Insecticidal effects of aqueous extracts from Artemisia herba-alba Asso and Rosmarinus officinalis L against Drosophila melanogaster (Diptera: Drosophilidae)


Δημοσιευμένα: Ιουν 1, 2025
Fethi BENSEBAA
Bilel BOULAHBEL
Radia BEZZAR-BENDJAZIA
Maroua FERDENACHE
Samira KILANI-MORAKCHI
Περίληψη

Synthetic insecticides are frequently used to control or prevent agricultural insect pests. However, their excessive use is generally associated with environmental pollution, loss of biodiversity, health risks to humans, and adverse effects on various living beings. Considering the harmful consequences of chemical pesticides on the environment and public health, this highlights the necessity for target-specific, biodegradable, and environmentally friendly products, such as those extracted from plants. Hence, in the present study, the bio-efficacy of two botanical plant extracts obtained from the leaves of Artemisia herba-alba Asso and Rosmarinus officinalis L. by the maceration method was investigated on Drosophila melanogaster Meigen (Diptera: Drosophilidae) a widely used biological model for assessing insecticidal effects. The aqueous extracts were applied topically through different doses varying from 1 to 20 µg per larva for A. herba-alba, and 1 to 35 μg per larva for R. officinalis, on the third instar larvae, and the inhibition doses of adult emergence (ID25 and ID50) were determined. Our results indicate that the aqueous extracts of A. herba-alba showed very promising insecticide activity against D. melanogaster compared to R. officinalis extract. Topical toxicity recorded ID25 and ID50 values of 1.35 and 3.17 µg per larva for A. herba-alba, followed by 2.03 and 6.42 µg per larva for R. officinalis, respectively. These findings reflect clearly that the aqueous plant extracts of A. herba-alba and R. officinalis have great potential to develop new botanical insecticides as safe alternatives for insect-pest control.

Λεπτομέρειες άρθρου
  • Ενότητα
  • Articles
Λήψεις
Τα δεδομένα λήψης δεν είναι ακόμη διαθέσιμα.
Αναφορές
Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology,18(2), 265-267. https://doi.org/10.1093/jee/18.2.265a
Abdelgaleil, S. A. M., Mohamed, M. E. I., Badawy, M. E. I., & El-arami, S. A. (2009). Fumigant and contact toxicities of monoterpenes to Sitophilus oryzae (L.) and Tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase activity. Journal of chemical ecology, 35(5), 518-525. https://doi.org/10.1007/s10886-009-9635-3
Akbar, R., Khan, I. A., Alajmi, R. A., Ali, A., Faheem, B., Usman, A., Ahmed, A. M., El-Shazly, M., Farid, A., Giesy, J.P., & Aboul-Soud, M. A. (2022). Evaluation of insecticidal potentials of five plant extracts against the stored grain pest, Callosobruchus maculatus (Coleoptera: Bruchidae). Insects, 13(11), 1047. https://doi.org/10.3390/insects13111047
Aziz, A. T., Alshehri, M. A., Panneerselvam, C., Murugan, K., Trivedi, S., Mahyoub, J. A., Hassan, M. M. Maggi, F., Sut, S., Dall’Acqua, S., Canale, A., & Benelli, G. (2018). The desert wormwood (Artemisia herba-alba)–From Arabian folk medicine to a source of green and effective nanoinsecticides against mosquito vectors. Journal of photochemistry and photobiology B: biology, 180, 225-234. https://doi.org/10.1016/j.jphotobiol.2018.02.012
Barathi, S., Sabapathi, N., Kandasamy, S., & Lee, J. (2024). Present status of insecticide impacts and eco-friendly approaches for remediation-a review. Environmental Research, 240, 117432. https://doi.org/10.1016/j.envres.2023.117432
Ben Slimane, B., & Baouindi, M. (2016). Effects of Artemisia herba-alba essential oils on survival stored cereal pests: Tribolium castaneum (Herbst) (Coleoptera, Tenebrionidae) and Trogoderma granarium (Everst) (Coleoptera, Dermestidae). Journal of Coastal Life Medicine, 4(5), 390-394.
