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Abstract. The reliable assessment of the seismic risk, at urban, regional and na-
tional level, is extremely important for the government and society and contrib-
utes to the proper management of the pre-seismic crisis (interventions, strength-
ening of buildings and infrastructures), during the earthquake and post-earth-
quake. The seismic risk assessment involves many difficulties and uncertainties,
as it depends on the successful implementation of several individual steps, start-
ing with the identification of the elements at risk, continuing with the assessment
of seismic risk and vulnerability and finishing with the estimation of the risk and
losses of all types. In all the above methodological frameworks, the use of Arti-
ficial Neural Networks (ANNS) is proposed in the literature. Artificial Intelli-
gence (Al)-based methodologies aim to improve the computational efficiency of
simulations, by increasing the accuracy and reducing the computational cost. In
this paper, a methodology using ANNSs at the seismic hazard level is suggested
to propose strong motion prediction equations (GMPE) derived from ANN train-
ing, by developing a methodological framework and a computational tool that
enables continuous training and learning depending on the strong motion data
that are fed to it. The proposed equations are compared with models in the liter-
ature to verify the reliability of their applicability.

Keywords: Seismic risk assessment, seismic hazard, artificial neural networks,
ground motion prediction equations, seismic strong motion

1 Introduction

The methodologies for the assessment of seismic risk of buildings and infrastruc-
tures are a significant tool for the evaluation of the exposure, the prioritization of inter-
ventions and the development of a comprehensive upgrade plan. In this context, various
methodologies have been developed over the last decades for the determination of the
assessed exposure, seismic hazard and seismic fragility, which are the individual steps
for the assessment of seismic risk. At the same time, in several cases, computational
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tools have been developed which integrate the individual methodologies, but the com-
putational cost and time required for the analysis and calculation of risk remain signif-
icant. For this purpose, methodologies have been developed, and utilized in the indi-
vidual steps of seismic risk determination, that utilize ANNs for their direct and reliable
determination. In particular, ANNs have been used to determine seismic vulnerability
(Xie et al., 2020, Stefanidou et al., 2021), and very recently they have been proposed
for seismic risk assessment (Ji et al., 2021). Additionally, the use of ANNs for seismic
risk assessment can be applied to the prediction of seismic losses in areas with high
seismicity (e.g. Leousis and Pnevmatikos, 2018, Pnevmatikos et al., 2020).

This paper presents a first step of a holistic seismic risk assessment methodology to
be developed. The proposed methodology will be an integrated, versatile and easy-to-
use methodology for assessing the vulnerability and seismic risk of buildings and in-
frastructures, fully adapted to the Greek data. It will be an important tool in the hands
of the relevant authorities, contributing to the identification and recommendation of
cost-effective lines of intervention and guidelines for addressing the problem pre-seis-
mically and leading to the development of a common strategic plan to improve the
resilience of buildings and infrastructures. More specifically, one of the most important
steps of any seismic risk assessment methodology will be presented here, which is the
assessment of the seismic hazard model. Ground motion predictive equations (GMPESs)
derived from ANN training will be proposed, developing a methodological framework
and a computational tool that enables continuous training and learning according to the
strong motion (SM) data it is supplied with, and a comparison with models proposed in
the literature will be presented to verify its applicability.

2 The method

The proposed methodology, part of which will be presented in the present paper, is
illustrated in the form of a flowchart in Fig. 1.

The first step is the selection of the building stock and infrastructure to be studied
and their visualization in a GIS application. The second step is the assessment of the
seismic risk, which is the subject of the present study. The seismic hazard assessment
of the study area is a necessary component in the seismic risk assessment. For this rea-
son, a seismic hazard analysis is required. Rather than using a deterministic model for
the worst earthquake that may affect the region of interest, probabilistic hazard analysis
(PSHA) adopts a probability-based framework that considers all earthquake events that
may occur in that region (Baker, 2008). PSHA begins by identifying potential earth-
quake sources and characterizing the distribution of earthquake magnitudes and dis-
tance from the source. Then the GMPEs are derived which give the earthquake intensity
measure (IM) as a function of the earthquake source, path and local site conditions. One
of the key steps of PSHA is therefore the calculation of appropriate GMPEs. There are
several methodologies to derive these relationships and in some of them, the use of
ANN is suggested (Ji et al., 2021).

