CHARACTERISTICS OF SEISMIC EXCITATIONS IN CORINTH GULF (GREECE)


Published: Jul 27, 2016
Keywords:
main shock swarms relocation skewness b-value statistical seismology
M. Mesimeri
V. Karakostas
E. Papadimitriou
G. Tsaklidis
Abstract

Seismic excitations occur as mainshock-aftershock sequences (MS-AS) encompassing a strong event called mainshock with the largest magnitude in the set, or as earthquake swarms (ES) when a distinctive main event is absent. In regions as the gulf of Corinth, where active deformation is manifested with frequent seismicity bursts, it is important to distinguish MS-AS from ES for providing information on the physical process of earthquake generation and contribute to the seismic hazard assessment. For this purpose, a highly accurate local earthquake catalogue was compiled and an effort was made for clusters identification after establishing certain criteria based on spatio-temporal seismicity properties. The skewness and kurtosis of moment release history were calculated considering the normalized time of every event in a cluster since the starting time of the cluster and its seismic moment. For MS-AS we found large positive values for skewness and kurtosis contrary to ES that exhibit negative to low positive values for skewness and even lower values for kurtosis.
In order to verify the classification of clusters, the b-value, the spatial size and the number of events of each cluster were examined. Finally, a scaling relation between the length of the rupture zone and magnitude derived for the MS-AS sequences.

Article Details
  • Section
  • Seismology
Downloads
Download data is not yet available.
References
Aki, K., 1965. Maximum Likelihood Estimate of b in the Formula logN=a-bM and its Confidence
Limits, Bull. Earthq. Res. Inst. Univ. Tokyo, 43(7), 237-239.
Båth, M., 1965. Lateral inhomogeneities of the upper mantle, Tectonophysics, 2(6), 483-514, doi:
1016/0040-1951(65)90003-X.
Chen, X. and Shearer, P. M., 2011. Comprehensive analysis of earthquake source spectra and
swarms in the Salton Trough, California, J. Geophys. Res., 116(B09), doi:
1029/2011JB008263.
Gutenberg, B. and Richter, C.F., 1944. Frequency of earthquakes in California, Bull. Seismol. Soc.
Am., 34(5), 184-188.
Hanks, T.C. and Kanamori, H., 1979. A moment magnitude scale, J. Geophys. Res., 84, 2348-2350.
Ishimoto, M. and Iida, K., 1939. Observations of earthquakes registerd with the microseismograph
constructed recently, Bull. earthq. Res. Inst., 17(5), 443-478.
Jacobs, K.M., Smith, E.G.C., Savage, M.K. and Zhuang, J., 2013. Cumulative rate analysis
(CURATE): A clustering algorithm for swarm dominated catalogs, J. of Geophys. Res.,
(2), 553-569, doi: 10.1029/2012JB009222.
Mesimeri, M., Papadimitriou, E., Karakostas, V. and Tsaklidis, G., 2013. Earthquake clusters in NW
Peloponnese, Bull Geol. Soc. Greece,. XLVII/3, 1167-1176.
Mesimeri, M., Karakostas, V. and Papadimitriou, E., 2014. Σχέση κύρτωσης και λοξότητας για τον
χαρακτηρισμό των σεισμικών εξάρσεων, Πρακτικά 27ου Πανελληνίου Συνέδριου Στατιστικής, 142-154.
Mesimeri, M., Karakostas, V., Papadimitriou, E. and Tsaklidis, G., 2015. Χωροχρονιές ιδιότητες
σεισμικότητας στο Δυτικό Κορινθιακό κόλπο, Πρακτικά 28ου Πανελληνίου Συνεδρίου
Στατιστικής.
Mogi, K., 1963. Some discussions on aftershocks,foreshocks and earthquake swarms - the fracture
of a semi-infinite body caused by an inner stress origin and its relation to the earthquake
phenomena., Bull. Earthq. Res. Inst. Univ. Tokyo, 40, 831-853.
Papazachos, B., Scordilis, E., Panagiotopoulos, D., Papazachos, C. and Karakaisis, G., 2004. Global
relations between seismic fault parameters and moment magnitude of earthquakes, Bull Geol.
Soc. Greece, XXXVI/3, 1482-1489.
Potanina, M.G., Smirnov, V.B. and Bernard, P., 2011. Patterns of seismic swarm activity in the
Corinth Rift in 2000-2005, Izvestiya Phys. Solid Earth, 47(7), 610-622.
Reasenberg, P., 1985. Second-order moment of central California seismicity, 1969-1982, J. of
Geophys. Res., 90(B7), 5479, doi: 10.1029/JB090iB07p05479.
Rigo, A., Lyon-Caen, H., Armijo, R., Deschamps, A., Hatzfeld, D., Makropoulos, K., Papadimitriou, P.
and Kassaras, I., 1996. A micro-seismicity study in the western part of the Gulf of Corinth (Greece):
implications for large-scale normal faulting mechanisms, Geophys. J. Int., 126, 663-688.
Roland, E. and McGuire, J.J., 2009. Earthquake swarms on transform faults, Geophys. J. Int., 178(3),
-1690.
Scholz, C.H., 1968. The frequency - magnitude relation of microfracturing in rock and its relation
to earthquakes, Bull. Seismol. Soc. Am, 58(1), 399-415.
Waldhauser, F., 2001. HypoDD-a program to compute double-difference hypocenter locations, US
Geological Survey Open File Report.
Wells, D.L. and Coppersmith, K.J., 1994. New empirical relationships among magnitude, rupture length,
rupture width, rupture area, and surface displacement, Bull. Seismol. Soc. Am., 84(4), 974-1002.
Wessel, P. and Smith, W.H.F., 1998. New,improved version of the generic mapping tools released’,
EOS Trans. Am. Geophys. Union, 79(47), 579.
Wiemer, S., 2001. A Software Package to Analyze Seismicity: ZMAP, Seismol. Res. Lett., 72(3),
-382, doi: 10.1785/gssrl.72.3.373.
Wiemer, S. and Wyss, M., 2000. Minimum magnitude of completeness in earthquake catalogs:
Examples from Alaska, the Western United States, and Japan, Bull. Seismol. Soc. Am., 90(4),
-869, doi: 10.1785/0119990114.
Most read articles by the same author(s)