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Abstract. The reliable assessment of the seismic risk, at urban, regional and na-

tional level, is extremely important for the government and society and contrib-

utes to the proper management of the pre-seismic crisis (interventions, strength-

ening of buildings and infrastructures), during the earthquake and post-earth-

quake. The seismic risk assessment involves many difficulties and uncertainties, 

as it depends on the successful implementation of several individual steps, start-

ing with the identification of the elements at risk, continuing with the assessment 

of seismic risk and vulnerability and finishing with the estimation of the risk and 

losses of all types. In all the above methodological frameworks, the use of Arti-

ficial Neural Networks (ANNs) is proposed in the literature. Artificial Intelli-

gence (AI)-based methodologies aim to improve the computational efficiency of 

simulations, by increasing the accuracy and reducing the computational cost. In 

this paper, a methodology using ANNs at the seismic hazard level is suggested 

to propose strong motion prediction equations (GMPE) derived from ANN train-

ing, by developing a methodological framework and a computational tool that 

enables continuous training and learning depending on the strong motion data 

that are fed to it. The proposed equations are compared with models in the liter-

ature to verify the reliability of their applicability. 

Keywords: Seismic risk assessment, seismic hazard, artificial neural networks, 

ground motion prediction equations, seismic strong motion 

1 Introduction 

The methodologies for the assessment of seismic risk of buildings and infrastruc-

tures are a significant tool for the evaluation of the exposure, the prioritization of inter-

ventions and the development of a comprehensive upgrade plan. In this context, various 

methodologies have been developed over the last decades for the determination of the 

assessed exposure, seismic hazard and seismic fragility, which are the individual steps 

for the assessment of seismic risk. At the same time, in several cases, computational 
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tools have been developed which integrate the individual methodologies, but the com-

putational cost and time required for the analysis and calculation of risk remain signif-

icant. For this purpose, methodologies have been developed, and utilized in the indi-

vidual steps of seismic risk determination, that utilize ANNs for their direct and reliable 

determination. In particular, ANNs have been used to determine seismic vulnerability 

(Xie et al., 2020, Stefanidou et al., 2021), and very recently they have been proposed 

for seismic risk assessment (Ji et al., 2021). Additionally, the use of ANNs for seismic 

risk assessment can be applied to the prediction of seismic losses in areas with high 

seismicity (e.g. Leousis and Pnevmatikos, 2018, Pnevmatikos et al., 2020). 

This paper presents a first step of a holistic seismic risk assessment methodology to 

be developed. The proposed methodology will be an integrated, versatile and easy-to-

use methodology for assessing the vulnerability and seismic risk of buildings and in-

frastructures, fully adapted to the Greek data. It will be an important tool in the hands 

of the relevant authorities, contributing to the identification and recommendation of 

cost-effective lines of intervention and guidelines for addressing the problem pre-seis-

mically and leading to the development of a common strategic plan to improve the 

resilience of buildings and infrastructures. More specifically, one of the most important 

steps of any seismic risk assessment methodology will be presented here, which is the 

assessment of the seismic hazard model. Ground motion predictive equations (GMPEs) 

derived from ANN training will be proposed, developing a methodological framework 

and a computational tool that enables continuous training and learning according to the 

strong motion (SM) data it is supplied with, and a comparison with models proposed in 

the literature will be presented to verify its applicability. 

2 The method 

The proposed methodology, part of which will be presented in the present paper, is 

illustrated in the form of a flowchart in Fig. 1. 

The first step is the selection of the building stock and infrastructure to be studied 

and their visualization in a GIS application. The second step is the assessment of the 

seismic risk, which is the subject of the present study. The seismic hazard assessment 

of the study area is a necessary component in the seismic risk assessment. For this rea-

son, a seismic hazard analysis is required. Rather than using a deterministic model for 

the worst earthquake that may affect the region of interest, probabilistic hazard analysis 

(PSHA) adopts a probability-based framework that considers all earthquake events that 

may occur in that region (Baker, 2008). PSHA begins by identifying potential earth-

quake sources and characterizing the distribution of earthquake magnitudes and dis-

tance from the source. Then the GMPEs are derived which give the earthquake intensity 

measure (IM) as a function of the earthquake source, path and local site conditions. One 

of the key steps of PSHA is therefore the calculation of appropriate GMPEs. There are 

several methodologies to derive these relationships and in some of them, the use of 

ANN is suggested (Ji et al., 2021). 

