A MULTIDISCIPLINARY INVESTIGATION AT THE LASTROS-SFAKA GRABEN, CRETE


Published: Jul 27, 2016
Keywords:
bedrock fault scarps t-LiDAR cemented colluvium GPR fissure fill
J. Mason
S. Schneiderwind
A. Pallikarakis
T. Wiatr
S. Mechernich
I. Papanikolaou
K. Reicherter
Abstract

Results from a multidisciplinary investigation at the Lastros-Sfaka Graben located in eastern Crete are presented. 1.3 km of the Lastros fault was scanned with t-LiDAR and we identified areas with minor external influences (anthropogenic, depositional or erosional) to extract throw rates. Preliminary postglacial throw rates are 0.67 ± 0.15 mm/yr., which is significantly less than stated in the literature. Cemented colluvium is located on the Lastros fault, forming hanging-wall talus lobes and sheets of varying thickness attached to the fault plane. Stable isotope analysis on the cement ndicates that it has a meteoric origin and precipitated from water at temperatures between 5 and 8°C. Field mapping and GPR shows that cemented colluvium, is also present within the hanging-wall subsurface. Trenching (road cut) investigations on the Sfaka fault identified fill material most likely deposited soon after the last palaeoearthquakes that occurred on the fault; 14C dating is currently being carried out to date this fill material.

Article Details
  • Section
  • Structural Geology
Downloads
Download data is not yet available.
References
Allen, J.R.M., Brandt, U., Brauer, A., Hubberten, H.W., Huntley, B., Keller, J., Kraml, M.,
Mackensen, A., Mingram, J., Negendank, J.F.W., Nowaczyk, N.R., Oberhansli, H., Watts,
W.A., Wulf, S. and Zolitschka, B., 1999. Rapid environmental changes in southern Europe
during the last glacial period, Nature, 400, 740-743.
Armijo, R., Lyoncaen, H. and Papanastassiou, D., 1992. East-west extension and Holocene normalfault
scarps in the Hellenic arc, Geology, 20, 491-494.
Benedetti, L., Finkel, R., Papanastassiou, D., King, G., Armijo, R., Ryerson, F., Farber, D. and Flerit,
F., 2002. Post-glacial slip history of the Sparta fault (Greece) determined by 36Cl cosmogenic
dating: Evidence for non-periodic earthquakes, Geophys. Res. Lett., 29, 1246.
Caputo, R., Monaco, C. and Tortorici, L., 2006. Multiseismic cycle deformation rates from Holocene
normal fault scarps on Crete (Greece), Terra Nova, 18(3), 181-190.
Caputo, R., Catalano, S., Monaco, C., Romagnoli, R., Tortorici, G. and Tortorici, L., 2010. Active
faulting on the island of Crete (Greece), Geophys. J. Int., 183, 111-126.
Fountoulis, I. and Mariolakos, I., 2008. Neotectonic folds in the central-western Peloponnese,
Greece, Zeitschrift der Deutschen Gesellschaft fur Geowissenschaften, 159/3 485-494.
Gaki-Papanastassiou, K., Karymbalis, E., Papanastassiou, D. and Maroukian, H., 2009. Quaternary
marine terraces as indicators of neotectonic activity of the Ierapetra normal fault SE Crete
(Greece), Geomorphology, 104, 38-46.
Gallen, S.F., Wegmann, K.W., Bohnenstiehl, D.R., Pazzaglia, F.J., Brandon, M.T. and Fassoulas,
C., 2014. Active simultaneous uplift and margin-normal extension in a forearc high, Crete,
Greece, Earth and Planetary Science Letters, 398, 11-24.
Giraudi, C. and Frezzotti, M., 1997. Late Pleistocene glacial events in the central Apennines, Italy,
Quaternary Research, 48, 280-290.
Hays, P. and Grossman, E., 1991. Oxygen isotopes in meteoric calcite cements as indicators of
continental paleoclimate, Geology, 19, 441-444.
International Atomic Energy Agency (IAEA), 2010. Seismic Hazards in Site Evaluation for Nuclear
Installations. Specific Safety Guide No. SSG-9.
Jolivet, L., Faccenna, C., Huet, B., Labrousse, L. and Le Pourhiet, L., 2013. Aegean tectonics: Strain
localisation, slab tearing and trench retreat, Tectonophysics, 597-598.
LePichon, X. and Angelier, J., 1979. The Hellenic Arch and Trench System: A key to the neotectonic
evolution of the Eastern Mediterranean area, Tectonophysics, 60, 1-42.
McCalpin, J.P., 2009. Paleoseismology, Elsevier, 2nd edition, 613 pp.
Meulenkamp, J.E., Wortel, M.J.R., Van Wamel, W.A., Spakman, W. and Hoogerduyn Strating, E.,
On the Hellenic subduction zone and the geodynamic evolution of Crete since the late
Middle Miocene, Tectonophysics, 146, 203-215.
Neal, A., 2004. Ground-penetrating radar and its use in sedimentology: principles, problems and
progress, Earth Science Reviews, 66, 261-330.
Papadopoulos, G., 2011. A Seismic History of Crete. The Hellenic Arc and Trench. Earthquake and
Tsunamis: 2000 BC - 2011 AD. Ocelotos Publications, 415 pp.
Papanikolaou, D. and Vassilakis, E., 2010. Thrust faults and extensional detachment faults in Cretan
tectonostratigraphy: implications for Middle Miocene extension, Tectonophysics, 488, 233-247.
Papanikolaou, I., Roberts, G. and Michetti, A., 2005. Fault scarps and deformation rates in Lazio-
Abruzzo, Central Italy: comparison between geological fault slip-rate and GPS data,
Tectonophysics, 408, 147-176.
Papanikolaou, I., Roberts, G., Deligiannakis, G., Sakellariou, A. and Vassilakis, E., 2013. The Sparta
Fault, Southern Greece: From segmentation and tectonic geomorphology to seismic hazard
mapping and time dependent probabilities, Tectonophysics, 597-598, 85-105.
Papazachos, B.C. and Papazachou, C.B., 1997. The earthquakes of Greece, Ziti Publications,
Thessaloniki-Greece.
Pentecost, A., 2005. Travertine. Springer-Verlag, Berlin.
Most read articles by the same author(s)