Bensebaa, F., Kilani-Morakchi, S., Aribi, N., & Soltani, N. (2015). Evaluation of pyriproxyfen, a juvenile hormone analog, on Drosophila melanogaster (Diptera: Drosophilidae): Insecticidal activity, ecdysteroid contents and cuticle formation. European Journal of Entomology, 112(4), 625-631. DOI: 10.14411/eje.2015.084
Bilal, M., Iqbal, H. M, N., & Barceló, D. (2019). Persistence of pesticides-based contaminants in the environment and their effective degradation using laccase-assisted biocatalytic systems. Science of The Total Environment, 695, 133896. https://doi.org/10.1016/j.scitotenv.2019.133896
Bini, K. K. N., Kobenan, K. C., Kouakou, M., Kouadio, I. S., Zengin, G., Jekő, J., Cziáky, Z., Danho, M., & Ochou, O. G. (2023). Phytochemical profiling, antioxidant activities, enzymatic activities and insecticidal potential of aqueous extracts of four plants on the larvae of Helicoverpa armigera (Lepidoptera: Noctuidae), the main pest of cotton plant in Ivory Coast. Archives of Insect Biochemistry and Physiology, 113(3), e22017. https://doi.org/10.1002/arch.22017
Bouchikhi-Tani, Z., Anouar, K.M., & Bendahou, M. (2018). Evaluation of the larvicidal effect of the essential oils extracted from five aromatic plants of Algeria: test on the mite Tineola bisselliella (Lepidoptera: tineidae). Lebanese Science Journal, 19(2), 187–199.
Boukraa, N., Ladjel, S., Benlamoudi, W., Goudjil, M. B., Berrekbia, M., & Eddoud, A. (2022). Insecticidal and repellent activities of Artemisia herba-alba Asso, Juniperus phoenicea L and Rosmarinus officinalis L essential oils in synergized combinations against adults of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Biocatalysis and Agricultural Biotechnology, 45, 102513. https://doi.org/10.1016/j.bcab.2022.102513
Boulahbel, B., Ferdenache, M., Sifi, K., & Kilani-Morakchi, S. (2022). Larval exposure to azadirachtin induced locomotor deficits, and impairs olfactory and gustatory preference in adults of Drosophila melanogaster (Diptera: Drosophilidae). International Journal of Tropical Insect Science, 42(4), 2835-2844.
Chaubey, M.K. (2014). Biological activities of Allium sativum essential oil against pulse beetle, (Coleoptera: Bruchidae). Herba Polonica, 60(2), 41-55. DOI: 10.2478/hepo-2014-0009
Corzo-Gómez, J. C., Espinosa-Juárez, J. V., Ovando-Zambrano, J. C., Briones-Aranda, A., Cruz-Salomón, A., & Esquinca-Avilés, H. A. (2024). A Review of Botanical Extracts with Repellent and Insecticidal Activity and Their Suitability for Managing Mosquito-Borne Disease Risk in Mexico. Pathogens, 13(9), 737. https://doi.org/10.3390/pathogens13090737
El-Ashmouny, R. S., Rady, M. H., Merdan, B. A., El-Sheikh, T. A. A., Hassan, R. E., & El Gohary, E. G. E. (2022). Larvicidal and pathological effects of green synthesized silver nanoparticles from Artemisia herba-alba against Spodoptera littoralis through feeding and contact application. Egyptian Journal of Basic and Applied Sciences, 9(1), 239-253. https://doi.org/10.1080/2314808X.2022.2063012
Gupta, N., Sharma, N., & Ramniwas, S. (2021). Botanical pesticides: use of plants in pest management. CGC International Journal of Contemporary Technology and Research, 4(1), 271-275.
Handa, S.S., 2008. An overview of extraction techniques for medicinal and aromatic plants, in: Handa, S.S., Khanuja, S.P.S., Longo, G., Rakesh, D.D. (Eds.), Extraction Technologies for Medicinal and Aromatic Plants. International Centre for Science and High Technology, Trieste, pp. 21–54.