The next step is the assessment of the seismic vulnerability through the vulnerability 

curves and the visualization of the vulnerability in a GIS platform. Numerical 
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simulations based on the finite element method (FEM) are widely used to derive appro-

priate vulnerability curves. For reliable vulnerability assessment, a large number of nu-

merical analyses are required, thus increasing the computational cost. One way to re-

duce this computational cost is the construction of meta-models, which can replace 

time-consuming FEM models. Meta-models, such as artificial neural networks 

(ANNs), represent a set of sophisticated statistical algorithms that capture input-output 

relations of physical models and make predictions according to these relations. 

Finally, with the synthesis of all the above steps, the seismic risk for the study area 

and the exposed elements under study can be derived. 

 

Fig. 1. Methodological framework for seismic risk assessment using ANNs 

3 Development of equations by means of ANNs 

In this section, the process of formulating the equations developed by applying 

ANNs will be briefly presented. These equations concern the correlation of PGA and 

PGV with the parameters of earthquake magnitude (Mw), its Focal Mechanism (FM), 

the shear wave velocity Vs30 at the site of recording, and the distance of the recording 

site from the projection of the rupture point on the surface (RJB). The general form of 

the equations to be developed is: 

( ) ( ) ( ) ( ) ( ) ( )PGA w s30 JB PGV w s30 JBln PGA f M ,FM,ln V ,ln R and ln PGV f M ,FM,ln V ,ln R= =      
 (1) 

The equations were developed by applying Multilayered Feedforward Perceptron 

Neural Networks (MFPNN) (Haykin, 2009) which have the general form of Fig. 2. The 

application of MFPNNs and in particular those with a hidden layer has been proven to 
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lead to the approximation of unknown functions (Hornik et al., 1989) by training them 

with appropriate training sample sets (training datasets). The procedure for deriving 

equations approximating unknown functions via MFPNN is described in detail in the 

paper of Morfidis and Kostinakis (2019). 

As regards the training of the networks, it should be noted that a database consisting 

of 2492 samples was used. This database has been presented by Margaris et al. (2021) 

and is the most up-to-date in terms of SM data for the Greek region.  An extensive 

parametric investigation was performed in order to identify the network configuration 

that leads to the optimal results. In the first stage, the criteria for the evaluation of the 

results extracted from the examined networks concerned the correlation factor R (R-

factor) and the Mean Square Error (MSE). The parameters investigated are presented 

in Fig. 2. 

 

Fig. 2. Configuration and investigated parameters of the networks used 

The training procedure applied is the cross-validation method for selecting the optimal 

model (Diamantaras and Botsis, 2019) which consists of the following 2 stages: 

• Randomly dividing the set of training samples N times into three subsets and 

training the ANN with the training sub-set (training data sub-set, Fig. 2). In this 

process, all the ANN configuration parameters, as well as, the training algorithm 

are examined and finally the parameters that lead to the optimal performance 

(here based on the selected evaluation parameters R-factor and MSE) for the test 

sample portion (testing data sub-set, Fig. 2) are selected. 

• After determining the parameters that compose the ANNs with optimal perfor-

mance according to the criteria of the previous step, these networks are re-

trained with the whole training dataset without splitting it into sub-sets. 

In the context of the present study, the MFPNNs examined were initially classified into 

three general categories: 

(a) Networks with one hidden layer and with a number of neurons ranging from 1 

to 5. These networks were investigated to determine whether they can extract 

reliable correlation equations of the examined parameters since the small num-

ber of neurons leads to the extraction of closed elegant relations. 
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(b) In networks with a hidden layer and with a number of neurons ranging from 6 

to 30. These networks were investigated to examine how much a larger number 

of neurons can improve the correlation level. 

