Molecular docking evaluation of the insecticidal impacts of some essential oils’ constituents


Published: Jan 31, 2026
Keywords:
bio-insecticides in silico Salvia microphylla target enzymes γ-eudesmol
Salim Lebbal
Abstract

For a sustainable agriculture, the use of biopesticides is among the main components of Integrated Pest Management. When compared to chemical pesticides, biopesticides derived from plants offers numerous benefits. Additionally, the use of in silico approach could assist researchers in reducing the duration and expense of in vitro experiments. In this context, the current study's objective is to predict the binding potential of Salvia microphylla (Lamiaceae) essential oils, in addition to two active ingredients of chemical pesticides, against two target proteins in insect, using molecular docking technique. Via MOE software, the best-scored position for every molecule was the only one achieved after the free binding energy (kcal/mol) was calculated. According to the results, the active molecules of conventional insecticides recorded the best results of binding interaction with the two examined target proteins (acetylcholinesterase and ecdysone receptor), followed by the molecule γ-eudesmol. The overall results indicated that among the tested compounds, the sesquiterpene γ-eudesmol was found to have the highest docking score with acetylcholinesterase and ecdysone receptors through the in silico study. Therefore, testing this ingredient on insects in both lab and field settings is strongly advised.

Article Details
  • Section
  • Articles
Downloads
Download data is not yet available.
References
Abdul Halim, S.B.N.A. and H. Hussin. 2022. In silico characterization and molecular docking studies of insecticidal protein Cry11Aa from Bacillus thuringiensis. Proceedings of Science and Mathematics 13: 131-139.
Alanazi, M.A., Arafa, W.A., Althobaiti, I.O., Altaleb, H.A., Bakr, R.B. and N.A. Elkanzi. 2022. Green design, synthesis, and molecular docking study of novel Quinoxaline derivatives with insecticidal potential against Aphis craccivora. ACS omega 7(31): 27674-27689.
Ayoub, I. M., George, M. Y., Menze, E. T., Mahmoud, M., Botros, M., Essam, M., Ashmawy, I., Shendi, P., Hany, A., Galal, M., Ayman, M. and R. M. Labib. 2022. Insights into the neuroprotective effects of Salvia officinalis L. and Salvia microphylla Kunth in the memory impairment rat model. Food & Function 13(4): 2253–2268.
Banerjee, P., Kemmler, E., Dunkel, M. and R., Preissner. 2024. ProTox 3.0: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Research 52(W1): W513-W520.
Belhadji, A., Abdelli, I., Hassani, F., Brikci, S.B., Ghalem, S., Rehman, H.M. and R. Kechairi. 2022. An in silico study into the bioacaricide power of the Algerian argan tree against Varroa destructor. Biologija 68(4): 230–239
Billas, I.M., Iwema, T., Garnier, J.M., Mitschler, A., Rochel, N. and D. Moras. 2003. Structural adaptability in the ligand-binding pocket of the ecdysone hormone receptor. Nature 426(6962): 91-96.
Choi, G. W., Jo, H. M. and I. H. Choi. 2023. A Study on Antioxidant and Anti-inflammatory of Salvia microphylla Ethanol Extract. Asian Journal of Beauty and Cosmetology 21(3): 493–501.
Chouit, H., Touafek, O., Brada, M., Benssouici, C., Fauconnier, M. L. and M. E. Hattab. 2021. GC-MS analysis and biological activities of Algerian Salvia microphylla essential oils. Journal of the Mexican Chemical Society 65(4): 582-601.
Corrêa, E. J. A., Carvalho, F. C., de Castro Oliveira, J. A., Bertolucci, S. K. V., Scotti, M. T., Silveira, C. H., Guedes, F. C., Melo, J. O. F., de Melo-Minardi, R. C. and L. H. F. de Lima. 2023. Elucidating the molecular mechanisms of essential oils’ insecticidal action using a novel cheminformatics protocol. Scientific Reports 13(1): 1–19.
Cosconati, S., Forli S., Perryman, A. L., Harris R., Goodsell, D. S. and A. J. Olson. 2010. Virtual screening with AutoDock: theory and practice. Expert Opinion on Drug Discovery 5(6): 597–607.
Da Costa, K. S., Galúcio, J. M., Da Costa, C. H. S., Santana, A. R., Dos Santos Carvalho, V., Do Nascimento, L. D., Lima E Lima, A. H., Neves Cruz, J., Alves, C. N. and J. Lameira. 2019. Exploring the potentiality of natural products from essential oils as inhibitors of Odorant-Binding Proteins: A structure- and ligand-based virtual screening approach to find novel mosquito repellents. ACS Omega 4(27): 22475–22486.
