EVIDENCE OF PRECURSORY PATTERNS IN AGGREGATED TIME SERIES


Published: Jul 27, 2016
Keywords:
Corinth Gulf Seismicity Aggregated Foreshock Catalogues
K.A. Adamaki
R.G. Roberts
Abstract

We investigate temporal changes in seismic activity observed in the West Corinth Gulf and North-West Peloponnese during 2008 to 2010. Two major earthquake sequences took place in the area at that time (in 2008 and 2010). Our aim is to analyse Greek seismicity to attempt to confirm the existence or non-existence of seismic precursors prior to the strongest earthquakes. Perhaps because the area is geologically and tectonically complex, we found that it was not possible to fit the data well using a consistent Epidemic Type Aftershock Sequence (ETAS) model. Nor could we unambiguously identify foreshocks to individual mainshocks. Therefore we sought patterns in aggregated foreshock catalogues. We set a magnitude threshold (M3.5) above which all the earthquakes detected in the study area are considered as “mainshocks”, and we combined all data preceding these into a single foreshock catalogue. This reveals an increase in seismicity rate not robustly observable for individual cases. The observed effect is significantly greater than that consistent with stochastic models, including ETAS, thus indicating genuine foreshock activity with potential useful precursory power, if sufficient data is available, i.e. if the magnitude of completeness is sufficiently low.

