNs' methods consists of the following steps: 

● Generation of the training dataset: selection of a sufficient number of representa-

tive r/c frames, design and modeling of the inelastic properties of the buildings 

and selection of seismic records. 

● Selection of the input parameters of the problem (structural and seismic param-

eters). 

● Conduction of NTHA, in which the buildings are analysed for the selected seis-

mic records and the level of the seismic damage is determined in terms of an 

appropriate seismic damage index, which is selected as the output (target) pa-

rameter of the ANNs. 
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3.2 Generation of the Training Dataset 

Selection, design and modeling of the inelastic properties of the frame buildings 

For the generation of the training dataset, 27 r/c frames were chosen, which are dif-

ferentiated from each other in terms of the following characteristics: 

● Number of storeys (height of frame): 3, 5 and 7 storeys. 

● Number of openings: 3, 5 and 7 openings. 

● Opening length: 3.0, 4.5 and 6.0 m. 

For the frames' modeling all basic recommendations of EC8 [22], such as the rigid 

zones in the joint regions of beams/columns and the values of flexural and shear stiff-

ness corresponding to cracked r/c elements were taken into consideration. It also must 

be noted that the frames were considered to be fully fixed to the ground. The frames 

were designed considering static vertical as well as earthquake loads using the modal 

response spectrum analysis (for soil category C and PGA=0.24g), as described in EC8 

[22]. The r/c structural elements were designed following the provisions of EC2 [21] 

and EC8 [22] and considering the following materials: concrete C20/25 and steel 

B500c. After the frames' design, the modeling of their inelastic properties was made 

with the aid of lumped plasticity models (plastic hinges) at the column and beam ends. 

Earthquake Records 

A suite of 65 pairs of horizontal earthquake excitations obtained from the European 

[23] and the PEER [24] strong motion databases was used as input ground motion for 

the analyses which were performed in order to generate the networks’ training dataset. 

The seismic excitations, which have been chosen from worldwide well known sites 

with strong seismic activity, were recorded on Soil Type C according to EC8 [22]. The 

ground motion set employed was intended to cover a variety of conditions regarding 

tectonic environment, modified Mercalli intensity and closest distance to fault rapture, 

thus representing a wide range of intensities and frequency content. The elastic spectra 

of the ground motions are shown in Fig. 3. 

 

Fig. 3. Elastic spectra of the seismic motions 
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3.3 Inputs 

The parameters which describe the problem of the assessment of the r/c buildings' 

seismic damage can be categorized in two classes: the structural parameters and the 

seismic parameters. 

Structural Parameters 

The response of r/c structures to seismic excitations and, therefore, the assessment 

of the expected level of structural damage, is a multiparametric problem which depends 

on an extremely large number of structural parameters. Thus, the problem of selecting 

the appropriate structural parameters that most influence the behaviour of a building 

under seismic excitation has no single solution. The use of ANNs gives a greater flex-

ibility, as it is possible to use any number of structural parameters that is desired (see 

e.g. [12]). In the context of this paper, three structural parameters with three different 

values each (total number of frames: 333=27) were considered as an approach to 

solve the problem: 

● Number of storeys (height of frame): 3, 5 and 7 storeys. 

● Number of openings: 3, 5 and 7 openings. 

● Opening length: 3.0, 4.5 and 6.0 m. 

Seismic Parameters 

As regards the seismic parameters which are used to describe the seismic excitations 

and their impact to structures, there are many definitions which are resulted from the 

analysis of accelerograms records (see e.g.[25]). These parameters can be classified 

into: (a) seismic parameters determined from the time histories of the records and (b) 

seismic parameters determined from the response spectra of the records. The reasons 

for the proposal of the large number of seismic parameters are the complexity of both 

the earthquake phenomenon and the complexity of the response of structures to seismic 

excitations. At this point, it is worth emphasizing the fact that the possibility of the 

ANNs to consider large numbers of parameters as inputs relieves the need to select only 

one specific seismic parameter, which may not be the most appropriate for the optimal 

correlation of the seismic intensity to the level of buildings' structural damage. For the 

investigation conducted in the present study, the seven seismic parameters presented in 

Table 1 have been chosen. These parameters have been widely used in scientific liter-

ature for the quantification of strong motions' intensity. 
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Table 1. Seismic parameters. 