Hawkins, N. J., Bass, C., Dixon, A., & Neve, P. (2019). The evolutionary origins of pesticide resistance. Biological Reviews, 94(1), 135-155. https://doi.org/10.1111/brv.12440
Henagamage, A.P., Ranaweera, M.N., Peries, C.M., & Premetilake, M.M.S.N. (2023). Repellent, antifeedant and toxic effects of plants-extracts against Spodoptera frugiperda larvae (fall armyworm). Biocatalysis and Agricultural Biotechnology, 48, 102636. https://doi.org/10.1016/j.bcab.2023.102636
Isman, M. B. (2020). Botanical insecticides in the twenty-first century-fulfilling their promise ? Annual Review of Entomology, 65, 233-249. https://doi.org/10.1146/annurev-ento-011019-025010
Isman, M.B., Akhtar, Y., 2007. Plant natural products as a source for developing environmentally acceptable insecticides. In: Ishaaya, I., Nauen, R., Horowitz, A.R. (Eds.), Insecticides Design Using Advanced Technologies. Springer-Verlag, Berlin, pp. 235–248
Jan, M. T., Abbas, N., Shad, S. A., & Saleem, M. A. (2015). Resistance to organophosphate, pyrethroid and biorational insecticides in populations of spotted bollworm, Earias vittella (Fabricius) (Lepidoptera: Noctuidae), in Pakistan. Crop Protection, 78, 247-252. https://doi.org/10.1016/j.cropro.2015.09.020
Kalinda, R. S., & Rioba, N. B. (2020). Phytochemical analysis and efficacy of rosemary (Rosmarinus officinalis) and mint (Mentha spicata) extracts against fall armyworm (Spodoptera frugiperda) on baby corn (Zea mays). Acta Chemica Malaysia, 4(2), 66-71. DOI: 10.2478/acmy-2020-0011
Khan, S., Taning, C. N. T., Bonneure, E., Mangelinckx, S., Smagghe, G., & Shah, M. M. (2017). Insecticidal activity of plant-derived extracts against different economically important pest insects. Phytoparasitica, 45, 113-124. https://doi.org/10.1007/s12600-017-0569-y
Lamsal, S., Sibi, S., & Yadav, S. (2020). Fall armyworm in south Asia: threats and management. Asian Journal of Advances in Agricultural Research, 13(3), 21-34. DOI: 10.9734/ajaar/2020/v13i330106
Lengai, G. M., Muthomi, J. W., & Mbega, E. R. (2020). Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Scientific African, 7, e00239. https://doi.org/10.1016/j.sciaf.2019.e00239
Mahi, T., Harizia, A., Elouissi, A., Pérez-Izquierdo, C., Benguerai, A., Canelo, T., & Bonal, R. (2023). Chemical composition and toxicity of Artemisia herba-alba essential oil against Cydia pomonella L. (Lepidoptera: Tortricidae) under laboratory conditions. Biocatalysis and Agricultural Biotechnology, 50, 102742. https://doi.org/10.1016/j.bcab.2023.102742
Nasr, R. B., Baudelaire, E. D., Dicko, A., & Ouarda, H. E.F. (2021). Phytochemicals, antioxidant attributes and larvicidal activity of Mercurialis annua L. (Euphorbiaceae) leaf extracts against Tribolium confusum (Du Val) Larvae (Coleoptera; Tenebrionidae). Biology, 10(4), 344. https://doi.org/10.3390/biology10040344
Ngegba, P. M., Cui, G., Khalid, M. Z., & Zhong, G. (2022). Use of botanical pesticides in agriculture as an alternative to synthetic pesticides. Agriculture. 12(5), 600. https://doi.org/10.3390/agriculture12050600
Pavela, R. (2016). History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects - a review. Plant Protection Science, 52(4), 229-241. DOI: 10.17221/31/2016-PPS
Rajmohan, K. S., Chandrasekaran, R., & Varjani, S. (2020). A review on occurrence of pesticides in environment and current technologies for their remediation and management. Indian journal of microbiology, 60, 125-138. Doi: 10.1007/s12088-019-00841-x
Senthil-Nathan, S. (2020). A review of resistance mechanisms of synthetic insecticides and botanicals, phytochemicals, and essential oils as alternative larvicidal agents against mosquitoes. Frontiers in physiology, 10, 1591.
Sharma, A., Shukla, A., Attri, K., Kumar, M., Kumar, P., Suttee, A., Singh, G., Barnwal, R.P., and Singla, N. 2020. Global trends in pesticides: A looming threat and viable alternatives. Ecotoxicology and Environmental Safety, 201, 110812. https://doi.org/10.1016/j.ecoenv.2020.110812
Souto, A. L., Sylvestre, M., Tölke, E. D., Tavares, J. F., Barbosa-Filho, J. M., & Cebrián-Torrejón, G. (2021). Plant-derived pesticides as an alternative to pest management and sustainable agricultural production: Prospects, applications and challenges. Molecules, 26(16), 4835.
Tang, F. H. M., Lenzen, M., McBratney, A., & Maggi, F. (2021). Risk of pesticide pollution at the global scale. Nature geoscience, 14(4), 206-210. https://doi.org/10.1038/s41561-021-00712-5
Tsao, R., & Coats, J. R. (1995). Starting from nature to make better insecticides. Chemtech, 25(7), 23-28.