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Abstract. This study evaluates hourly sea surface currents from the CALYPSO 

HF radar system against Copernicus CMEMS Med MFC data, covering the pe-

riod from August 2022 to August 2023. The HF radar network, comprising four 

sites in Malta and three in Sicily, provides high-resolution, real-time surface cur-

rent data. Results show that HF radar currents display greater temporal and spatial 

variability than the CMEMS data, primarily due to differences in spatial-temporal 

resolution. Notably, extreme current velocities differ between the datasets, with 

both indicating high values influenced by regional bathymetry. While HF radar 

data reflect currents at the very surface layer, CMEMS data correspond to a depth 

of 1.5 m. Nevertheless, after detrending and outlier removal, HF radar data align 

well with CMEMS Med MFC, especially in current direction. Both datasets de-

pict a general anticyclonic circulation between northern Malta and southern Sic-

ily. Periodic intensifications occur along the anticyclone's northern and southern 

edges. HF radar shows southeastward flow along Sicily’s southern coast and op-

posing currents near Malta's northern coast. In contrast, CMEMS data indicate a 

stronger southeast flow along southern Sicily and generally weaker currents near 

Malta. 

Keywords: sea-surface currents, high frequency radar, ocean remote sensing, 

Copernicus marine services data, statistical analysis. 

1 Introduction 

High-frequency (HF) radar systems have become indispensable tools in oceanogra-

phy, particularly for monitoring sea-surface currents. These systems utilise radio waves 
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to measure surface currents over broad spatial areas with high temporal resolution. 

Their utility has grown exponentially in recent years due to the increasing need for real-

time oceanographic data to support maritime safety, pollution control, and climate 

change studies. The Mediterranean Sea, with its semi-enclosed nature and complex 

ocean dynamics, presents a unique environment for deploying and studying HF radar 

systems. This review synthesizes the current state of knowledge on the use of HF radar 

for observing sea-surface currents in the Mediterranean, focusing on technological prin-

ciples, applications, and challenges. 

The Mediterranean Sea’s unique characteristics—including its semi-enclosed na-

ture, high salinity, and complex bathymetry—make it a valuable region for studying 

sea-surface currents. HF radar installations have been deployed at several key locations 

to monitor oceanographic processes, such as: (i) the Ligurian Sea, where studies have 

focused on mesoscale eddies and their role in nutrient transport and primary production 

[1]; (ii) the Strait of Gibraltar, where HF radar data have been used to analyse the ex-

change of water masses between the Mediterranean and the Atlantic, providing insights 

into the hydrodynamic balance of the region [2]; and (iii) the Aegean and Adriatic Seas, 

where observations have highlighted the influence of river discharges, wind forcing, 

and seasonal variability on surface currents [3, 4]. Several European initiatives, such as 

EuroGOOS and the Copernicus Marine Service, have integrated HF radar data into 

broader ocean monitoring frameworks. These efforts have significantly enhanced our 

understanding of Mediterranean circulation patterns and their impact on marine eco-

systems and human activities [5]. Other funded programs have also provide insights 

into the wave and current behaviour in the Mediterranean Sea. Specifically, HF radar 

systems in the Malta-Sicily Channel have been successfully validated for monitoring 

sea surface currents and wind waves. Studies confirm good agreement between radar-

derived currents and independent data sources such as drifters, ADCPs, and models, 

particularly under low wind conditions. HF radar also shows potential for estimating 

wave height and period, with promising validation against buoy data [6-9]. 

HF radar data are frequently assimilated into numerical models to improve ocean 

forecasting [10]. Data assimilation techniques combine HF radar observations with 

model outputs to enhance predictions of current velocity, direction, and variability [2, 

4, 11] Studies have demonstrated that assimilating HF radar data can significantly re-

duce forecast errors, particularly in regions with complex circulation patterns [12]. Val-

idation efforts have also compared HF radar data with in-situ measurements from 

ADCPs, drifters, and satellite observations. These comparisons have highlighted both 

the strengths and limitations of HF radar systems, underscoring the need for continuous 

calibration and validation [13-15]. 