Ground Motion Parameter Calculation procedure Remarks 

Peak Ground Acceleration: 

PGA 
max|a(t)| a(t), v(t) and d(t): 

acceleration, 

velocity and dis-

placement time his-

tory 

ttot: total duration of 

the ground motion 

Sa: acceleration 

spectrum 

PSV: pseudoveloc-

ity spectrum 

ξ: damping ratio 

Peak Ground Velocity: PGV max|v(t)| 

Peak Ground Displacement: 

PGD 
max|d(t)| 

Arias Intensity: Ia Ia = (
π

2g
) ⋅ ∫ [a(t)]2dt

ttot

0

 

Cumulative Absolute Veloc-

ity: CAV 
CAV = ∫ |a(t)|dt

ttot

0

 

Acceleration Spectrum Inten-

sity: ASI 
ASI = ∫ Sa(ξ = 0.05, T)dT

0.5

0.1

 

 

Housner Intensity: HI HI = ∫ PSV(ξ = 0.05, T)dT
2.5

0.1

 

3.4 Conduction of Analyses and Computation of the Seismic Damage (ANNs' 

Output) 

It is well-known that the damage indices are used for the numerical modeling of the 

damage level in the vulnerability assessment of structures and can be grouped into cat-

egories based on whether they are local or global, deterministic or probabilistic, struc-

tural or financial. In the present study, the seismic damage of r/c buildings was ex-

pressed in terms of the Maximum Interstorey Drift Ratio (MIDR). The MIDR, which 

is generally considered an effective indicator of global structural and nonstructural 

damage of r/c buildings (e.g. [26]), corresponds to the maximum drift among the frame 

storeys. The relation between the MIDR values and the description of the seismic dam-

age state of r/c frames which was used in the present study is illustrated in Table 2 [27]. 

According to this classification, the number of damage categories/levels (three) is con-

sistent with the widely used seismic damage classification logic of light (green), mod-

erate (yellow) and heavy (red) damage states used in the case of rapid seismic assess-

ment of buildings after strong earthquake events. In order to generate the dataset re-

quired for the training of the ANNs, the selected buildings were analyzed by means of 

NTHA for each one of the 65 earthquake ground motion pairs presented in section 3.2. 

Thus, a total of 1755 NTHA (27 buildings x 65 earthquake records) were performed. 

For each one of the 1755 analyses, the required data for the MIDR calculation were 

exported. 
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Table 2. Relation between MIDR and damage state. 

MIDR (%) <0.50 0.50-1.00 >1.00 

Degree of Damage Slight Damage Moderate Damage Heavy damage 

4 ANNs' Configuration and Training Algorithms 

The solution of any problem using ANNs requires defining the parameters with the 

aid of which they will be designed/configured and trained. Determining these parame-

ters is not straightforward, but requires a time-consuming testing process, where in each 

case the performance of the networks is examined using specific metrics. In the context 

of this study, the following choices were made for the configuration parameters of the 

ANNs: 

● Number of Inputs: The number of inputs of each ANN equals the number of 

parameters that enter the problem to be solved. Thus, as mentioned above, the 

number of inputs was set equal to 10, i.e. the sum of the three structural param-

eters and the seven seismic parameters. 

● Number of Outputs: In the present case the number of outputs equals to one and 

corresponds to the global damage index MIDR. 

● Number of the hidden layers: Networks with a single hidden layer were selected. 

This choice was based on the fact that the efficiency of such an ANN has been 

well-documented in numerous relevant research studies (e.g. [12]). 

● Number of neurons in hidden layers: The optimum number of neurons in hidden 

layers is not uniquely defined for all problems. In the context of the present 

study, an investigation for the determination of the optimum number of neurons 

in the hidden layer was conducted. More specifically, networks with a number 

of neurons in hidden layer that ranges between 10 and 100 were configured. 

● Parameter Alpha: This parameter controls overfitting, limiting the values of syn-

aptic weights.  The values of Alpha that were adopted in this study range be-

tween 10-5 and 0.01. 

● Activation functions of neurons: Two different types of activation functions for 

neurons of the hidden layer were used: the sigmoid function (logistic) and the 

hyperbolic tangent function (Fig 1(a)). These functions introduce nonlinearity 

into the behaviour of networks, making them more efficient. 

● Partition of the dataset: In order to avoid the overfitting effect, the Cross-Vali-

dation procedure was used, which gives a more generalized solution. In this 

case, the initial training sample is first divided into a training sample (75%) and 

a control sample (25%). Then the 75% is divided into five equal parts and each 

time one fifth (20%) is used for control and the remaining 80% for training. The 

algorithm trains each time for 80%, concludes a function, tests with the remain-

ing 20% and calculates a performance value. The same process is done by se-

lecting a different one of the five parts each time the training sample is split and 

finally the average value of the network performance metric is calculated from 

the five cases. 
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Finally, it should be noted that the procedures for generating, optimizing and training 

the ANNs used in this paper were implemented using the Python programming lan-

guage [28]. 

