MODELING THE TRANS-ATLANTIC TRANSPORTATION OF SAHARAN DUST


Published: Jul 27, 2016
Keywords:
RegCM4 LIVAS Aerosol
A. Tsikerdekis
P. Zanis
L.A. Steiner
V. Amiridis
E. Marinou
E. Katragkou
Th. Karacostas
F. Solmon
Abstract

In the present study we are simulating the trans-Atlantic transport of dust from Sahara to the South-Central America, using the regional climate model RegCM4 and its online dust scheme, for the year 2007. The simulated horizontal and vertical distributions of the mineral dust optical properties were evaluated against the LIVAS CALIPSO satellite dust product. The Trans-Atlantic dust transport is simulated adequately with RegCM4, but there are some spatial discrepancies. Dust optical thickness is overestimated in the eastern Sahara throughout the year by 0.1-0.2, while near the gulf of Guinea is underestimated during winter and spring. Although RegCM4 dust plume is located southern on winter and spring, it doesn't spatially match the dust optical thickness of LIVAS. In summer and autumn the vertical distribution of dust between 3-4km during the Trans-Atlantic transport is simulated by the model adequately up to 30ºW 40ºW longitude. However, during winter-spring RegCM4 misplaces dust loading into higher altitude. Finally, we discuss some possible reasons and mechanisms that might be responsible for the differences between the model and the observations. 