(c) In networks with two hidden layers. Although networks with one hidden layer 

are capable of approximating unknown functions, the performance of networks 

with two hidden layers was also investigated. The addition of the second hidden 

layer significantly increases both the complexity and the training time especially 

when a large number of networks with different configurations are investigated 

as in the present case. Thus, the aim was to investigate whether this large in-

crease in complexity is also reflected in the increase in performance of the cor-

responding networks. 

The module of machine and deep learning of MATLAB R2022a was used for the de-

velopment of ANNs and their training process.  Table 1 summarizes the results for the 

optimal configurations of the networks of the three general categories. 

Table 1. Comparative evaluation of the performance of the examined MFPNNs 

    1 Hidden layer 2 Hidden layers 

    
Number of neu-

rons<=5 

Number 

of neurons >5 

Number of neurons 

1-50 / layer 

SM Parameter / 

Evaluation Param-

eter  

Training Algo-

rithm / Configu-

ration 

Training Algo-

rithm / Configu-

ration 

Training Algorithm / 

Configuration 

PGA 

(cm/sec2) 

maxR 
BR/log-5 

0.934 BR/tan-13  0.935 BR/tan-log/36-24 0.936 

minMSE 0.524 BR/log-18  0.518 BR/tan-tan/20-8 0.510 

PGV 

(cm/sec) 

maxR BR/log-5 0.921 
BR/log-23 

0.922 BR/log-log/14-38 0.924 

minMSE BR/tan-4 0.471 0.467 BR/tan-log/36-14 0.453 

The most important conclusion drawn from the study in Table 1 is that adding a large 

number of neurons and/or a second hidden layer does not substantially improve the 

values of the R and MSE evaluation parameters. This means that it is possible to select 

MFPNN models with one hidden layer and number of neurons less than or equal to 

five. An additional important conclusion is that in all studied cases the BR algorithm 

led to the most reliable results however with very small differences from the other al-

gorithms considered. Based on the above conclusions it was considered sufficient to 

focus on network models with a hidden layer. For these models it can be shown (see 

e.g. Morfidis and Kostinakis, 2019) that the correlation relationship they extract has the 

form of Eq. 2 and Eq. 3. More specifically: 

(a) In the case where the activation function of the hidden layer neurons is the 

logsig function (Fig. 2): 
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(2) 

(b) In the case where the activation function of the hidden layer neurons is the tansig 

function (Fig. 2) then the only difference with respect to Eq. 2 is the following: 

Where in Eqs. 2 and 3: 

nn is the number of neurons in the hidden layer, 

wij is the value of the synaptic weight of the synapse connecting neuron i of the hidden 

layer to neuron j of the input layer (the values of wij comprise a dimensional matrix 

nxm where n=nn and m=4=number of input parameters as given in Fig. 2), 

wi is the value of the synaptic weight of the synapse connecting the hidden layer neuron 

i to the output neuron (the values of wi comprise a vector nx1) 

bi is the value of the bias of neuron i (for the neurons in the hidden layer, bi comprise a 

vector nx1, and since the output layer neuron is one, bi in this case is a scalar parameter), 

the exponent (o) denotes the output level, 

the exponent (int) denotes the hidden level, 

the exponent (norm) denotes a normalized value, i.e. the value of the input or output 

parameter after transforming it through the following normalization function: 

( )
( ) ( )

( ) ( )
( ) ( )

input

norm ds
w S30 JB

ds ds

X min X
X 2 1 X M , FM, ln V , ln R

max X min X

 −
=  − = 

−  

 
(3) 

Where in the above function: 

the subscript ds denotes the training sample (data set), 

the exponent (input) indicates that the value X is the value of the parameter to be given 

as input to the trained network in order for it to extract the prediction for the PGA or 

PGV, 

the value max refers to the max value of the parameter X in the training sample ds, 

the value min refers to the min value of parameter X in the training sample ds. 