Despite their advantages, HF radar systems face several challenges, such as: (i) Sig-

nal interference: Electromagnetic interference from nearby radio systems can degrade 

data quality [16]; (ii) Environmental constraints: Rough seas and extreme weather con-

ditions can reduce the range and accuracy of HF radar measurements [2, 17]; and (iii) 

Coastal dependence: HF radar installations are limited to coastal areas, leaving offshore 

regions less monitored [3, 5]. Addressing these challenges requires advances in hard-

ware design, signal processing algorithms, and data assimilation techniques. Emerging 
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technologies, such as machine learning, offer promising avenues for enhancing data 

interpretation and reducing uncertainty. 

This manuscript is structured as follows. The Introduction provides a review of rel-

evant literature and previous works on the subject. The Data Sources and Methodology 

section describes the sites, data acquisition methods and accompanying statistical 

framework used to generate the results. The Results and Discussion section presents 

the findings and includes comparisons with existing studies. The Conclusion summar-

ies the current work and consider future trends and approaches. To streamline the 

presentation of results, key findings are consolidated in the Results and Discussion sec-

tion with comprehensive data for the entire duration documented in the Appendix. 

2 Data Sources and Methodology 

HF radar systems operate by transmitting electromagnetic waves in the HF band (3–

30 MHz) that interact with ocean surface waves. This interaction generates a phenom-

enon known as Bragg scattering, where radio waves are scattered back towards the 

radar at specific frequencies related to the speed and direction of surface currents. These 

measurements are then processed to produce real-time maps of sea-surface current ve-

locity [1, 2]. Compared to alternative methods such as Acoustic Doppler Current Pro-

filers (ADCPs) and satellite altimetry, HF radar systems offer unique advantages. They 

provide continuous, wide-area coverage (up to 200 km offshore) and high temporal 

resolution, making them ideal for monitoring dynamic and transient oceanographic 

phenomena [3]. However, the accuracy of HF radar systems can be influenced by en-

vironmental factors such as sea state, signal interference, and coastal topography [4]. 

2.1 Data Acquisition 

In total, HF radar sea surface current data were analyzed for selected months in 2022 

and 2023. For 2022, 744 hours of data were examined for August, October, and De-

cember, and 709 hours for September and November. In 2023, 744 hours were analyzed 

for January, March, May, July, and August; 709 hours for June; and 673 hours for Feb-

ruary, while no reliable data were available for April. The study area spans latitudes 

35.8°N to 37.0°N and longitudes 13.5°E to 15.3°E, encompassing the HF radar sam-

pling locations (Figs. 1 and 2). 
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Fig. 1. Spatial coverage of the HF radar derived sea surface currents observational positions. 

Horizontal units: Decimal degrees (WGS84) 

For the purpose of the HF radar data analysis, five HF radar sampling locations were 

selected, as shown in Table 1 and Fig. 2. 

Table 1. Malta HF Radar sampling locations selected for analysis 

Position Longitude (°E) Latitude (°N) 

Point 1 14.5265881 36.5191649 

Point 2 14.3264624 36.3564511 

Point 3 14.7275500 36.5193336 

Point 4 14.4925225 36.7083428 

Point 5 14.4939845 36.2217168 
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Fig. 2. The Malta 5 HF radar sampling locations used for the evaluation against the CMEMS 

Med MFC reanalysis data 

The Malta HF radar U and V sea surface currents components, were compared with 

similar data obtained from the Copernicus Marine Portal product 

MEDSEA_ANALYSISFORECAST_PHY_006_013 [18] on a common grid. This is a 

near-real-time operational product from the CMEMS Med-MFC, which provides daily 

analysis (near-real-time with data assimilation), and 10-day forecasts of physical ocean 

parameters. It is generated using the EAS6 ocean model system and includes data as-

similation of satellite and in situ observations. The Copernicus data are provided with 

an hourly time step. For the comparison purposes Copernicus data for the examined 

period were used. Missing values of HF Radar data were filled using linear interpola-

tion. Time series of both, HF radar, and Copernicus data, were detrended using the 

moving average method over a window of two-hour window (two timesteps) in order 

to reduce short-term fluctuations and improve comparability between the two datasets. 