The next step is the assessment of the seismic vulnerability through the vulnerability
curves and the visualization of the wvulnerability in a GIS platform. Numerical
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simulations based on the finite element method (FEM) are widely used to derive appro-
priate vulnerability curves. For reliable vulnerability assessment, a large number of nu-
merical analyses are required, thus increasing the computational cost. One way to re-
duce this computational cost is the construction of meta-models, which can replace
time-consuming FEM models. Meta-models, such as artificial neural networks
(ANNSs), represent a set of sophisticated statistical algorithms that capture input-output
relations of physical models and make predictions according to these relations.

Finally, with the synthesis of all the above steps, the seismic risk for the study area
and the exposed elements under study can be derived.

| Estimation of seismic risk using ANNs

e Selection of the building stock and

Exposure Model infrastructures under consideration t?a Ii\rlglsg
e Recording and visualization data-set

in a GIS system

* Development of GMPEs for the
Seismic Hazard Model study area using ANN models

¢ Visualization of the seismic hazard of the
examined area in a GIS system

e Selection of seismic vulnerability models
Seismic Fragility Model * Visualization of seismic vulnerability
in a GIS system

Seismic Risk Model e Estimation of losses (structural damage,
general economic losses, etc.)

Fig. 1. Methodological framework for seismic risk assessment using ANNs

3 Development of equations by means of ANNs

In this section, the process of formulating the equations developed by applying
ANNSs will be briefly presented. These equations concern the correlation of PGA and
PGV with the parameters of earthquake magnitude (My), its Focal Mechanism (FM),
the shear wave velocity Vsso at the site of recording, and the distance of the recording
site from the projection of the rupture point on the surface (R;g). The general form of
the equations to be developed is:

IN(PGA)=foea[M,, . FM,IN(V,50)IN(R5) ] and IN(PGV)=f,¢,[M,,.FM,In(V,,).In(Rye)] (1)

The equations were developed by applying Multilayered Feedforward Perceptron
Neural Networks (MFPNN) (Haykin, 2009) which have the general form of Fig. 2. The
application of MFPNNs and in particular those with a hidden layer has been proven to
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lead to the approximation of unknown functions (Hornik et al., 1989) by training them
with appropriate training sample sets (training datasets). The procedure for deriving
equations approximating unknown functions via MFPNN is described in detail in the
paper of Morfidis and Kostinakis (2019).

As regards the training of the networks, it should be noted that a database consisting
of 2492 samples was used. This database has been presented by Margaris et al. (2021)
and is the most up-to-date in terms of SM data for the Greek region. An extensive
parametric investigation was performed in order to identify the network configuration
that leads to the optimal results. In the first stage, the criteria for the evaluation of the
results extracted from the examined networks concerned the correlation factor R (R-
factor) and the Mean Square Error (MSE). The parameters investigated are presented
in Fig. 2.

b, b=bias Activation functions of neurons
w,_ A Hidden layers
" b " o =tre)  (logsig
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2 — _layerl layer2 © (2) Scaled Conjugate Gradient (SCG)
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(1-50 neurons) (4) Bayesian Regularization (BR)

Fig. 2. Configuration and investigated parameters of the networks used

The training procedure applied is the cross-validation method for selecting the optimal
model (Diamantaras and Botsis, 2019) which consists of the following 2 stages:

¢ Randomly dividing the set of training samples N times into three subsets and
training the ANN with the training sub-set (training data sub-set, Fig. 2). In this
process, all the ANN configuration parameters, as well as, the training algorithm
are examined and finally the parameters that lead to the optimal performance
(here based on the selected evaluation parameters R-factor and MSE) for the test
sample portion (testing data sub-set, Fig. 2) are selected.

e After determining the parameters that compose the ANNs with optimal perfor-
mance according to the criteria of the previous step, these networks are re-
trained with the whole training dataset without splitting it into sub-sets.

In the context of the present study, the MFPNNs examined were initially classified into
three general categories:

(a) Networks with one hidden layer and with a number of neurons ranging from 1
to 5. These networks were investigated to determine whether they can extract
reliable correlation equations of the examined parameters since the small num-
ber of neurons leads to the extraction of closed elegant relations.
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(b) In networks with a hidden layer and with a number of neurons ranging from 6
to 30. These networks were investigated to examine how much a larger number
of neurons can improve the correlation level.

In networks with two hidden layers. Although networks with one hidden layer
are capable of approximating unknown functions, the performance of networks
with two hidden layers was also investigated. The addition of the second hidden
layer significantly increases both the complexity and the training time especially
when a large number of networks with different configurations are investigated
as in the present case. Thus, the aim was to investigate whether this large in-
crease in complexity is also reflected in the increase in performance of the cor-
responding networks.