Obviously, completely analogous equations to the above apply to the PGV parameter 

but with different values of the synaptic weights w and biases b as obtained after the 

training procedures of the respective MFPNNs. 

Finally, it should be noted that values of synaptic weights and biases of all optimal 

trained networks in Table 1 with one hidden layer are available at the following hyper-

link (link). 

  

https://www.dropbox.com/s/a899w31ivpsh8uf/%CE%A0%CE%91%CE%A1%CE%91%CE%9C%CE%95%CE%A4%CE%A1%CE%9F%CE%99%20%CE%95%CE%9A%CE%A0%CE%91%CE%99%CE%94%CE%95%CE%A5%CE%9C%CE%95%CE%9D%CE%A9%CE%9D%20%CE%A4%CE%9D%CE%94%20%CE%9C%CE%95%20%CE%95%CE%9D%CE%91%20%CE%9A%CE%A1%CE%A5%CE%A6%CE%9F%20%CE%95%CE%A0%CE%99%CE%A0%CE%95%CE%94%CE%9F.docx?dl=0
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4 Comparison of ANN relations with SM data and other rela-

tions 

Figs. 3a - 3d show comparisons of PGA estimates from the new ANN based equa-

tions, existing GMPEs and strong motion (SM) data for two ranges of seismic magni-

tudes. Of the existing equations presented, the Boore et al. (2021) equation is the most 

recent GMPE for the Greece, while the Kotha et al. (2020) and Chiou and Youngs 

(2014) equations have been shown to be accurate for ground motion estimation in 

Greece. Regarding PGA, it is observed that the ANN based equations show similar 

trends with both SM data and existing GMPEs. For earthquakes with magnitudes less 

than M6.0 and close distances, the BR_LOG_5F1 equation gives quite similar values 

to the equation of Boore et al. (2021), while for distances greater than 30 km the esti-

mates of the former are lower than the latter. The pattern is similar for BR_TAN_13F1 

equation, while BR_LOG_18F1 equation estimates higher values than Boore et al. 

(2021) in the near field. At long distances, where more data are available, the ANN 

based equations give similar estimates. The pattern is similar for earthquakes larger 

than M6.0, with the differences in the near-field between ANN equations and Boore et 

al. (2021) becoming sharper. In fact, the estimates of BR_LOG_18F1 and 

BR_TAN_13F1 equations yield higher estimates than all other equations presented. 

Regarding PGV, the proposed ANN equations give similar estimates to each other, ex-

cept for the near-field (<10 km) and earthquakes larger than M6.0. For the same mag-

nitude range, the estimates of the ANN equations are higher than those of Boore et al. 

(2021) and are close to the estimates of the Chiou and Youngs (2014) model. For 

smaller magnitude earthquakes, the estimates of the proposed relations are similar to 

those of Boore et al. (2021). It is notable that the differences between the displayed 

equations (new and existing) become sharper in regions where there is a lack of data. 

  

Fig. 3a. Comparison between PGA estima-

tion from ANN equations, existing GMPEs 

and SM data for 5.0<M<6.0 earthquakes 

Fig. 3b. Comparison between PGA estima-

tion from ANN equations, existing GMPEs 

and SM data for 6.0<M<7.0 earthquakes 
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Fig. 3c. Comparison between PGV estima-

tion from ANN equations, existing GMPEs 

and SM data for 5.0<M<6.0 earthquakes 

Fig. 3d. Comparison between PGV estima-

tion from ANN equations, existing GMPEs 

and SM data for 6.0<M<7.0 earthquakes 

5 Residual analysis 

In the context of GMPE development, residuals are defined according to Eq. 4, 

where R is the residual, indices i and j indicate a seismic event and a location, respec-

tively, ln(Yij) is the observed value of the SM, and μlnY is the log mean estimate of the 

SM from a model. 