This window was selected to smooth high-frequency noise while preserving the under-

lying current patterns relevant to mesoscale circulation. A high-low pass filter was ap-

plied to smooth outlier data. The sea surface currents time series analysis includes data 

(in meters per second, m/s) from the Malta HF radar and Copernicus at the specified 

evaluation sampling locations every hour. The quantitative statistics performed in-

cluded Root Mean Square Error (RMSE), Pearson product-moment correlation coeffi-

cient (R), Coefficient of Determination (R2), Nash-Sutcliffe efficiency (NSE), Index of 

Agreement (d) and Percent Bias (pbias), as described in the following section. 
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2.2 Statistical Framework 

A strong statistical framework has been created to back up the analysis mentioned 

above. The following error metrics, concisely summarised in Taylor's "Taylor Dia-

gram" [19] and are the most frequently employed across various disciplines (for exam-

ple, weather prediction, hydrology, etc.) where model and observation values have to 

be compared: 

𝑩𝑰𝑨𝑺 =
𝟏

𝑵
∑(𝑷𝒊 − 𝑶𝒊) = �̅� − �̅�

𝑵

𝒊=𝟏

, (1) 

𝑷𝑩𝑰𝑨𝑺 =
∑ (𝑷𝒊 − 𝑶𝒊)

𝑵
𝒊=𝟏

∑ (𝑶𝒊)
𝑵
𝒊=𝟏

× 𝟏𝟎𝟎, (2) 

where N denotes the number of records, P the model prediction, and O the observa-

tion records. This statistical parameter provides information in a standard way about 

systematic errors, i.e., the tendency of the model to overestimate or underestimate the 

predicted values. BIAS serves as a measure of differences between observations and 

model data, with ideal values closer to zero. Note that bias can be positive or negative, 

indicating overprediction or underprediction. 

𝑹𝑴𝑺𝑬 =  √
∑ (𝑷𝒊 − 𝑶𝒊)

𝟐𝑵
𝒊=𝟏

𝑵
. (3) 

RMSE (Root Mean Squared Error), is utilized as a measure of the variability of the 

error and offers an indication of the efficacy of the model to predict the general behav-

iour of the system. Ideal value is 0, and the lower the value, the better the model per-

formance [20]. 

The Nash-Sutcliffe model efficiency coefficient [21], defined as follows: 

𝑵𝑺 = 𝟏 − 
∑ (𝑶𝒊 − 𝑴𝒊)

𝟐𝑵
𝒊=𝟏

∑ (𝑶𝒊 − �̅�)𝟐𝑵
𝒊=𝟏

. (4) 

The values of this parameter vary from -∞ to 1, where 1 indicates the perfect match 

between observations and model data. A zero value suggests that the accuracy of the 

model is as good as the accuracy of the mean observational value. 

The Correlation Coefficient: see for example [19,20] 

𝒓 =
∑ ((𝒙𝒊 − 𝒙𝑵

𝒊=𝟏 )(𝒚𝒊 − 𝒚))

(∑ (𝒙𝒊 − 𝒙𝑵
𝒊=𝟏 )𝟐 ∑ (𝒚𝒊 − 𝒚𝑵

𝒊=𝟏 )𝟐)
𝟏
𝟐 

, (5) 

which measures the linear correlation between forecasts (yi) and observations (xi), 

and takes values lower or equal to 1 with higher values indicating stronger correlation. 



Comparison of Malta HF Radar Currents with CMEMS Mediterranean MFC Data 7 

Coefficient of Determination (R2): The coefficient of determination represents the 

proportion of variance in the dependent variable that is predictable from the independ-

ent variable. It is the square of the Pearson correlation coefficient (R). 