Article Details
  • Section
  • Climatology
Downloads
Download data is not yet available.
References
Alfaro, S.C., Gaudichet, A., Gomes, L. and Maillé, M., 1997. Modeling the size distribution of a soil
aerosol produced by sandblasting, J. Geophys. Res., 102, 11,239-11,249.
Amiridis, V., Marinou, E., Tsekeri, A., Wandinger, U., Schwarz, A., Giannakaki, E., Mamouri, R.,
Kokkalis, P., Binietoglou, I., Solomos, S., Herekakis, T., Kazadzis, S., Gerasopoulos, E.,
Proestakis, E., Kottas, M., Balis, D., Papayannis, A., Kontoes, C., Kourtidis, K.,
Papagiannopoulos, N., Mona, L., Pappalardo, G., Le Rille, O. and Ansmann, A., 2015.
LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and
EARLINET, Atmos. Chem. Phys., 15, 7127-7153.
Amiridis, V., Wandinger, U., Marinou, E., Giannakaki, E., Tsekeri, A., Basart, S., Kazadzis, S.,
Gkikas, A., Taylor, M., Baldasano, J. and Ansmann, A., 2013. Optimizing CALIPSO Saharan
dust retrievals, Atmos. Chem. Phys., 13, 12089-12106.
Bangert, M., Nenes, A., Vogel, B., Barahona, D., Karydis, V.A, Kumar, P., Kottmeier, C. and
Blahak, U., 2012. Saharan dust event impacts on cloud formation and radiation over Western
Europe, Atmos. Chem. Phys., 12, 4045-4063.
Bristow, C.S., Hudson-Edwards, K.A. and Chappell, A., 2010. Fertilizing the Amazon and
equatorial Atlantic with West African dust, Geophys. Res. Lett., 37, doi:
1029/2010GL043486.
Chin, M., Diehl, T., Tan, Q., Prospero, J.M., Kahn, R.A., Remer, L.A., Yu, H., Sayer, A.M., Bian, H.,
Geogdzhayev, I.V., Holben, B.N., Howell, S.G., Huebert, B.J., Hsu, N.C., Kim, D., Kucsera,
T.L., Levy, R.C., Mishchenko, M.I., Pan, X., Quinn, P.K., Schuster, G.L., Streets, D.G., Strode,
S.A., Torres, O. and Zhao, X.-P., 2014. Multi-decadal aerosol variations from 1980 to 2009: a
perspective from observations and a global model, Atmos. Chem. Phys., 14, 3657-3690.
Dickinson, R.E., Henderson-Sellers, A. and Kennedy, P.J., 1993. Biosphere-Atmosphere Transfer
Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Codel,
NCAR/TN-387+STR, Boulder, Colorado.
Emanuel, K.A., 1991. A Scheme for Representing Cumulus Convection in Large-Scale Models, J.
Atmos. Sci., 48, 2313-2329.
Engelstaedter, S., Tegen, I. and Washington, R., 2006. North African dust emissions and transport,
Earth-Science Rev., 79, 73-100.
Engelstaedter, S. and Washington, R., 2007. Atmospheric controls on the annual cycle of North
African dust, J. Geophys. Res., 112, D03103, doi: 10.1029/2006JD007195.
Foret, G., Bergametti, G., Dulac, F. and Menut, L., 2006. An optimized particle size bin scheme for
modeling mineral dust aerosol, J. Geophys. Res., 111, D17310, doi: 10.1029/2005JD006797.
Formenti, P., Schütz, L., Balkanski, Y., Desboeufs, K., Ebert, M., Kandler, K., Petzold, A., Scheuvens,
D., Weinbruch, S. and Zhang, D., 2011. Recent progress in understanding physical and
chemical properties of African and Asian mineral dust, Atmos. Chem. Phys., 11, 8231-8256.
Giorgi, F., Coppola, E., Solmon, F., Mariotti, L., Sylla, M.B., Bi, X., Elguindi, N., Diro, G.T., Nair, V.,
Giuliani, G., Turuncoglu, U.U., Cozzini, S., Güttler, I., O’Brien, T.A., Tawfik, A.B., Shalaby, A.,
Zakey, A.S., Steiner, A.L., Stordal, F., Sloan, L.C. and Brankovic, C., 2012. RegCM4: model
description and preliminary tests over multiple CORDEX domains, Clim. Res., 52, 7-29.
Giorgi, F., Huang, Y., Nishizawa, K. and Fu, C., 1999. A seasonal cycle simulation over eastern Asia
and its sensitivity to radiative transfer and surface processes, J. Geophys. Res., 104, 6403-6423.
Gong, S.L., 2003. Characterization of soil dust aerosol in China and its transport and distribution
during 2001 ACE-Asia: 2. Model simulation and validation, J. Geophys. Res., 108, 4262,
doi: 10.1029/2002JD002633.
Huneeus, N., Schulz, M., Balkanski, Y., Griesfeller, J., Prospero, J., Kinne, S., Bauer, S., Boucher, O.,
Chin, M., Dentener, F., Diehl, T., Easter, R., Fillmore, D., Ghan, S., Ginoux, P., Grini, A.,
Horowitz, L., Koch, D., Krol, M.C., Landing, W., Liu, X., Mahowald, N., Miller, R., Morcrette,
J.-J., Myhre, G., Penner, J., Perlwitz, J., Stier, P., Takemura, T. and Zender, C.S., 2011. Global
dust model intercomparison in AeroCom phase I, Atmos. Chem. Phys., 11, 7781-7816.
Kaufman, Y.J., 2005. Dust transport and deposition observed from the Terra-Moderate Resolution
Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean, J. Geophys. Res.,
, D10S12, doi: 10.1029/2003JD004436.
Kiehl, J.T., Hack, J.J. and Bonan, G.B., 1996. Description of the NCAR Community Climate Model
(CCM3), National Center for Atmospheric Research, Boulder, Colorado.
Kim, D., Chin, M., Yu, H., Diehl, T., Tan, Q., Kahn, R.A., Tsigaridis, K., Bauer, S.E., Takemura,
T., Pozzoli, L., Bellouin, N., Schulz, M., Peyridieu, S., Chedin, A. and Koffi, B., 2014.
Sources, sinks, and transatlantic transport of North African dust aerosol: A multimodel
analysis and comparison with remote sensing data, J. Geophys. Res. Atmos., 119, 6259-6277.
Knippertz, P. and Stuut, J.-B.W., 2014. Mineral Dust, doi: 10.1007/978-94-017-8978-3.
Koffi, B., Schulz, M. and Bréon, F.-M., 2012. Application of the CALIOP layer product to evaluate
the vertical distribution of aerosols estimated by global models: AeroCom phase I results, J.
Geophys. Res., 117, D10201, doi: 10.1029/2011JD016858.
Koren, I., Kaufman, Y.J., Washington, R., Todd, M.C, Rudich, Y., Martins, J.V. and Rosenfeld, D.,
The Bodélé depression: a single spot in the Sahara that provides most of the mineral dust
to the Amazon forest, Environ. Res. Lett., 1, 014005. doi: 10.1088/1748-9326/1/1/014005.
Laurent, B., Marticorena, B., Bergametti, G., Leon, J.F. and Mahowald, N.M., 2008. Modeling
mineral dust emissions from the Sahara desert using new surface properties and soil database,
J. Geophys. Res., 113, D14218, doi: 10.1029/2007JD009484.
LIVAS, 2013. LIVAS Lidar Climatology of Vertical Aerosol Structure for Space-Based Lidar Simulation
Studies, Final Report Submitted: ESTEC Contract No. 4000104106/11/NL/FF/fk. 1-211.