5 ANNs' Performance Evaluation Metrics 

The performance of the ANNs, i.e. the total error produced by the networks in esti-

mating the level of seismic damage, can be quantified (measured) by a number of pa-

rameters. The selection of the correct performance metrics is a key part of the solution. 

The Accuracy metric is the most basic performance metric of an ANN and is defined 

as the ratio of correct predictions to the total number of predictions made. However, 

there are cases where Accuracy can lead to incorrect estimates, so a number of other 

metrics have been defined that can also quantify the performance of an ANN. Such 

metrics used in this paper are Precision, Recall, F1-Score, Micro Average F1 and Macro 

Average F1. Note that the Precision, Recall and F1-Score metrics are calculated sepa-

rately for each level of seismic damage, while for the Accuracy, Micro Average F1 and 

Macro Average F1 metrics an overall value is calculated for all three damage catego-

ries. Also, the values of all metrics are assigned values from 0 (zero network perfor-

mance) to 1 (excellent network performance). A detailed presentation of the calculation 

of the above metrics is given in [29]. 

6 Results 

Table 3 shows the performance evaluation metrics of the four optimal neural net-

works, as obtained from the iterative process of optimizing their configuration param-

eters presented in Section 4. The four optimal ANNs are as follows: 

A. A hidden layer of 80 neurons with a tansig activation function 

B. A hidden layer of 100 neurons with a logsig activation function 

C. Two hidden layers of (90,90) neurons with tansig activation function 

D. Two hidden layers of (100,100) neurons with logsig activation function 

For each metric, the four ANNs are compared with each other and the most efficient 

in estimating the level of seismic damage is given a strong coloring. The table shows 

that the four optimal neural networks perform equally well since their metrics show 

small deviations. However, neural network B (a hidden layer of 100 neurons with an 

activation function logsig) performs better than the four, as for almost all metrics it 

obtains the maximum value. For this network the accuracy value is 86%, which demon-

strates the ability of the ANNs to reliably predict the level of seismic damage, provided 

the training sample, as well as the network configuration parameters, are properly se-

lected. 
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Table 3. ANNs' Performance Evaluation Metrics 

 PRECISION RECALL F1-SCORE 

 Α Β C D Α Β C D Α Β C D 

Slight 

Damage 

0.9

1 

0.9

0 

0.9

0 

0.9

2 

0.9

2 

0.9

1 

0.9

4 

0.9

3 

0.9

2 

0.9

0 

0.9

2 

0.9

3 

Moderate 

Damage 

0.7

0 

0.7

5 

0.7

4 

0.7

1 

0.5

4 

0.7

0 

0.7

0 

0.6

5 

0.6

1 

0.7

3 

0.7

2 

0.6

8 

Heavy 

Damage 

0.8

1 

0.8

8 

0.8

8 

0.8

6 

0.8

9 

0.9

1 

0.8

8 

0.8

8 

0.8

5 

0.8

9 

0.8

8 

0.8

7 

 

ACCURACY MICRO AVG F1 MACRO AVG F1 

Α Β C D Α Β C D Α Β C D 

0.8

2 

0.8

6 

0.8

5 

0.8

4 

0.8

2 

0.8

6 

0.8

5 

0.8

4 

0.7

9 

0.8

4 

0.8

4 

0.8

2 

7 Conclusions 

The present paper attempts a pilot application of the ANNs for the assessment of the 

structural damage level in case of r/c frames under seismic excitations. To this end, 27 

frame buildings with different structural characteristics were selected and designed. 

The buildings were analysed by means of the nonlinear time history method for 65 

seismic excitations obtained from relevant international databases. From these anal-

yses, their global damage index in terms of maximum interstorey drift ratio was calcu-

lated. Subsequently, based on the above training database, perceptron-type ANNs were 

used to investigate their ability to reliably estimate the seismic damage levels. The pa-

rameters that configure the networks were also investigated and their performance was 

evaluated using a number of metrics. The results of the investigation revealed that the 

optimal network can estimate the seismic damage level with significant reliability (86% 

accuracy) provided that the training database, as well as the network configuration pa-

rameters, are properly selected through a process of testing and optimization. 
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