The Index of Agreement (d) is a statistical measure used to evaluate the goodness 

of fit between observed and predicted values, widely employed to assess how well a 

model's results match the observed data. It ranges from 0 to 1, where 1 represents per-

fect agreement, and 0 represents no agreement. The formula for the Index of Agreement 

(d) is: 

𝑑 = 1 −
∑ (𝑂𝑖 − 𝑃𝑖)

2𝑛
𝑖=1

∑ (|𝑂𝑖 − 𝑂| + |𝑃𝑖 − 𝑂|)
2

𝑛
𝑖=1

, (6) 

where 𝑂𝑖  is the observed value for the i-th observation, 𝑃𝑖  is the predicted value for 

the i-th observation, 𝑂 is the mean of the observed values, 𝑃 is the mean of the predicted 

values and n is the number of observations. 

For d = 1, perfect agreement between observed and predicted values is established. 

For d = 0 there is no agreement (meaning predictions are entirely off from observations) 

and d < 1 is the lower the value of d, the worse the agreement between observed and 

predicted values. The index of agreement differs from R2, because R2 reflects how well 

the model explains the variance in the data, whereas d reflects how closely the predicted 

values match the observed values, regardless of the variance. 

3 Results and Discussion 

Table 2 to Table 6 present the statistical metrics assessing the performance of current 

speed predictions for Points 1 to 5 across different months. Regarding the RMSE trends. 

RMSE values remain relatively low (0.02 to 0.07) across all points, indicating minor 

errors in prediction. The lowest RMSE occurs in March to May 2023 across multiple 

points, suggesting better predictive accuracy in those months. The highest RMSE is 

observed in December 2022 and February 2023, likely due to seasonal variations af-

fecting water currents. For the Coefficient of Determination (R²), October 2022, August 

2023, and May 2023 generally exhibit the highest R² values, indicating better model 

performance in these months. June 2023 and November 2022 show the lowest R² values 

across multiple points, meaning the model explains very little variance in the observed 

data. Regarding the results on percent bias, high positive PBIAS (> 100%) in February 

2023 (Point 1, Point 5) and July 2023 (Point 1) indicates the model is overestimating 

current speed. High negative PBIAS (< -50%) in December 2022 and June 2023 (Points 

1, 2, 3, 4, 5) suggests significant underestimation. For Nash-Sutcliffe Efficiency coef-

ficient (NSE), the best months in terms of NSE are May 2023, October 2022, and Au-

gust 2023 across multiple points. The worst months (NSE < 0, meaning worse than a 

simple mean predictor) are February 2023, June 2023, and December 2022, suggesting 

the model fails in those months. For the Index of Agreement (d) and Correlation Coef-

ficient (R), the highest agreement (d > 0.60) and correlation (R > 0.60) appear in August 

2023, October 2022, and May 2023, indicating better alignment between predictions 
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and observations. Weak correlation (R < 0.3) and agreement (d < 0.4) are observed in 

June 2023, November 2022, and February 2023 across multiple points. 

All statistical indexes are reported in Tables 2 to 6 for each point and the summary 

Table 7 is highlighting the “best-performing” and “worst-performing” months across 

all locations. 

There are apparent seasonal trends in the timeseries where, winter months (Decem-

ber - February) generally show poor model performance with negative NSE and ex-

treme biases. Spring and summer months (May to August) exhibit better results, par-

ticularly in terms of correlation and agreement. Overall, the best performing month is 

May 2023 since across multiple points, it has high R², positive NSE, and strong agree-

ment and the worst performing month is February 2023 with extreme bias, low NSE, 

poor correlation across most points. These results are better visualized in the monthly 

Taylor diagrams in Fig. 9. 