Daina, A., Michielin, O. and V., Zoete. 2017. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports 7(1): 42717.
Firdausiah, S., Firdaus, F., Sulaeha, S., Rasyid, H. and S.F. Amalia. 2022. Citronella extracts: Chemical composition, in vivo and in silico insecticidal activity against fall armyworm (Spodoptera frugiperda JE Smith). Egyptian Journal of Chemistry 66(7): 235-243.
Fournier, D., Bride, J. M., Hoffmann, F. and F. Karch. 1992. Acetylcholinesterase. Two types of modifications confer resistance to insecticide. Journal of Biological Chemistry 267(20): 14270-14274.
IRAC 2022. Mode of action classification scheme: version 10.4. CropLife 41 p.
Ishaaya, I. 2001. Biochemical processes related to insecticide action: an overview. Biochemical Sites of Insecticide Action and Resistance: 1–16.
Krumrine, J., Raubacher, F., Brooijmans, N. and I. Kuntz. 2003. Principles and methods of docking and ligand design. In: P.E. Bourne & H. Weissig (Eds.), Methods of Biochemical Analysis. John Wiley & Sons, Inc. pp. 443-476.
Lebbal, S., Benhizia, T., Rahal, K., Zeraib, A., Aggoune, R., Maarouf, N., Brik. D. and R. Mhalaine. 2023. In vitro screening of the insecticidal activity of Salvia microphylla (Lamiaceae). AgroLife Scientific Journal 12(2): 101-106.
Lima, R.K., Cardoso, M.D.G., Andrade, M.A., Guimarães, P.L., Batista, L.R. and D.L. Nelson. 2012. Bactericidal and antioxidant activity of essential oils from Myristica fragrans Houtt and Salvia microphylla HBK. Journal of the American Oil Chemists' Society 89(3): 523-528.
Mathew, J. and J. E. Thoppil. 2012. Investigation of the antimutagenic activity of three Salvia extracts. International Journal of Pharmacy and Pharmaceutical Sciences 4 (SUPPL.3): 225–230.
Morris, M.G. and M. Lim-wilby. 2008. Molecular Docking. In: A. Kukol (Ed.), Molecular Modeling of Proteins. Humana Press. pp. 365-382.
Ntalli, N.G., Ferrari, F., Giannakou, I. and U. Menkissoglu‐Spiroudi. 2011. Synergistic and antagonistic interactions of terpenes against Meloidogyne incognita and the nematicidal activity of essential oils from seven plants indigenous to Greece. Pest Management Science 67(3): 341-351.
Pires, D. E., Blundell, T. L. and D. B., Ascher. 2015. pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of medicinal chemistry 58(9): 4066-4072.
Prajapat, R.K., Mainkar, P., Kalia, V.K., Upadhyay, T.K. and R. Kansal. 2020. In-silico and in-vitro expression of Vigna aconitifolia lectin for insecticidal activity. Indian Journal of Agricultural Sciences 90(7): 1328–1332.
Romo-Asunción, D., Ávila-Calderón, M. A., Ramos-López, M. A., Barranco-Florido, J. E., Rodríguez-Navarro, S., Romero-Gomez, S., Aldeco-Pérez, E. J., Pacheco-Aguilar, J. R. and M. A. Rico-Rodríguez. 2016. Juvenomimetic and Insecticidal Activities of Senecio salignus (Asteraceae) and Salvia microphylla (Lamiaceae) on Spodoptera frugiperda (Lepidoptera: Noctuidae). Florida Entomologist 99(3): 345–351.
Saonerkar, T.D., Naik, V., Pusadkar, P.P., Chandrashekar, N. and D.S. Ghongade. 2022. In-silico determination of insecticidal potential in lepidopteron specific crystal toxins with midgut alkaline phosphatase using molecular docking. Indian Journal of Ecology 49(2): 521-526.
Satyal, P., Calderon, C. and W.N. Setzer. 2020. Seasonal variation in the essential oil composition of Salvia microphylla. American Journal of Essential Oils and Natural Products 8(4): 6-10.
Sparks, T. C. and R. J. Bryant. 2022. Innovation in insecticide discovery: Approaches to the discovery of new classes of insecticides. Pest Management Science 78(8): 3226–3247.
Trivedi, H., Panchal, M. U. and P. Patani. 2024. The saviour sage: unveiling it's multifaceted marvels - A comprehensive exploration of it's anti-inflammatory, mood & memory modulating, anti-sweating, and hot flashes relieving properties. Journal of Population Therapeutics & Clinical Pharmacology 31(1): 683–701.
Ware, A., Shaikh, F. and A. Panche. 2018. In silico analysis for competent bioinsecticides. Research Journal of Pharmaceutical, Biological and Chemical Sciences 4(4): 322-342.
Wolber, G. and T. Langer. 2005. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. Journal of Chemical Information and Modeling 45(1): 160-169.
Most read articles by the same author(s)