| More


Views: 240 Downloads: 171
M. Stefanova, S.P. Marinov
M. Stefanova, S.P. Marinov


Humic substances naturally occur in Miocene/Pliocene-aged lignite at very high concentrations. Here biomarkers in the bitumen-free extract of humic acids from Thracian lignite, Bulgaria, are studied. Applying methods of organic geochemistry a broad range of compounds are isolated and characterised. Species are classified according to abundance, possible source input and diagenetic transformation. A feature of humic acids derived from Thracian coal is the extremely high content of 16α(H)Phyllocladane, ~60% of aliphatic fraction, or 1.6 wt.% of initial lignite. The high diterpenoids content, especially with abietane skeleton, proved the conifer contribution to the peat-forming helophytes, i.e. Cupressaceae s. str., Podocarpaceae, Araucariaceae, Taxodiaceae, Phyllocladus, Piceae. Tightly-trapped, linear long-chain fatty acids (FAs) are the main constituents of the acidic fraction of humic acids. Their distribution patterns indicate a dominant higher plant origin. The presence of αOH-FAs and hopanoid acids assumes bacterial activity in the plant material reworked. A hint for the input of plant biopolymers, i.e. cutin, suberin, is the relative high content of “even” carbon numbered ωΟΗFAs and α,ω-alkanedioic FAs. “Even” numbered short-chain ωΟΗFAs could originate from cutin-derived constituents of the needles of numerous species of gymnospermous families.


Thrace; lignite; humic acid; biomarker; fatty acid; palaeoenvironment;

Full Text:



Allard, B. 2006. A comparative study on the chemical composition of humic acids from forest soil, agricultural

soil and lignite deposit. Bound lipid, carbohydrate and amino acid distributions. Geoderma 130, 77-96.

Amblès, A. 2001. Methods to reveal the structure of humic substances. In: Hofrichter, M., Steinbüchel,

A. (Eds) Biopolymers.Wiley-VCH. v.1 pp. 325-348.

Bechtel, A., Sachsenhofer, R.F., Zdravkov, A., Kostova, I., Gratzer, R. 2005. Influence of floralassemblage,

facies and diagenesis on petrography and organic geochemistry of the Eocene Bourgas coal and the

Miocene Maritza-East lignite (Bulgaria). Organic Geochemistry 36, 1498-1522.

Cranwell, P.A. 1982. Lipids of aquatic sediments and sedimenting particules. Prog. Lipid Res. 21, 271-308.

Deport, C., Lemée, L., Amblès, A. 2006. Comparison between humic substances from soils and peats

using TMAH and TEAAc thermochemolysis. Organic Geochemistry 37, 649-664.

Grasset, L., Amblès, A. 1998. Structural study of soil humic acids and humin using a new preparative thermochemolysis

technique. J. Anal. and Applied Pyrolysis 47, 1-12.

Grasset, L., Guignard, C., Amblès, A. 2002. Free and esterified aliphatic carboxylic acids in humin and

humic acids from peat sample as revealed by pyrolysis with TMAH or TEAAc. Organic Geochemistry

, 181-188

Guignard, C., Lemée, L., Amblès, A. 2005. Lipid constituents of peat humic acids and humin. Dis-tinction

from directly extractable bitumen components using TMAH and TEAAc thermochemolysis. Organic

Geochemistry 36, 287-297.

Hashimoto N., Aoyama T., Shiori T. 1981. New methods and reagents in organic synthesis. 14. A simple

efficient preparation of methyl esters with trimethylsilyl diazomethane (TMSCHN2) and its

application to gas chromatographic analysis of fatty acids. Chemical Pharmaceutical Bulletin 29,


Kolattukudy, P.E. 1976. Chemistry and biochemistry of natural waxes, Elsevier, Amsterdam.

Kolattukudy, P.E. 1980. Biopolyester membranes of plants: cutin and suberin. Science 208, 990-1000.

Lehtonen, K., Hänninen, K., Ketola, M. 2001. Structurally bound lipids in peat humic acids. Organic

Geochemistry 32, 33-43.

McCarthy, R.D., Duthie, A.H. 1962. A rapid quantitative method for the separation of free fatty acids

from other lipids. J. of Lipid Res. 2, 117-119.

Oros, D.R., Standley, L.J., Chen, X., Simoneit, B.R.T. 1999. Epicuticular wax composition of predominant

conifers of western North America. Z. Naturforsch. 54c, 17-24.

Šiškov, G.D. 1997. Bulgarian low rank coals: geology and petrology. In: Gayer, R. and Pešek, J. (eds),

Eur. Coal Geology and Technol. Geol. Soc. Spec. Publ. 125, 141-148.

Stefanova, M., Velinova, D., Marinov, S.P., Nikolova, K. 1993. The composition of lignite humic acids.

Fuel 72, 681-684.

Stefanova, M., Magnier, C., Velinova, D. 1995. Biomarker assemblage of some Miocene-aged Bulgarian

lignite lithotypes. Organic Geochemistry 21, 1067-1084.

Stefanova, M., Oros, D.R., Otto, A., Simoneit, B.R.T. 2002. Polar aromatic biomarkers in the Miocene

Maritza-East lignite, Bulgaria. Organic Geochemistry, 33, 1079-1091.

Válkova, D., Grasset, L., Amblès, A. 2009. Molecular compounds generated by RuO4 oxidation and

preparative off line thermochemolysys of lignite humic acids from South Moravia: implication for molecular

structure. Fuel 88, 2113-2121.

Wang, T.-G., Simoneit, B.R.T. 1990. Organic geochemistry and coal petrology of Tertiary brown coal. 2.

Biomarker assemblage and significance. Fuel 69, 12-20.


  • There are currently no refbacks.

Copyright (c) 2017 M. Stefanova, S.P. Marinov

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.