Table 2. Current speed statistical indexes for Point 1 

Point 1 RMSE R2 PBIAS NSE d R 

August 2022 0.06 0.15 32.80 -0.01 0.29 0.56 

September 2022 0.05 0.31 -6.60 0.09 0.42 0.61 

October 2022 0.05 0.30 -3.80 0.08 0.39 0.57 

November 2022 0.06 0.06 -3.10 0.05 0.36 0.24 

December 2022 0.07 0.26 -58.90 0.07 0.32 0.63 

January 2023 0.05 0.24 -38.50 0.06 0.33 0.60 

February 2023 0.04 0.16 132.10 -0.17 0.38 0.52 

March 2023 0.02 0.31 12.40 -0.17 0.57 0.42 

May 2023 0.03 0.40 -12.80 0.12 0.60 0.54 

June 2023 0.03 0.00 -105.70 -0.27 0.38 0.06 

July 2023 0.03 0.11 132.40 -0.23 0.34 0.48 

August 2023 0.04 0.48 33.8 0.1 0.67 0.61 

Table 3. Current speed statistical indexes for Point 2 

Point 2 RMSE R2 PBIAS NSE d R 

August 2022 0.04 0.1 -24.4 -0.02 0.25 0.53 

September 2022 0.04 0.13 -56 -0.03 0.31 0.58 

October 2022 0.03 0.31 -61.7 0.1 0.37 0.61 

November 2022 0.04 0.05 -71.1 0.05 0.3 0.23 

December 2022 0.05 0.04 11.5 -0.02 0.18 0.61 

January 2023 0.06 0.18 -7.4 0.01 0.28 0.61 

February 2023 0.05 0.04 -65 -0.03 0.17 0.6 

March 2023 0.04 0.08 -59.6 -0.05 0.28 0.61 

May 2023 0.03 0.11 -29.5 -0.06 0.31 0.53 

June 2023 0.03 0 -62 -0.2 0.38 0.06 

July 2023 0.04 0.26 -44.6 0.06 0.35 0.64 

August 2023 0.05 0.29 -28.5 0.08 0.39 0.62 
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Table 4. Current speed statistical indexes for Point 3 

Point 3 RMSE R2 PBIAS NSE d R 

August 2022 0.03 0.28 4.90 -0.05 0.52 0.43 

September 2022 0.03 0.36 -17.20 0.12 0.50 0.56 

October 2022 0.03 0.47 2.70 0.21 0.61 0.61 

November 2022 0.04 0.04 -43.70 -0.03 0.41 0.20 

December 2022 0.03 0.39 -62.00 0.15 0.51 0.61 

January 2023 0.04 0.19 -49.00 -0.05 0.39 0.56 

February 2023 0.04 0.24 -17.90 0.04 0.41 0.60 

March 2023 0.03 0.33 49.40 -0.10 0.58 0.46 

May 2023 0.03 0.28 -23.50 0.02 0.48 0.53 

June 2023 0.03 0.05 -65.90 -0.03 0.46 0.22 

July 2023 0.04 0.12 77.10 0.18 0.34 0.58 

August 2023 0.04 0.33 45.90 0.03 0.52 0.60 

Table 5. Current speed statistical indexes for Point 4 

Point 4 RMSE R2 PBIAS NSE d R 

August 2022 0.02 0.25 -44.00 -0.02 0.50 0.35 

September 2022 0.02 0.23 -61.10 -0.01 0.47 0.51 

October 2022 0.02 0.28 -55.50 0.03 0.50 0.41 

November 2022 0.03 0.10 -61.40 0.07 0.52 0.32 

December 2022 0.03 0.31 -79.60 0.07 0.48 0.54 

January 2023 0.04 0.12 -77.30 -0.02 0.28 0.57 

February 2023 0.05 0.10 -20.70 -0.12 0.29 0.54 

March 2023 0.04 0.12 93.00 -0.04 0.33 0.58 

May 2023 0.03 0.10 133.30 -0.17 0.36 0.51 

June 2023 0.03 0.01 -110.10 -0.14 0.39 0.11 

July 2023 0.04 0.15 42.30 -0.04 0.34 0.57 

August 2023 0.04 0.27 -8.20 0.02 0.47 0.58 
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Table 6. Current speed statistical indexes for Point 5 

