| More

Study on the combined action of the entomopathogenic bacterium Bacillus thuringiensis subsp. kurstaki and the entomopathogenic nematode Heterorhabditis bacteriophora

Views: 318 Downloads: 129
I. Zampara, C. Zamparas, S. Mantzoukas, E. Karanastasi
I. Zampara, C. Zamparas, S. Mantzoukas, E. Karanastasi


The interaction between the entomopathogenic bacterium Bacillus thuringiensis subsp. Kurstaki and the entomopathogenic nematode Heterorhabditis bacteriophora (Heterorhabditidae) was examined against larvae of Ephestia kuehniella (Lepidoptera: Pyralidae) at 7, 14, 21 and 28 days post treatment, in laboratory conditions. Three different combinations of the aforementioned pathogens were tested on 4th instar larvae, namely 500ppm B. thuringiensis subsp. kurstaki (B.t.k.) and H. bacteriophora infective Juveniles (1000IJs/ml), 1500ppm B.t.k. and H. bacteriophora (1000IJs/ml) and 3000ppm B.t.k. and H. bacteriophora (1000IJs/ml). At 7, 14 and 21 days, the interaction between the pathogens was additive in two of the treatments and synergistic in one, whereas at 28 days, it was negative in two of the treatments and synergistic in one. Overall, the application of the lowest dose of B.t.k. (500ppm) in combination with H. bacteriophora (1000IJs/ml), turned out to be highly effective. The interaction between B. thuringiensis and H. bacteriophora is to be further examined.


Bacillus thuringiensis; biological control; entomopathogenic nematode; Ephestia kuehniella; Heterorhabditis bacteriophora

Full Text:



Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18: 265-267.

Ahmedani, M.S., M.I. Haque, S.N. Afzal, U. Iqbal and S. Naz. 2008. Scope of Commercial Formulations of Bacillus thuringiensis Berliner as an alternative to Methyl Bromide against Tribolium castaneum adults. Pak. J. Bot. 40: 2149-2156.

Ayvaz, A., S. Albayrak and S. Karaborklu. 2008. Gamma radiation sensitivity of the eggs, larvae and pupae of Indian meal moth Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). Pest Manag. Sci. 64: 505-512.

BenFarhat, D., M. Dammak, S.B. Khedher, S. Mahfoudh, S. Kammoun and S. Tounsi. 2013. Response of larval Ephestia kuehniella (Lepidoptera: Pyralidae) to individual Bacillus thuringiensis kurstaki toxins mixed with Xenorhabdus nematophila. J. Inv. Path. 114: 71–75.

Cox, F.E.G. 2001. Concomitant infections, parasites and immune responses. Parasitol. 122: 23–38.

Cox, P.D. and C.H. Bell. 1991. Biology and ecology of moth pests of stored foods. In: J.R. Gorham (ed.) Ecology and Management of Food Industry Pests. FDA Techn. Bull. The Association of Official Analytical Chemists, Arlington, USA. 4: 181-193.

Easom, C.A., S.A. Joyce and D.J. Clarke. 2010. Identification of genes involved in the mutualistic colonization of the nematode Heterorhabditis bacteriophora by the bacterium Photorhabdus luminescens. BMC Microbiol. 10: 45.

Federici, B.A., H.-W. Park and D.K. Bideshi. 2010. Overview of the basic biology of Bacillus thuringiensis with emphasis on genetic engineering of bacterial larvicides for mosquito control. Op. Toxic. J. 3: 83-100.

George, Z. and N. Crickmore. 2012. Bacillus thuringiensis applications in agriculture. In: E. Sansinenea (ed.) Bacillus thuringiensis Biotechnology. Springer, Dordrecht, pp. 19-39.

González-Cabrera, J., O. Mollá, H. Montón and A. Urbaneja. 2011. Efficacy of Bacillus thuringiensis (Berliner) in controlling the tomato borer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). BioControl 56: 71-80.

Koppenhofer, A.M., H.Y. Choo, H.K. Kaya, D.W. Lee and W.D. Gelernter. 1999. Additive and synergistic increased field and greenhouse efficacy against scarab grubs with a combination of an entomopathogenic nematode and bacillus thuringiensis. Biol. Control 14: 37–44.

Laznik, Z. and S. Trdan. 2013. The influence of insecticides on the viability of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) under laboratory conditions. Pest Manag. Sci. DOI 10.1002/ps.3614.

Locatelli, D.P., L. Limonta and M. Stampini. 2008. Effect of particle size of soft wheat flour on the development of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). J. Stored Prod. Res. 44: 269-272.

Mantzoukas, S., P. Milonas, D. Kontodimas and K. Angelopoulos. 2013. Interaction between the entomopathogenic bacterium Bacillus thuringiensis subsp. kurstaki and two-entomopathogenic fungus in bio-control of Sesamia nonagrioides (Lefebvre) (Lepidoptera: Noctuidae). Ann. Micro. 63: 1083- 1091.

Mostafa, A.M., P.G. Fields, N.J. Holliday. 2005. Effect of temperature and relative humidity on the cellular defense response of Ephestia kuehniella larvae fed Bacillus thuringiensis. J. Inv. Path. 90: 79-84.

Nielsen-LeRoux, C., S. Gaudriault, N. Ramarao, D. Lereclus and A. Givaudan. 2012. How the insect pathogen bacteria Bacillus thuringiensis and Xenorhabdus /Photorhabdus occupy their hosts. Curr. Opin. Microbiol. 15: 220–231.

Öztürk, F., L. Açik, A. Ayvaz, B. Bozdoğan and Z. Suludere. 2008. Isolation and characterization of native Bacillus thuringiensis strains from soil and testing the bioactivity of isolates against Ephestia kuenhiella Zeller (Lepidoptera: Pyralidae) larvae. Turk. J. Biochem. 33: 202-208.

Sanchis, V. and D. Bourguet. 2008. Bacillus thuringiensis: applications in agriculture and insect resistance management. A review. Agron. Sustain. Dev. 28: 11-20.

Sedlacek, J.D., P.A. Weston and R.J. Barney. 1996. Lepidoptera and Psocoptera. In: B. Subramanyam and D.W. Hagstrum (eds) Integrated Management of Insects in Stored Products. Marcel Dekker, New York. pp. 41-70.

Sharma, H.C., M.K. Dhillon and R. Arora. 2008. Effects of Bacillus thuringiensis δ-endotoxin-fed Helicoverpa armigera on the survival and development of the parasitoid Campoletis chloridae. Entomol. Exp. Appl. 126: 1-8.

Thomas, M.B., E.L Watson and P. Valverde- Garcia. 2003. Mixed infections and insect pathogen interactions. Ecol. Lett. 6: 183–189.

Tounsi, S., M. Dammak, A. Rebaǐ and S. Jaoua. 2005. Response of larval Ephestia kuehniella (Lepidoptera: Pyralidae) to individual Bacillus thuringiensis kurstaki toxins and toxin mixtures. Biol. Control 35: 27-31.

Trematerra, P. and P. Gentile. 2010. Five years of mass trapping of Ephestia kuehniella Zeller: a component of IPM in a flour mill. J. Appl. Entomol. 134: 149-156.

Wei, J.-Z., K. Hale, L. Carta, E. Platzer, C. Wong, S.-C. Fang and R.V. Aroian. 2003. Bacillus thuringiensis crystal proteins that target nematodes. PNAS 100: 2760–2765.


  • There are currently no refbacks.

Copyright (c) 2017 I. Zampara, C. Zamparas, S. Mantzoukas, E. Karanastasi