| More

3D NUMERICAL MODELLING OF THE SEISMIC RESPONSE OF THE THESSALONIKI URBAN AREA: THE CASE OF THE 1978 VOLVI EARTHQUAKE

Views: 177 Downloads: 139
C. Smerzini, K. Pitilakis, K. Hashemi
C. Smerzini, K. Pitilakis, K. Hashemi

Abstract


This study aims at showing the numerical modelling of earthquake ground motion in the Thessaloniki urban area, using a 3D spectral element approach. The availability of detailed geotechnical/geophysical data together with the seismological information regarding the relevant fault sources allowed us to construct a large-scale 3D numerical model suitable for generating physics based ground shaking scenarios within the city of Thessaloniki up to maximum frequencies of about 2 Hz. Results of the numerical simulation of the destructive MW6.5 1978 Volvi earthquake are addressed, showing that realistic estimates can be obtained. Shaking maps in terms of ground motion parameters such as PGV are used to discuss the main seismic wave propagation effects at a wide scale.


Keywords


deterministic seismic hazard; seismic wave propagation; Spectral Element Method

Full Text:

PDF

References


Brooks, M. and Ferentinos, G., 1980. Structure and evolution of the Sporadhes basin of the North

Aegean trough, northern Aegean Sea, Tectonophysics, 68.1, 15-30.

Coppersmith, K.J. and Youngs, R.R., 1986. Capturing uncertainty in probabilistic seismic hazard

assessments within intraplate tectonic environments, Proc. of the Third US National

Conference on Earthquake Engineering, 1, 301-312.

Cornell, C.A., 1968. Engineering seismic risk analysis, Bull. Seism. Soc. Am., 58, 1583-1606.

Danciu, L. and Tselendis, G.-A., 2007. Engineering ground-motion parameters attenuation

relationships for Greece, Bull. Seism. Soc. Am., 97, 162-183.

Ginzburg, A., Makris, J. and Hirschleber, H., 1986. Geophysical investigations in the North Aegean

Trough, Annales geophysicae. Series B. Terrestrial and planetary physics, 5(2), 167-174.

IGME, 1989. Seismotectonic Map of Greece with seismological data, 1:500.000 scale, Athens.

Kahle, H.-G., Straub, C., Reilinger, R., McGlusky, S., King, R., Hurst, K., Veis, G., Kastens, K. and

Cross, P., 1998. The strain rate field in the eastern Mediterranean region, estimated by

repeated GPS measurements, Tectonophysics, 294, 237-252.

Kulkarni, R.B., Youngs, R.R. and Coppersmith, K.J., 1984. Assessment of confidence intervals for

results of seismic hazard analysis, Proceedings of the Eight World Conference on Earthquake

Engineering, 1, 263-270.

Lalechos, N. and Savoyat, E., 1979. La sédimentation Néogène dans le fossé Nord Egéen, Proc. 6th

Coll. Geol. Aeg. Reg., Athens.

Le Pichon, X., Lybéris, N. and Alvarez, F., 1984. Subsidence history of the North Aegean trough,

Geological Society, London, Special Publications, 17(1), 727-741.

Lybéris, N., 1984. Tectonic evolution of the North Aegean trough, Geological Society, London,

Special Publications, 17(1), 709-725.

Makris, J., 1977. Geophysical investigations of the Hellenides. In: Hamburger Geophysikalische

Einzelschriften, Reihe A, Vol. 34, University of Hamburg.

Makris, J. and Stobbe, C., 1984. Physical properties and state of the crust and upper mantle of the

Eastern Mediterranean Sea deduced from geophysical data, Mar. Geol., 55, 347-363.

Makris, J., 1985. Geophysics and geodynamic implications for the evolution of the Hellenides,

Geological Evolution of the Mediterranean Basin, Springer New York, 231-248.

Makris, J., Papoulia, J., Papanikolaou, D. and Stavrakakis, G., 2001: Thinned continental crust

below northern Evoikos gulf, central Greece, detected from deep seismic soundings,

Tectonophysics, 341, 225-236.

Makris, J., Papoulia, J. and Yegorova, T., 2013. A 3-D density model of Greece constrained by

gravity and seismic data, Geophysical Journal International, 1-17.