Point 5 RMSE R2 PBIAS NSE d R 

August 2022 0.03 0.24 -43.10 0.04 0.40 0.54 

September 2022 0.03 0.18 -35.70 0.01 0.35 0.57 

October 2022 0.07 0.07 -56.90 0.00 0.13 0.64 

November 2022 0.03 0.19 -69.20 0.18 0.49 0.44 

December 2022 0.04 -0.01 -74.80 -0.04 0.15 0.58 

January 2023 0.06 0.14 -31.70 0.01 0.26 0.61 

February 2023 0.06 0.05 321.90 -0.04 0.15 0.62 

March 2023 0.05 0.09 -64.80 0.00 0.18 0.63 

May 2023 0.03 0.24 -35.70 0.03 0.40 0.55 

June 2023 0.03 0.00 -98.00 -0.14 0.30 0.01 

July 2023 0.03 0.28 -32.80 0.08 0.42 0.60 

August 2023 0.04 0.29 -26.60 0.08 0.41 0.62 

Table 7. Summary table highlighting “best-performing” and “worst-performing” months across 

all locations 

Point Best-Performing Months Worst-Performing Months Performance Indicators 

Point 1 May 2023, August 2023 February 2023, June 2023 

High R², low RMSE, 

positive NSE; vs. nega-

tive NSE, extreme 

PBIAS, weak corr. 

Point 2 
July 2023, August 2023, Oc-

tober 2022 

December 2022, February 

2023, June 2023 

Better R², moderate 

RMSE; vs. low R², high 

negative PBIAS 

Point 3 
October 2022, December 

2022, August 2023 
November 2022, June 2023 

High R², strong agree-

ment; vs. low NSE, weak 

correlation 

Point 4 August 2023, November 2022 June 2023, May 2023 

Higher R², moderate 

RMSE; vs. extreme neg-

ative PBIAS, weak corre-

lation 

Point 5 
May 2023, August 2023, July 

2023 
February 2023, June 2023 

Good R², moderate 

RMSE, positive NSE; vs. 

low R², high PBIAS, 

negative NSE 

Figs. 3 to 7 compare data from the two sources, "HF radar data" (in red) and "MFC 

data" (in black) over the specific period for two characteristic months per location 1 to 

5. Both datasets exhibit a consistent trend over time, suggesting they generally align in 

capturing the current-speed distribution. Variability in the radar data is significantly 

higher, with extreme peaks and troughs compared to the relatively stable MFC data. 

The radar data shows high-frequency variability, with frequent extreme outliers both 
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above and below the mean. This is due to the sensitivity of the HF radar system to 

transient changes in measurement. The MFC data shows much smoother distribution, 

implying lower variability and a more generalised and filtered dataset, as it is expected 

from a analysis-type dataset. The variability of radar data captures real transient events 

(e.g., rapid current shifts) and is more suitable for short-term event detection compared 

to the MFC. The quantitative validation (RMSE, R², bias, etc.) between the two datasets 

that was previously presented confirms their agreement and highlights the specific dis-

crepancies. 

More specifically in Fig. 3 (Point 1 – October 2022 & May 2023) the comparison 

reveals stronger agreement between HF radar and CMEMS analysis data in May 2023, 

as evidenced by similar patterns and magnitudes in current speed over time. October 

2022 shows more divergence, with HF radar capturing higher variability and peak val-

ues not reflected in the CMEMS data, suggesting potential surface-layer dynamics or 

finer temporal resolution in the radar measurements. In both months in Fig. 4 (Point 2 

– November 2022 & March 2023), general trends in current speed align reasonably well 

between datasets, although the radar data in March 2023 shows higher short-term var-

iability. November 2022 presents more stable and synchronized behavior, indicating 

better performance in moderate oceanographic conditions. Discrepancies may reflect 

localized wind effects or resolution differences. In Fig. 5 (Point 3 – September 2022 & 

February 2023) a stronger mismatch is observed in February 2023, where HF radar 

indicates pronounced peaks and variability not captured by the CMEMS analysis model 

data, potentially due to wind-driven surface currents. September 2022 shows better 

alignment in magnitude and phase, although radar data still appears more dynamic, 

possibly highlighting radar’s sensitivity to transient features. In Fig. 6 (Point 4 – De-

cember 2022 & July 2023) July 2023 demonstrates good agreement in both trend and 

amplitude, with radar and CMEMS curves closely following one another. In contrast, 

December 2022 reveals noticeable divergence, with HF radar showing greater fluctua-

tion and occasional overestimation, which may indicate limitations in model represen-

tation during winter conditions or increased radar noise. In Fig. 7 (Point 5 – August 

2022 & March 2023) August 2022 exhibits strong correlation and minimal deviation 

between the two datasets, indicating robust model performance under summer condi-

tions. In March 2023, while the general trend is preserved, HF radar data exhibits more 

short-term variability and slightly higher peak speeds, consistent with expected near-

surface turbulence effects not fully resolved by CMEMS at 1.5 m depth. 