The module of machine and deep learning of MATLAB R2022a was used for the de-
velopment of ANNS and their training process. Table 1 summarizes the results for the
optimal configurations of the networks of the three general categories.

(©

Table 1. Comparative evaluation of the performance of the examined MFPNNs

1 Hidden layer 2 Hidden layers
Number of neu- Number Number of neurons
rons<=5 of neurons >5 1-50 / layer
SM Parameter / Training Algo- Training Algo- - .
Evaluation Param- | rithm/ Configu- | rithm/ Configu- Tralcnc:rr:]t;;i ﬁlggggrr:m /
eter ration ration g
PGA maxR i 0.934 | BR/tan-13 0.935 | BR/tan-log/36-24 0.936
BR/log-5
(cm/sec’)  minMSE BR/log-18 0.518 | BR/tan-tan/20-8 0510
PGV maxR | BR/log-5 0.921 BRIlog-23 0.922 | BR/log-log/14-38 0.924
(Cm/Sec)  minMSE | BR/tan-4  0.471 0.467 | BR/tan-log/36-14 0.453

The most important conclusion drawn from the study in Table 1 is that adding a large
number of neurons and/or a second hidden layer does not substantially improve the
values of the R and MSE evaluation parameters. This means that it is possible to select
MFPNN models with one hidden layer and number of neurons less than or equal to
five. An additional important conclusion is that in all studied cases the BR algorithm
led to the most reliable results however with very small differences from the other al-
gorithms considered. Based on the above conclusions it was considered sufficient to
focus on network models with a hidden layer. For these models it can be shown (see
e.g. Morfidis and Kostinakis, 2019) that the correlation relationship they extract has the
form of Eq. 2 and Eq. 3. More specifically:

(@) In the case where the activation function of the hidden layer neurons is the
logsig function (Fig. 2):
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(b) Inthe case where the activation function of the hidden layer neurons is the tansig

function (Fig. 2) then the only difference with respect to Eq. 2 is the following:

Where in Egs. 2 and 3:
nn is the number of neurons in the hidden layer,
wij is the value of the synaptic weight of the synapse connecting neuron i of the hidden
layer to neuron j of the input layer (the values of w;j comprise a dimensional matrix
nxm where n=nn and m=4=number of input parameters as given in Fig. 2),
w; is the value of the synaptic weight of the synapse connecting the hidden layer neuron
i to the output neuron (the values of w; comprise a vector nx1)
b is the value of the bias of neuron i (for the neurons in the hidden layer, b; comprise a
vector nx1, and since the output layer neuron is one, b; in this case is a scalar parameter),
the exponent (0) denotes the output level,
the exponent (int) denotes the hidden level,
the exponent (norm) denotes a normalized value, i.e. the value of the input or output
parameter after transforming it through the following normalization function:

X(input)_min(x)
Xrom_p) = e | X=M,, FM, In(V,), In(R
{max<x>dsmin(x)ds w PV} 10(Ren) )

Where in the above function:
the subscript ds denotes the training sample (data set),
the exponent (input) indicates that the value X is the value of the parameter to be given
as input to the trained network in order for it to extract the prediction for the PGA or
PGV,
the value max refers to the max value of the parameter X in the training sample ds,
the value min refers to the min value of parameter X in the training sample ds.
Obviously, completely analogous equations to the above apply to the PGV parameter
but with different values of the synaptic weights w and biases b as obtained after the
training procedures of the respective MFPNNs.
Finally, it should be noted that values of synaptic weights and biases of all optimal
trained networks in Table 1 with one hidden layer are available at the following hyper-
link (link).
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Seismic risk assessment of buildings and infrastructures using Artificial Neural Net-
works: Empirical prediction equations

