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Abstract. The paper introduces an innovative method to evaluate the fragility of
ancient freestanding colonnades. It compares the seismic response and stability
of colonnades with freestanding columns using a simplified modeling approach
suitable for seismic design software. The methodology bypasses the need for
time-consuming or complex simulations. Detailed discussion is provided on the
performance criteria and the methodology for the fragility estimations. The case
studies aim to address the proposed modeling and its effectiveness in simulating
ancient structures and promptly generating accurate fragility curves. The Engi-
neering Demand Parameter consistently focuses on column rotation over the
slenderness angle, while various Intensity Measures are explored.
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1 Introduction

In many cases, ancient structures consist of freestanding columns that are either
monolithic or multi-drum. If the structure consists of more than one column that are
capped by an architrave, then they form a colonnade. Such structures have survived
powerful earthquakes over their lifetime and are of main interest for civil engineers.
They can be found in archaeological sites and are commonly made of marble. This
study primarily focuses on monolithic column configuration with emphasis on column
arrays.

Ancient freestanding colonnades exhibit rocking behavior, and their behavior has
similarities with the behavior of a monolithic rocking column, as discussed by Diaman-
topoulos and Fragiadakis [1]. The rocking column stands as a fundamental problem in
earthquake engineering, initially addressed by Housner [2] who proposed its equation
of motion. Many researchers, e.g. DeJong and Dimitrakopoulos [3] and Dimitrakopou-
los and Giouvanidis [4], among others, have worked on this topic while Cheng [5],
Palermo et al. [6] and Priestley and Tao [7] demonstrated the impressive lateral load
stability of these structures. Moreover, Psycharis et al. [8] proposed a seismic fragility
framework for ancient columns, introducing a fully Performance-Based Earthquake
Engineering (PBEE) approach. This work highlights the characteristics of ancient
multi-drum columns stacked rigidly atop one another using the Discrete Element Mod-
eling (DEM).

The current study proposes robust modeling techniques for assessing the seismic
response of monolithic rocking structures, e.g. rocking frames (Fig. 1). Moreover, it
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presents a performance-based and rapid risk assessment framework for investigating
their seismic response. The paper is built on previous research works of Diamantopou-
los and Fragiadakis [1, 9], where it was demonstrated the Finite Element Modeling with
simple beam elements and rotational springs with negative stiffness. This approach is
easily extended to monuments yielding accurate solutions for a broad array of structures
with members that can rock.

(@)

(b)

Fig. 1. Modeling of: (a) a rocking frame and (b) an array of freestanding columns using the Fi-
nite Element Method.

2 Simplified models for rocking colonnades

Colonnades that exhibit uplift and rocking behavior can generally be represented
using the model of Figure 2. This model builds upon the single-column framework
addressed in Diamantopoulos and Fragiadakis [9]. It involves nonlinear rotational
springs located at the rocking interfaces, namely between the ground and the columns,
as well as between the epistyle and the top of the columns. Parameters to be defined
include the mass matrix and the restoring moment, Myes, Of the system through the M —
0 relationship of the rotational springs. Essentially, the proposed model addresses the
generalized equation of motion governing a planar rocking structure, as initially studied
in Diamantopoulos and Fragiadakis [1].
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Fig. 2. A two-bay planar rocking structure using the proposed simplified modelling approach.

Based on Fig. 2, the mass of the piers is m¢, concentrated at their center of gravity
and the mass of the deck/architrave is my, lumped at the nodes D1, D, and Ds. Nonlinear
springs are placed at the top and the bottom of the columns defining the total restoring
moment. It is pointed out that sliding between the columns and the base or between the
columns and the deck is always neglected. Furthermore, considering that the deck’s
mass is lumped at the top pivot point and its distance from the pivot point of the base
is 2R, it is assumed that the rotational moment of inertia at the center of gravity of each
column is Ici= Ico= Ics= 1/3mcR? + mcb?. In the case of N columns, the epistyle mass
is my/(N — 1) and 0.5mp/(N — 1) at the internal and the end nodes, respectively. The
rotational moment of inertia at nodes Dis and Dns will be equal to lpis = ... = lpns =
[OSmM(N*])](Zb)Z and at nodes Dy, ..., D(Nfl)s it will be Ipys =... = ID(N*])X = 2lpis.
The M-0 relationship of each spring is obtained from the restoring moment and is dif-
ferent at the bottom and the top spring due to the different axial load:

m .
M®™ () = m_gRsi 0—-0)+——L—gRsin(asgn -6
(6) =m_gRsin(esgn )+k(N _l)g (asg )

M

M “P(0) :%gRsin(oxsgn 0-0)

where k = 1, 2 for the internal and the two external columns, respectively. It is men-
tioned that y = mp/(Nm¢) while the maximum restoring moment is obtained for = 0.
The proposed model is adopted for the fragility and risk estimations described in the
next sections.
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3 Fragility assessment framework