( ) ( )i ij j i

ij ij lnY JB S30R ln Y μ M ,R ,V ,mech= −  (4) 

The mixed-effects analysis (Abrahamson and Youngs, 1992) is applied to the resid-

uals in order to separate them into between-event residuals and within-event residuals, 

according to Eq. 5. In Eq. 5, B is the total bias, ηi and εij are the between- and within-

event residuals, respectively. These errors are assumed to be normally distributed with 

zero mean and standard deviation τ and φ, respectively. The overall standard deviation, 

σ, is given by Eq. 6. 

ij i ijR B η ε= + +  (5) 

2 2σ τ φ= +  (6) 

Residual analysis, between mean estimates and SM data, was conducted for the pro-

posed ANN equations and the equation of Boore et al. (2021). The results are presented 

in Figs. 4 and 5 for the PGA and PGV parameters, respectively. It is observed that the 

use of ANNs smooths out the small deviation and trend observed in the error ηi with 

respect to the earthquake magnitude for the Boore et al. (2021) model for both PGA 

and PGV. Regarding the error εij with respect to the RJB distance, the pattern is similar 

between ANN and Boore et al. (2021) models, while, a slight improvement in the error 

ε with respect to the VS30 velocity is observed from the ANN equations. 
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Fig. 4. Residual analysis between (η) and within (ε) seismic event for the proposed ANN and 

GMPE equations of Boore et al. (2021) for PGA 

In Fig. 6, the values of the standard deviation of the between-event (τ) and within-

event (ε) residuals, as well as, the total standard deviation (σ), for the ANN models, are 

presented with respect to the earthquake magnitude. These values are compared with 

the uncertainty model proposed by Boore et al. (2021). For the PGA (Fig. 6a), it is 

observed that the BR_TAN13F1 model has smaller standard deviations than the 

BR_LOG5F1 model. Also, the standard deviations of the two models are comparable 

to the values of Boore et al. (2021), however they seem relatively stable for all earth-

quake magnitudes, except for large magnitudes where there are not enough data. The 

pattern is similar for PGV (Fig. 6b), except that the ANN models show similar values 

of standard deviations. Table 2 shows the selected fixed standard deviation values for 

the ANN models, as selected based on Fig. 6, compared to the standard deviations of 

Boore et al. (2021). In general, similar standard deviations are observed between ANN 

and Boore et al. (2021), with ANN giving slightly smaller overall standard deviation 

values. 

  



10 Technical Annals Vol 1 No.6 (2024) 

 

Fig. 5. Residual analysis between (η) and within (ε) seismic event for the proposed ANN and 

GMPE equations of Boore et al. (2021) for PGV 

  

Fig. 6a. Uncertainty models of ANN equa-

tions compared to the GMPE of Boore et al. 

(2021), for PGA 

Fig. 6b. Uncertainty models of ANN equa-

tions compared to the GMPE of Boore et al. 

(2021), for PGV 
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Table 2. Selected standard deviation values for the ANN models 

GMPE 
PGA PGV 

τ φ σ τ φ σ 

BR_LOG5F1 0.305 0.601 0.674 0.278 0.569 0.633 

BR_LOG13F1 0.279 0.586 0.649 - - - 

BR_TAN4F1 - - - 0.279 0.568 0.633 

Boore et al. (2021) 
M≤5.5: 0.35 

0.597 
0.692 M≤5.5: 0.35 

0.596 
0.691 

M≥6.0: 0.20 0.630 M≥6.0: 0.20 0.629 

6 Conclusions 

In the present paper, a GMPE for Greece for seismic risk assessment, which has been 

derived from ANN training, is proposed and compared with models proposed in the 

literature to verify the reliability of its applicability. Based on the results presented in 

the previous sections, it is evident that the proposed relation can be used to estimate 

both PGA and PGV accurately, as the observed error is within reasonable limits. Also, 

similar standard deviations are observed between ANN and the equations in the litera-

ture with ANN giving slightly smaller overall standard deviation values. 
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