4 Comparison of ANN relations with SM data and other rela-
tions

Figs. 3a - 3d show comparisons of PGA estimates from the new ANN based equa-
tions, existing GMPEs and strong motion (SM) data for two ranges of seismic magni-
tudes. Of the existing equations presented, the Boore et al. (2021) equation is the most
recent GMPE for the Greece, while the Kotha et al. (2020) and Chiou and Youngs
(2014) equations have been shown to be accurate for ground motion estimation in
Greece. Regarding PGA, it is observed that the ANN based equations show similar
trends with both SM data and existing GMPEs. For earthquakes with magnitudes less
than M6.0 and close distances, the BR_LOG_5F1 equation gives quite similar values
to the equation of Boore et al. (2021), while for distances greater than 30 km the esti-
mates of the former are lower than the latter. The pattern is similar for BR_TAN_13F1
equation, while BR_LOG_18F1 equation estimates higher values than Boore et al.
(2021) in the near field. At long distances, where more data are available, the ANN
based equations give similar estimates. The pattern is similar for earthquakes larger
than M6.0, with the differences in the near-field between ANN equations and Boore et
al. (2021) becoming sharper. In fact, the estimates of BR_LOG_18F1 and
BR_TAN_13F1 equations yield higher estimates than all other equations presented.
Regarding PGV, the proposed ANN equations give similar estimates to each other, ex-
cept for the near-field (<10 km) and earthquakes larger than M6.0. For the same mag-
nitude range, the estimates of the ANN equations are higher than those of Boore et al.
(2021) and are close to the estimates of the Chiou and Youngs (2014) model. For
smaller magnitude earthquakes, the estimates of the proposed relations are similar to
those of Boore et al. (2021). It is notable that the differences between the displayed
equations (new and existing) become sharper in regions where there is a lack of data.
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5 Residual analysis

In the context of GMPE development, residuals are defined according to Eq. 4,
where R is the residual, indices i and j indicate a seismic event and a location, respec-
tively, In(Y;) is the observed value of the SM, and pny is the log mean estimate of the
SM from a model.

Rij=|n(Yij)_“|nY(Mi’RiJjB Vs ,mechi) @

The mixed-effects analysis (Abrahamson and Youngs, 1992) is applied to the resid-
uals in order to separate them into between-event residuals and within-event residuals,
according to Eq. 5. In Eq. 5, B is the total bias, n; and ¢;j are the between- and within-
event residuals, respectively. These errors are assumed to be normally distributed with
zero mean and standard deviation t and @, respectively. The overall standard deviation,
o, is given by Eq. 6.

R;=B+n;+g; (5)

c=«/r2+(p2 (6)

Residual analysis, between mean estimates and SM data, was conducted for the pro-
posed ANN equations and the equation of Boore et al. (2021). The results are presented
in Figs. 4 and 5 for the PGA and PGV parameters, respectively. It is observed that the
use of ANNs smooths out the small deviation and trend observed in the error n; with
respect to the earthquake magnitude for the Boore et al. (2021) model for both PGA
and PGV. Regarding the error &;j with respect to the R;g distance, the pattern is similar
between ANN and Boore et al. (2021) models, while, a slight improvement in the error
¢ with respect to the Vszo velocity is observed from the ANN equations.
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Fig. 4. Residual analysis between (1) and within (g) seismic event for the proposed ANN and
GMPE equations of Boore et al. (2021) for PGA

In Fig. 6, the values of the standard deviation of the between-event (t) and within-
event (g) residuals, as well as, the total standard deviation (o), for the ANN models, are
presented with respect to the earthquake magnitude. These values are compared with
the uncertainty model proposed by Boore et al. (2021). For the PGA (Fig. 6a), it is
observed that the BR_TAN13F1 model has smaller standard deviations than the
BR_LOGS5F1 model. Also, the standard deviations of the two models are comparable
to the values of Boore et al. (2021), however they seem relatively stable for all earth-
quake magnitudes, except for large magnitudes where there are not enough data. The
pattern is similar for PGV (Fig. 6b), except that the ANN models show similar values
of standard deviations. Table 2 shows the selected fixed standard deviation values for
the ANN models, as selected based on Fig. 6, compared to the standard deviations of
Boore et al. (2021). In general, similar standard deviations are observed between ANN
and Boore et al. (2021), with ANN giving slightly smaller overall standard deviation
values.
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Table 2. Selected standard deviation values for the ANN models

PGA PGV
GMPE

T @ c T () c
BR_LOG5F1 0.305 0.601 0.674 0.278 0.569 0.633

BR_LOG13F1 0.279 0.586 0.649 - - -
BR_TAN4F1 - - - 0.279 0.568 0.633
M<5.5:0.35 0.692 M<5.5:0.35 0.691

Boore et al. (2021) 0.597 0.596

M>6.0: 0.20 0.630 M>6.0:0.20 0.629

6 Conclusions

In the present paper, a GMPE for Greece for seismic risk assessment, which has been
derived from ANN training, is proposed and compared with models proposed in the
literature to verify the reliability of its applicability. Based on the results presented in
the previous sections, it is evident that the proposed relation can be used to estimate
both PGA and PGV accurately, as the observed error is within reasonable limits. Also,
similar standard deviations are observed between ANN and the equations in the litera-
ture with ANN giving slightly smaller overall standard deviation values.
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