Article Details
  • Section
  • Seismology
Downloads
Download data is not yet available.
References
Adamaki, A.K., Tsaklidis, G.M., Papadimitriou, E.E. and Karakostas, V.G., 2010. Evidence for
induced seismicity following the 2001 Skyros mainshock, Bull. Geol. Soc. Greece, 43, 1983-
Adamaki, A., Papadimitriou, E., Tsaklidis, G. and Karakostas, V., 2011. Statistical properties of
aftershock rate decay: Implications for the assessment of continuing activity, Acta Geophys.,
, 748-769.
Akaike, H., 1974. A new look at the statistical model identification, IEEE Trans. Autom. Control,
, 716-723, doi: 10.1109/TAC.1974.1100705.
Bouchon, M., Durand, V., Marsan, D., Karabulut, H. and Schmittbuhl, J., 2013. The long precursory
phase of most large interplate earthquakes, Nat. Geosci., 6, 299-302, doi: 10.1038/ngeo1770.
Console, R., Rhoades, D.A., Murru, M., Evison, F.F., Papadimitriou, E.E. and Karakostas, V.G.,
Comparative performance of time-invariant, long-range and short-range forecasting
models on the earthquake catalogue of Greece, J. Geophys. Res. Solid Earth, 111, B09304,
doi: 10.1029/2005JB004113.
Drakatos, G. and Latoussakis, J., 1996. Some features of aftershock patterns in Greece, Geophys. J.
Int., 126, 123-134. doi: 10.1111/j.1365-246X.1996.tb05272.x.
Felzer, K.R., Page, M.T. and Michael, A.J., 2015. Artificial seismic acceleration, Nat. Geosci., 8,
-83, doi: 10.1038/ngeo2358.
Gospodinov, D., Karakostas, V. and Papadimitriou, E., 2015. Seismicity rate modeling for
prospective stochastic forecasting: the case of 2014 Kefalonia, Greece, seismic excitation,
Nat. Hazards, 1-20. doi: 10.1007/s11069-015-1890-8.
Gospodinov, D. and Rotondi, R., 2006. Statistical Analysis of Triggered Seismicity in the Kresna
Region of SW Bulgaria (1904) and the Umbria-Marche Region of Central Italy (1997), Pure
Appl. Geophys., 163, 1597-1615, doi: 10.1007/s00024-006-0084-4.
Helmstetter, A., Ouillon, G. and Sornette, D., 2003. Are aftershocks of large Californian earthquakes
diffusing? J. Geophys. Res. Solid Earth, 108, 2483, doi: 10.1029/2003JB002503.
Helmstetter, A. and Sornette, D., 2003. Importance of direct and indirect triggered seismicity in the
ETAS model of seismicity, Geophys. Res. Lett., 30, 1576, doi: 10.1029/2003GL017670.
Karakostas, V., 2009. Seismicity patterns before strong earthquakes in Greece, Acta Geophys., 57,
-386.
Karakostas, V., Karagianni, E. and Paradisopoulou, P., 2012. Space-time analysis, faulting and
triggering of the 2010 earthquake doublet in western Corinth Gulf, Nat. Hazards, 63, 1181-
, doi: 10.1007/s11069-012-0219-0.
Latoussakis, J. and Drakatos, G., 1994. A quantitative study of some aftershock sequences in Greece,
Pure Appl. Geophys., 143, 603-616, doi: 10.1007/BF00879500.
Leptokaropoulos, K.M., Karakostas, V.G., Papadimitriou, E.E., Adamaki, A.K., Tan, O. and İnan,
S., 2013. A Homogeneous Earthquake Catalog for Western Turkey and Magnitude of
Completeness Determination, Bull. Seismol. Soc. Am., 103, 2739-2751, doi:
1785/0120120174.
Marsan, D., Helmstetter, A., Bouchon, M. and Dublanchet, P., 2014. Foreshock activity related to
enhanced aftershock production, Geophys. Res. Lett., 41, 2014GL061219, doi:
1002/2014GL061219.
Marsan, D. and Nalbant, S.S., 2005. Methods for Measuring Seismicity Rate Changes: A Review
and a Study of How the M w 7.3 Landers Earthquake Affected the Aftershock Sequence of
the M w 6.1 Joshua Tree Earthquake, Pure Appl. Geophys., 162, 1151-1185, doi:
1007/s00024-004-2665-4.
Michas, G., Sammonds, P. and Vallianatos, F., 2014. Dynamic Multifractality in Earthquake Time
Series: Insights from the Corinth Rift, Greece, Pure Appl. Geophys., 172, 1909-1921, doi:
1007/s00024-014-0875-y.
Mignan, A., 2014. The debate on the prognostic value of earthquake foreshocks: A meta-analysis,
Sci. Rep., 4, doi: 10.1038/srep04099.
Ogata, Y., 1999. Seismicity Analysis through Point-process Modeling: A Review, Pure Appl.
Geophys., 155, 471-507, doi: 10.1007/s000240050275.
Ogata, Y., 1988. Statistical Models for Earthquake Occurrences and Residual Analysis for Point
Processes, J. Am. Stat. Assoc., 83, 9-27, doi: 10.1080/01621459.1988.10478560.
Ogata, Y. and Katsura, K., 2014. Comparing foreshock characteristics and foreshock forecasting in
observed and simulated earthquake catalogs, J. Geophys. Res. Solid Earth, 119,
JB011250, doi: 10.1002/2014JB011250.
Papadimitriou, E., Gospodinov, D., Karakostas, V. and Astiopoulos, A., 2012. Evolution of the
vigorous 2006 swarm in Zakynthos (Greece) and probabilities for strong aftershocks
occurrence, J. Seismol., 17, 735-752, doi: 10.1007/s10950-012-9350-3.
Papadopoulos, G.A., Drakatos, G. and Plessa, A., 2000. Foreshock activity as a precursor of strong
earthquakes in Corinthos Gulf, Central Greece, Phys. Chem. Earth Part Solid Earth Geod.,
, 239-245, doi: 10.1016/S1464-1895(00)00039-9.
Reasenberg, P., 1985. Second-order moment of central California seismicity, 1969-1982, J. Geophys.
Res. Solid Earth, 90, 5479-5495, doi: 10.1029/JB090iB07p05479.
Segou, M., Ellsworth, W.L. and Parsons, T., 2014. Stress Transfer by the 2008 Mw 6.4 Achaia
Earthquake to the Western Corinth Gulf and Its Relation with the 2010 Efpalio Sequence,
Central Greece, Bull. Seismol. Soc. Am., 104, 1723-1734, doi: 10.1785/0120130142.
Sokos, E., Zahradník, J., Kiratzi, A., Janský, J., Gallovič, F., Novotny, O., Kostelecký, J.,
Serpetsidaki, A. and Tselentis, G.-A., 2012. The January 2010 Efpalio earthquake sequence
in the western Corinth Gulf (Greece), Tectonophysics, 530-531, 299-309, doi:
1016/j.tecto.2012.01.005.
Toda, S. and Stein, R., 2003. Toggling of seismicity by the 1997 Kagoshima earthquake couplet: A
demonstration of time-dependent stress transfer, J. Geophys. Res. Solid Earth, 108, 2567, doi:
1029/2003JB002527.
Toda, S., Stein, R.S., Reasenberg, P.A., Dieterich, J.H. and Yoshida, A., 1998. Stress transferred by
the 1995 Mw = 6.9 Kobe, Japan, shock: Effect on aftershocks and future earthquake
probabilities, J. Geophys. Res. Solid Earth, 103, 24543-24565, doi: 10.1029/98JB00765.
Utsu, T., 1969. Aftershocks and Earthquake Statistics (1): Some Parameters Which Characterize an
Aftershock Sequence and Their Interrelations, J. Fac. Sci. Hokkaido Univ. Ser. 7 Geophys.,
, 129-195.
Zhuang, J., Ogata, Y. and Vere-Jones, D., 2002. Stochastic Declustering of Space-Time Earthquake
Occurrences, J. Am. Stat. Assoc., 97, 369-380, doi: 10.1198/016214502760046925.