Margaris, B., Papazachos, C., Papaioannou, C., Theodulidis, N., Kalogeras, I. and Skarlatoudis, A.,

Ground motion attenuation relations for shallow earthquakes in Greece. Proceedings

of the XXVIII General Assembly of the European Seismological Commission (ESC).

McKenzie, D., 1972. Active tectonics of the Mediterranean region, Geophysical Journal

International, 30.2, 109-185.

Ordaz, M., Aguilar, A. and Arboleda, J., 2007. CRISIS 2007 Program for computing seismic hazard.

Vers. 1.1. UNAM, Mexico.

Papaioannou, Ch.A. and Papazachos, B.C., 2000. Time-independent and time-dependent seismic

hazard in Greece based on seismogenic sources, Bull. Seism. Soc. Am., 90, 22-33.

Papanastassiou, D., Latoussakis, J. and Stavrakakis, G.N., 2001. A revised catalogue of earthquakes

in the broader area of Greece for the period 1950–2000, Bulletin of the Geological Society of

Greece 34, 1563-1566.

Papanikolaou, D., Alexandri, M. and Nomikou, P., 2006. Active faulting in the north Aegean basin,

Geological Society of America Special Papers, 409, 189-209.

Papazachos, B.C. and Papazachou, C.B., 2003. The Earthquakes of Greece, Ziti Publ., Thessaloniki,

pp. (Greece).

Papazachos, B.C., Comninakis P.E., Scordilis, E.M., Karakaisis, G.F. and Papazachos, C.B., 2009.

A catalogue of earthquakes in the Mediterranean and surrounding area for the period 1901-

Sep 2009, Publ. Geophys. Laboratory, University of Thessaloniki, 1-333 pp.

Pavlides, S., Chatzipetros, A. and Valkaniotis, S., 2008. Active faults of Greece and surroundings,

rd International Geological Congress, Oslo.

Pavlides, S. and Caputo R.; 2004. Magnitude versus faults’ surface parameters: quantitative relat-i

onships from the Aegean region, Tectonophysics, 380, 159-188.

Saltogianni, V., Giannou, M., Taymaz, T., Yolsal-Cevikbilen, S. and Stiros, S., 2015. Fault slip

source models for the 2014 Mw 6.9 Samothraki - Gökceada Earthquake (North Aegean

Trough) combining geodetic and seismological observations, Journal of geophysical

Research: Solid Earth, 120, doi:10.1 002/2015 JB0 12052.

Sboras, S., Chatzipetros, A., Pavlides, S., Fotiou, A., Pikridas, C. and Bitharis, S., 2015. The May

, 2014 North Aegean Trough earthquake stress change and displacement patterns, 6th Intl.

INQUA meeting on Paleoseismology, Active Tectonics and Archaeoseismology, 19-24,

April, Italy.

Skarlatoudis, A.A., Papazachos, C.B., Margaris, B.N., Theodulidis, N., Papaioannou, C., Kalogeras,

I., Scordilis, E.M. and Karakostas, V., 2003. Empirical peak ground-motion predictive

relations for shallow earthquake in Greece, Bulletin of the Seismological Society of America,

(6), 2591-2603.

Theodulidis, N.P., and Papazachos, B.C., 1994. Dependence of strong ground motion on magnitudedistance,

site geology and macroseismic intensity for shallow earthquakes in Greece II

horizontal pseudo velocity, Soil Dynamics and Earthquake Engineering, 13(5), 317-343.

Tsambas, A., 2006. Model of critical earthquake in low seismic activity regions of Europe, MSc

thesis, Geology Department of Aristotle University of Thessaloniki (in Greek), 47-101.

Tsambas, A., Scordilis, E.M., Papazachos, C.B. and Karakaisis, G., 2016. A homogeneous earthquake

catalogue of intermediate-deep focus global seismicity: Completeness and spatio-temporal

analysis, Bull. Geol. Soc. Greece, Proc. Of the 14th Intl. Congress, Thessaloniki (in press).

Wells, D.L. and Coppersmith, K.J., 1994. New empirical relationship among magnitude, rupture

length, rupture width, rupture area, and surface displacement, Bull. Seism. Soc. Am., 84, 974-


Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 C. Smerzini, K. Pitilakis, K. Hashemi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.