The observed differences in sea surface current velocities between HF radar and Co-

pernicus data can be partially attributed to the measurement depth. HF radar captures 

surface currents in the top few decimeters of the ocean, where wind forcing and surface 

turbulence are more pronounced. In contrast, the Copernicus model provides data at 1.5 

m depth, where the direct influence of wind is reduced due to vertical shear and fric-

tional effects. Previous studies (e.g., [22], [23]) have demonstrated that surface-layer 

currents can differ significantly from those even slightly below the surface, especially 

under strong wind or wave conditions. Therefore, differences between the two datasets 

are expected and consistent with physical oceanographic principles. In order to make 

the presentation of the results more compact, the results for the total duration period are 

documented in the Appendix (Fig. Ap1 to Fig. Ap5). 
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Fig. 3. Current speed temporal distribution from Radar HF data (red line) versus CMEMS Med 

MFC data (black line) for Point 1 for two characteristic months: October 2022 (left) and May 

2023 (right) 

  

Fig. 4. Current speed temporal distribution from Radar HF data (red line) versus CMEMS Med 

MFC data (black line) for Point 2 for two characteristic months: November 2022 (left) and 

March 2023 (right) 

  

Fig. 5. Current speed temporal distribution from Radar HF data (red line) versus CMEMS Med 

MFC data (black line) for Point 3 for two characteristic months: September 2022 (left) and 

February 2023 (right) 
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Fig. 6. Current speed temporal distribution from Radar HF data (red line) versus CMEMS Med 

MFC data (black line) for Point 4 for two characteristic months: December 2022 (left) and July 

2023 (right) 

  

Fig. 7. Current speed temporal distribution from Radar HF data (red line) versus CMEMS Med 

MFC data (black line) for Point 5 for two characteristic months: August 2022 (left) and March 

2023 (right) 

The overall distribution of the vector plots (Fig. 8) for the entire region of interest, 

shows similarities with the HF-radar data being much more detailed, displaying open-

sea recirculation patterns and specific current paths in the region. The plots in Fig. 8 

are given for selected timeframe (2022-09-15 12:00 UTC). Characteristic results for the 

total duration over the period from August 2022 to August 2023 are documented in the 

Appendix (Fig. Ap6). 
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Fig. 8. Characteristic spatial distribution of current speed and direction from Radar HF data 

(left) versus CMEMS Med MFC data (right) at a specific time-point (2022-09-15 12:00 UTC) 

based on the entire spatial coverage of the HF radar (shown in Fig. 1). Horizontal units: Deci-

mal degrees (WGS84) 

The Taylor diagram in Fig. 9 visualises the monthly distribution results in Table 2 

to Table 6. In general, the results agree well between the HF-radar and MFC data with 

diminished RMSE and standard deviation indexes. The MFC data indexes are clustered 

in a tight box for all locations throughout the year. Each dot represents a different 

month, characterized by its correlation coefficient, standard deviation, and centered 

root mean square error (RMSE) relative to the radar observations (black star). Across 

all points, several general trends emerge. High-performing months (e.g., August 2023, 

May 2023, July 2023) are located closer to the reference star, indicating strong corre-

lations (often above 0.8), well-matched variability (standard deviation close to ob-

served) and low RMSE, indicating strong agreement between observed and modelled 

current speeds. Poor-performing months such as February 2023 and June 2023 are lo-

cated farther from the reference, show low correlation (some below 0.4), deviate in 

standard deviation (either under- or overestimated) and reflect high RMSE, pointing to 

limited model skill during these periods. More specifically, points P1 & P3 show better 

overall agreement, with most months clustering tightly near the observation reference. 