Fragility curves serve as an essential tool for assessing the seismic risk of a system.
They were initially developed to separate structural analyses from the hazard analyses
that are referred to by engineering seismologists. Fragility curves refer to the probabil-
ities of exceeding a damage state and thus these probabilities should be calculated. This
probability is calculated conditioned on the seismic intensity and is referred to an En-
gineering Demand Parameter (EDP) that exceed a specified threshold edp:

F.(IM) = P(EDP >edp|IM) @

To calculate Eq. 2 three possible response cases are considered: (i) system at rest,
(i) system uplifted and (iii) system overturned. With the aid of the total probability
theorem, the fragility can be calculated following the equation:

R :P(EDP | NoUplift ) PNoUpIift "’P(EDP | Uplift ) PUP'iﬁ+P(EDP | Ovn ) Fou ®)

where P(EDP | NoUplift), P(EDP | Uplift) and P(EDP | Ovtn) are the damage-state
exceedance probabilities for no-uplift, uplift and overturning, respectively. For columns
that will not uplift or overturn, P(EDP | NoUplift) = 0 and P(EDP | Ovtn) = 1, respec-
tively. Thus, the fragility curve calculation is simplified to:

FR = P( EDP 2 edp | Up“ft )(1_ I:)Ovtn - I:)NoUpIift )+ I:)Ovtn (4)

It should be mentioned that rocking data are assumed as lognormally distributed.
Hence, P(EDP > edp | Uplift) is calculated once the mean and the standard deviation
of the logs of the EDP, denoted as uiogeor and oiogeor [11], respectively, are known.
Once they are known they can be used to calculate the probability that the EDP exceeds
a threshold edp:

©®)

log( EDP ) -
P( EDPZedp|Up|ft):1_q)( og( ) ulogEDPJ
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where @ is the standard normal distribution. The risk can be expressed as the mean
annual frequency (MAF) of exceeding a damage-state. Adopting the PEER's formula,
the damage-state MAF is:

dA,y
diM

heop = |, P(EDP|IM )‘ dim ©)

where dim is the slope of the hazard curve. The MAF is obtained convolving the
slope of the site hazard curve Mm with the fragility curve P(EDP|IM) that is defined
with respect to the EDP and the IM considered. The hazard curve is assumed known
from site hazard analysis studies, as discussed in reference [13].
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4 Fragility analysis methods

4.1  Multiple stripe analysis

Multiple stripe analysis provides a nuanced understanding of how the system's vul-
nerability changes as seismic intensity increases, allowing for more targeted risk as-
sessment strategies. In the case of rocking structures, the damage-state fragility curves
can be calculated using severe approaches or methods. The Incremental Dynamic Anal-
ysis (IDA) proposed in Ref. [10] is a valuable tool for such problems. In the IDA
method, the system examined is subjected to ground motion records scaled to multiple
intensity levels. Single record capacity curves are then produced as has been discussed
in Diamantopoulos and Fragiadakis [12] and Fragiadakis and Diamantopoulos [13].

Multiple Stripe Analysis (MSA) method is another approach that has similarities to
the IDA. In this case, the records are scaled to the same IM and thus the EDP values
form a stripe. Stripes allow the direct calculation of the 50%, the 16% and 84% percen-
tile capacity curves conditional on the IM. It should be mentioned here that in IDA the
scaling factors are different, but the data can be converted to a stripe form using the
interpolation method. In this work only MSA was performed.

If the EDP values form stripes conditional on the IM value, Eq. 4 is solved using an
approach based on multiple stripe analysis. For every stripe, the mean and standard
deviation conditional on the 1M, are easily calculated. Considering the assumption that
the data follow the lognormal distribution, the fragility is obtained as:

E -0 Hiogeopr —109(edp) (
=

G\ogeDP

1-P

ovin — I:)NoUpIift ) + I:)Ovtn (7

Pnouplitt and Povin are determined as the proportion of simulations where there was
no uplift and overturning, respectively. This is obtained for every stripe, i.e. Pnoupiit and
Pown are calculated as the number of simulations of NoUplift or Ovtn over the total
number of simulations, respectively.

4.2  Cloud analysis method

In case of unscaled, or scaled with the same factor, ground motions, they are not
stripped and thus the data form a cloud. Thus, cloud analysis should be adopted to cal-
culate the fragility curves. The mean value of the logarithms (u0geop) and a single con-
stant value for the dispersion aiogepp are provided through a linear fit. Knowing piogeop
and oi0gepp and using Eq. 7 it is possible to calculate the fragility of the rocking simu-
lations. The latter requires knowledge of Pnorock and Pown. These probabilities can be
obtained with a logistic regression model which yields a probability estimation as a
function of the IM. Therefore, for the NoUplift and Ovtn cases the probabilities are:
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where the constants by, by, bs, bs are the parameters of the logistic regression model,
obtained with binomial-based, generalized linear model (GLM) regression.

4.3  Maximum-Likelihood (MLE) fitting

The maximum-likelihood (MLE) fitting [14] is adopted in both striped and cloud
data. The MLE fitting approach fits the Cumulative Distribution Function (CDF) of a
lognormal distribution on the EDP-IM plane. The fragility function is simply a lognor-
mal CDF of the form:

©)

F, = P( EDPzedp)zdb(log(EDP/ea)j

Ba

where 6, and fa are determined by maximizing the likelihood function and are the
median and the dispersion.

In fact, Multiple-stripe analysis provides the number of successes ns, i.e. the num-
ber of simulations that the damage-state has been exceeded after ni: total simulations.
Using the binomial distribution on the data of a single stripe, the probability of ns
successes after ny; Simulations, is defined as:

n
P(Success =n,,. ) :[ o j P(EDP® )= (1~P(EDP) )t (1)
I"]SUC
If there are k stripes, the MLE function is obtained substituting Eq. 9
to Eq. 10 as follows:

}D[Iog(EEPIOa)J (1_(Dlog(EI;P/9a)J e a1

The only variables to be determined are 8, and S, which are identified as the values
that optimize the likelihood function of Eq. 11. It's important to highlight that the fitting
process encompasses the entire dataset, a task readily accomplished with a basic com-
puter script. In cases where the EDP-IM pairs form a cloud, each simulation is consid-
ered a distinct stripe. Consequently, k represents the number of simulations, while Ny
is set to one (nwt = 1), and hsyc equals one or zero, depending on whether the simulation
surpasses the damage-state threshold or not, respectively.

_ k ntot,i
L _];[(n

suc i
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5 Numerical results and discussion

The structure under examination is a colonnade consisting of N = 3 columns of equal
height. The colonnade possesses the following properties: 2h = 5m, 2b = 0.75m, and y
= mp/(3m¢) = 1, where my represents the mass of the epistyle, and m signifies the mass
of each column. Moreover, the colonnade is topped with a rigid beam weighing the sum
of the weights of the columns. To validate the proposed modeling approach, the struc-
ture is subjected to both near-field and far-field ground motions. As illustrated in Fig.
3, the results obtained using the proposed model depicted in Fig. 2 are compared against
the equation of motion governing the problem. Remarkably, for both seismic records,
a high degree of agreement is observed, confirming the precision of the proposed
model.

2h=5m, tana=0.15, =1, N=3 2h=5m, tana=0.15, v=1, N=3
06 —EoM (Eq. 5) | 0.6 ~——EoM (Eq. 5)
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Fig. 3. Evaluation of the colonnade's response using the suggested model under: (a) a Loma
Prietta 1989, Saratoga - Aloha Ave, PGA=0.369 (near-field), (b) Northridge 1994, MUL279
component, PGA=0.52g (far-field).

Fragility analysis was conducted using a set of thirty ground motions representing a
scenario earthquake. Three damage-states corresponding to 8/a= 0.15, 0.35, and 1.00
were considered, with the chosen intensity measure (IM) being the normalized peak
ground acceleration, PGA/gtana. In Fig. 4a fragility curves derived with different ap-
proaches are compared. Smooth curves represent Maximum Likelihood Estimation
(MLE) fitting, while non-smooth curves were generated using Eq. 9. Notably, the two
approaches exhibit close results.

Fig. 4b compares fragility curves derived from cloud analysis with those from mul-
tiple stripe analysis. While the fragility curves coincide for the two damage-states, dif-
ferences are observed for the overturning damage-state. Insufficient records at high IM
values bias fragility curves in cloud analysis. Furthermore, Fig. 5 compares the re-
sponse of the colonnade with a single column using PGA/gtana and PGV as IMs. All
fragilities were determined using the MLE approach on stripped data. Overall, it is
mentioned that colonnades demonstrate greater stability compared to single columns
irrespective of the IM. However, IM selection does not impact the fragilities of the two
lower damage states, but it does for the near-collapse damage-state.
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Fig. 4. (a) Definition of smooth fragility curves, (b) comparison of multiple stripe and cloud
analysis. The damage-states considered are 6/a. = 0.15, 0.35 and 1.00.
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Fig. 5. Comparison of a column with a colonnade in case of N=3 (y=1, 2h=5.0m, 2b=0.75m)
using the fragility functions: (a) IM=PGA/gtana, (b) IM=PGV. The damage-states considered
are 0/0.=0.15, 0.35 and 1.00.

6 Conclusions

The paper presents a Performance-Based Earthquake Engineering (PBEE) frame-
work for the fragility assessment of ancient structures mainly suitable for monolithic
freestanding columns or colonnades. The numerical investigation validates the effec-
tiveness of the modeling approach in addressing various scenarios and providing pre-
cise estimations. Initially, the simple models, relying on the direct stiffness method,
offer a robust way to analyze different colonnade configurations that use basic struc-
tural assessment tools. Their advantage lies in reducing the computational cost by
avoiding complex relationships for the body interactions and the energy loss assess-
ment. The latter are often required in commercial Finite Element Method (FEM) or
Discrete Element Method (DEM) models. Furthermore, it is mentioned that the Engi-
neering Demand Parameter (EDP) is consistently the normalized rotation 6/a, while
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different options for the Intensity Measure (IM) are considered. The fragility assess-
ment is performed using either a cloud or multiple stripe analysis approach. Special
attention is warranted for simulations that overturn or do not uplift the structure.
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