P2 & P4 display greater spread, suggesting more variability in model performance. P5 

shows generally good agreement, with February and June again standing out as poor 

months. These results underscore the seasonal and spatial variability in model perfor-

mance, with summer months generally aligning better with HF radar data and winter or 

transition months exhibiting reduced comparison, likely due to more complex or tran-

sient oceanographic processes not fully captured by the model. 



Comparison of Malta HF Radar Currents with CMEMS Mediterranean MFC Data 15 

  

  

 

 

 

Fig. 9. Taylor diagrams of monthly current speed from Radar HF data (observed) versus 

CMEMS Med MFC data (colored dots) for positions P1 – P5 

P2 P1 

P3 P4 

P5 
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4 Conclusions 

The detrended HF radar sea-surface current data, excluding outliers, align well with 

the CMEMS Med MFC analysis model data. Overall, the best performing month is May 

2023 since across multiple points, it has high R² and positive NSE. The worst perform-

ing month is February 2023 with extreme bias, low NSE, and poor correlation across 

most points. The direction of the sea-surface currents between the two datasets is also 

in good agreement. The CMEMS Med MFC shows a strong south-east flow along Sic-

ily’s southern coastline, while the sea-surface currents along the northern Maltese 

coastline are generally weak. To address model–data discrepancies, future work will 

focus on several complementary strategies. Firstly, enhanced temporal and spatial har-

monization between HF radar observations (which measure surface currents) and 

model output (at ~1.5 m depth) can be achieved by incorporating vertical current struc-

ture profiles from in-situ measurements or high-resolution 3D numerical models. Sec-

ondly, data assimilation techniques that integrate real-time HF radar measurements into 

hydrodynamic models could significantly improve predictive accuracy. Additionally, 

expanding the HF radar network—particularly in under-sampled coastal and transi-

tional zones—would improve spatial coverage and resolve fine-scale circulation fea-

tures. Coupling radar observations with wind forcing and wave models may help dis-

entangle external drivers of surface current variability, ultimately strengthening both 

operational and scientific utility of such integrated observing systems. 

The future of HF radar technology in the Mediterranean lies in expanding its spatial 

coverage and integrating it with other observational platforms. Innovations in radar de-

sign and data processing, coupled with international collaborations, can further enhance 

the utility of HF radar systems for monitoring and managing Mediterranean marine 

environments. Additionally, the incorporation of HF radar data into global oceano-

graphic models can provide more accurate and comprehensive insights into ocean dy-

namics. HF radar systems have revolutionized our ability to monitor sea-surface cur-

rents, offering unparalleled spatial and temporal resolution. In the Mediterranean Sea, 

these systems have provided valuable insights into regional circulation patterns and 

their implications for marine ecosystems, climate studies, and human activities. While 

challenges remain, ongoing technological advancements and collaborative efforts 

promise to unlock the full potential of HF radar for oceanographic research and practi-

cal applications. 
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Appendix: August 2022 – August 2023 results summary 
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Fig. Ap1. Current speed temporal distribution from Radar HF data (red line) versus CMEMS 

Med MFC data (black line) for Point 1 
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Fig. Ap2. Current speed temporal distribution from Radar HF data (red line) versus CMEMS 

Med MFC data (black line) for Point 2 
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Fig. Ap3. Current speed temporal distribution from Radar HF data (red line) versus CMEMS 

Med MFC data (black line) for Point 3 
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Fig. Ap4. Current speed temporal distribution from Radar HF data (red line) versus CMEMS 

Med MFC data (black line) for Point 4 
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Fig. Ap5. Current speed temporal distribution from Radar HF data (red line) versus CMEMS 

Med MFC data (black line) for Point 5 
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Fig. Ap6. Characteristic spatial distribution of current speed and direction from Radar HF data 

(left) versus CMEMS Med MFC data (right) at specific time-points per month based on the en-

tire spatial coverage of the HF radar (shown in Fig. 1). Horizontal units: Decimal degrees 

(WGS84) 
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